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Abstract— We consider a cooperative vehicle routing problem
for surveillance and reconnaissance missions with communica-
tion constraints between the vehicles. We propose a framework
which involves a ground vehicle and an aerial vehicle; the ve-
hicles travel cooperatively satisfying the communication limits,
and visit a set of targets. We present a mixed integer linear
programming (MILP) formulation and develop a branch-and-
cut algorithm to solve the path planning problem for the ground
and air vehicles. The effectiveness of the proposed approach is
corroborated through extensive computational experiments on
several randomly generated instances.

I. INTRODUCTION

In this paper, we present a path planning problem involv-
ing an Unmanned Aerial Vehicle (UAV) and a ground vehicle
for intelligence, surveillance and reconnaissance (ISR) mis-
sions. UAVs are being routinely used in military applications
such as border patrol, reconnaissance, and surveillance ex-
peditions, and civilian applications [1]–[3]. They are prime
candidates for ISR missions due to their several advantages
such as portability and low risk, to name a few. A typical ISR
mission would require the UAVs to collect images, videos,
or sensor data and transmit them to a ground/base station.
The data collected in these ISR missions are most often
very time sensitive and ideally, the data would be useful
only if it is processed in real-time or near real-time. We
propose a framework to meet this objective, and solve the
underlying problem of planning paths for the UAV and the
ground vehicle.

Cooperative control and path planning for a team of
vehicles (UAVs or UAVs together with ground vehicles)
has been a problem of interest and has received wide
attention during the past decade (see [4]–[10]). The problem
of communication-constrained vehicle routing for a team of
vehicles has been addressed in [11]–[14]. More specifically,
authors in [11] study the problem of deploying a team
of mobile agents to periodically monitor several points of
interest. Authors in [12] perform an experimental study of
the strategies to maintain end-to-end communication links
for a team of robots in reconnaissance missions. Heuristic
approaches for a variation of the traditional vehicle routing
problems with a simple communication model has been stud-
ied in [14]. In [10], the authors considered a forest mapping
application involving an UAV and a ground vehicle; they
develop algorithms to plan routes for the fuel constrained
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UAV and the ground vehicle, which can act as refueling
station for the UAV during the mission. This is the first work
in the literature that proposes an approach using one UAV
and one ground vehicle.

In this article, we propose a reconnaissance and data
collection methodology using a UAV and a ground vehicle.
The two vehicles are subject to communication constraints
and they work cooperatively to accomplish the mission.
The choice of using a ground vehicle and a UAV for ISR
missions is motivated by the lack of roads and the presence
of geographical obstacles such as rivers, lakes, mountains,
etc. that must be circumvented to reach target locations. In
the scenarios where ground vehicle may not be able to reach
certain targets, a UAV could be used to gather information.
However, due to size, weight, and power restrictions the UAV
would be unable to transmit the data from remote targets
to the ground station. Furthermore, in ideal situations, the
ground vehicle would have a communication link to the
ground station, perhaps through satellite or by other means.
Hence, in this paper, the UAV is required to stay connected
to the ground vehicle, under the thought that data can be
instantaneously transmitted to the ground station. We also
do not impose any specific constraint on communication for
the ground vehicle, and thus in cases where communication
is degraded and the ground vehicle cannot maintain contact
with the ground station, the cooperative routing problem here
will still yield a viable solution. In this case, one could think
of this problem as a cooperative routing problem to minimize
the effort taken by the vehicles to acquire the data and then
ferry it back to the ground station. The problem is formally
defined in the following section.
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A. Path planning problem

The path planning problem considered in this article is
formally defined as follows: we are given the locations of a
set of targets and a ground station where the ground vehicle
is initially stationed. The UAV is being carried by the ground
vehicle. For each vehicle, we are given a travel cost between
every pair of targets. This cost could be the Euclidean
distance between the pair of targets or could also depend
on the terrain. Given this, the objective of the problem is to
determine paths of minimum cost for the ground vehicle and
the UAV such that following conditions are satisfied:
• every target is visited either by the ground vehicle or

by the UAV, and
• the UAV can always establish a reliable communication

link with the ground vehicle.
The sequence of actions for a feasible mission is as follows.
The ground vehicle starts at the ground station and visits the
first target in its route, then the UAV is deployed from the
first target and it collects the data from a subset of targets
according to its plan and returns to the ground vehicle. Then
the ground vehicle proceeds to the next stop. This process
is repeated until the data is collected from all of the targets.
An illustration of a typical route is shown in Fig. 1. Once
all the targets are visited, the ground vehicle carrying the
UAV returns to the ground station. More specifically, the
objective of determining the routes for the vehicles involves
(i) identifying the stops and order to visit them for the ground
vehicle and (ii) at each stop, identifying the subset of targets
and order in which the UAV has to visit them. Furthermore,
to ensure that the UAV can always establish a communication
link with the ground vehicle, we enforce the constraint that
the UAV has to stay within a distance of R units from the
ground vehicle at all times during the mission. We call this
problem the cooperative air-ground vehicle routing problem
(CAGVRP). A feasible solution to the problem is shown in
Fig. 2.
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Fig. 2. A sample tour of the CAGVRP

B. Related Literature

The CAGVRP is NP-hard because it is a generalization
of the traveling salesman problem. Authors in [9] propose a

framework similar to the CAGVRP involving a truck, travel-
ing on a road network and a quadrotor for a package delivery
problem in urban environments. This problem differs from
the CAGVRP in two aspects: (i) the ground vehicle or the
truck is restricted to travel along a road network and (ii)
the quadrotor has to return to the ground vehicle after each
delivery. The authors present a transformation algorithm to
transform the problem to a generalized traveling salesman
problem, whereas the focus of this paper is to develop
algorithms to obtain an optimal solution to the CAGVRP.
CAGVRP also resembles the two echelon vehicle routing
problem [15]; the key difference is in CAGVRP the locations
at which the UAV tours originate are not known, which
makes it even harder to solve.

Other problems addressed in the literature that are similar
to the CAGVRP are the ring-star problem [16]–[19] and
the hierarchical ring-network problem [20]–[25]. The ring-
star problem aims to find a minimum cost cycle (or ring)
through a subset of targets, and the targets that do not lie
on the cycle should be assigned to one of the targets in the
cycle. Algorithms to obtain an optimal solution based on
the branch-and-cut paradigm are presented for the ring-star
problem in [16], for its multiple-depot variant in [17], and
for the capacitated variants in [18], [19]. In CAGVRP, not
only must the targets that does not lie on the main ring be
assigned to the targets on the ring, but there must be sub-
tours chosen for all the off-ring targets.

Another closely related problem is the hierarchical ring-
network problem (HRNP) which aims to find a hierarchical
two-layer ring network. The top layer consists of a federal
ring (analogous to the ground vehicle tour) which establishes
connection between a number of node-disjoint metro rings
(analogous to the UAV sub-tours) in the bottom layer.
Authors in [21] present heuristics and an approximation
algorithm to solve the HRNP; they assume that the number
of metro rings and the nodes at which the metro rings are
attached to the federal ring are given. In [24], heuristics
and enumeration methods are given to solve the HRNP,
where a certain demand must be satisfied between every
pair of targets. Heuristics to solve a variant of the HRNP
are presented in [20].

Another variant of HRNP, where the bottom layer could be
rings or ring-stars is solved in [22]. The authors assume the
number of possible local rings are given. The authors in [25]
use branch-and-price algorithm to solve the HRN problem
with demands to be satisfied between every pair of targets.
Their solution procedure involved two steps: in the first step,
they solve a modified HRNP which ignores the cost of the
federal ring and design the metro rings; in the second step,
they solve a generalized traveling salesman problem on the
metro rings. In all the aforementioned papers, the cost of the
federal ring is either ignored or assumed to be equal to that of
the metro ring. The CAGVRP differs from the HRNP in the
following aspects: (i) the travel costs for the ground vehicle
and the UAV are different, (ii) we have an additional distance
constraint i.e., the distance between the UAV and the ground
vehicle has to be within R units throughout the mission, and



(iii) we attempt to solve the coupled problem of finding paths
for the ground vehicle and the UAV to minimizes the total
travel cost.

This article is organized as follows: We present the prob-
lem formulated as mixed-integer linear program (MILP) in
Section II. In Section III, we explain the branch-and-cut
framework used to solve the MILP formulation. Computa-
tional results are reported in Section IV and conclusions are
made in Section V.

II. PROBLEM FORMULATION

This section presents a mixed integer linear programming
formulation for the CAGVRP. Let T denote the set of targets
{t0, . . . , tn}; t0 is the ground station. The CAGVRP is
defined on a mixed graph G = (T,E ∪A), where E and A
are a set of undirected edges and directed arcs, respectively,
joining any two targets in T . Each edge e = (i, j) ∈ E
is associated with a non-negative cost ce required for the
ground vehicle to traverse the edge e (if e connects the
vertices i and j, then (i, j) and e will be used interchangeably
to denote the same edge in E). Similarly, each arc [i, j] ∈ A
is associated with a non-negative cost dij required for the
UAV to travel from target i to target j. We also associate
with each arc [i, j] ∈ A, an auxiliary cost fij to enforce the
mission constraint that the UAV should always be within a
distance of R units from the ground vehicle. For any i, j ∈ T ,
fij is set to 0 if the Euclidean distance between targets i and
j is less than R units, and is set to an arbitrarily large value
otherwise.

We associate vectors x ∈ R|E|, w ∈ R|A| and y ∈ R|A|
with each feasible solution F . The component xe of x,
associated with edge e ∈ E, is a binary variable which takes
a value 1 if the edge e is traversed by the ground vehicle, and
0 otherwise. Each component wij of w, associated with the
directed arc [i, j] ∈ A is a binary variable; it denotes if the
arc is present in a UAV sub-tour. Similarly, yij , a component
of y is a binary assignment variable that takes a value 1 if
the target i is assigned to the UAV sub-tour that originates
from the target j, and 0 otherwise. Note that if a target i is
visited by a ground vehicle then the assignment variable yii
is equal to 1 (the target is assigned to itself).

For any S ⊂ T , we define γ(S) = {(i, j) ∈ E : i, j ∈ S},
δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S}, δ+(S) = {[i, j] ∈
A : i ∈ S, j /∈ S}, and δ−(S) = {[j, i] ∈ A : i ∈
S, j /∈ S}. If S = {i}, we simply write δ(i), δ+(i) and
δ−(i) instead of δ({i}), δ+({i}) and δ−({i}) respectively. A
mixed-integer program formulated using the above variables
for the CAGVRP is as follows:

(F1) Minimize
∑
e∈E

cexe +
∑

(i,j)∈A

dijwij +
∑

(i,j)∈A

fijyij

Subject to∑
e∈δ(i)

xe = 2yii ∀i ∈ T, (1)
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UAV sub-tours

Fig. 3. Infeasible solution to the CAGVRP because the ground vehicle
tour consists of two disjoint sub-tours and there exists a separated UAV
sub-tour.

∑
j∈T

wij = 1, ∀i ∈ T, (2)

∑
i∈T

wij = 1, ∀j ∈ T, (3)

wij ≤
∑
k∈T

yikyjk, ∀[i, j] ∈ A, (4)

∑
e∈δ(S)

xe ≥ 2
∑
j∈S

yij , ∀i ∈ S, t0 /∈ S, S ⊂ T, (5)

∑
[i,j]∈δ+(S)

wij ≥ 1−
∑
j∈S

yij , ∀i ∈ S, S ⊂ T, (6)

∑
[i,j]∈δ−(S)

wij ≥ 1−
∑
j∈S

yij , ∀i ∈ S, S ⊂ T, (7)

xe ∈ {0, 1}, ∀e ∈ E, and (8)

yij , wij ∈ {0, 1} ∀[i, j] ∈ A. (9)

The objective of the problem is to minimize the total cost
of travel for the ground vehicle and the UAV. In the above
formulation, the constraints in (1) ensure that the number of
undirected ground vehicle edges incident on any target i ∈ T
is equal to 2 if and only if the target i is assigned to itself
(yii = 1). The UAV sub-tours connectivity constraints are
enforced using the equations (2) and (3). For each target,
these constraints ensure that there are two UAV sub-tour
edges incident on the target, one incoming and one outgoing
edge. This is in contrast to the ground vehicle routes. The
UAV has to visit every target i ∈ T irrespective of the value
of yii. When the value of the yii = 1, the constraints in (2)
and (3) would result in a trivial UAV sub-tour i.e., wii = 1.
The constraints in Eq. (4) ensure that a sub-tour edge of
the UAV can exist between two targets only if those two
targets are assigned to the same target. One can observe that
these constraints are non-linear. We also note that the degree
constraints in Eq. (1) are not sufficient to formulate the route
for the ground vehicle.

With just the degree constraints and the assignment con-



straints, the minimization problem may return a solution with
separated tours for the ground vehicle and/or isolated sub-
tours for the UAV. An instance of such an infeasible solution
is shown in Fig. 3. In general, there are three different ways
to eliminate these isolated tours/sub-tours. This is done by
introducing a new set of constraints viz. MTZ constraints or
flow constraints or sub-tour elimination constraints (SEC)
[26]. For vehicle routing problems, the cut based sub-tour
elimination (SEC) constraints are known to outperform MTZ
and flow constraints computationally [27]. Therefore we use
SEC constraints (5), (6) and (7) to eliminate such solutions
containing separated tours for the ground vehicle and for the
UAV tours. These constraints ensure that for any sub-set of
targets S, such that all the targets in S are assigned to a target
not in S, then a UAV sub-tour containing only the targets in
S cannot exist. The constraints (6) and (7) mandate that there
should be an arc coming into the set S and an arc going out
of the set S. The novelty of this model is it addresses the
connectivity of the tours without MTZ or flow constraints,
rather this model uses SEC constraints to ensure a connected
tours. The exponential number of SEC constraints are not
explicitly enumerated here but are addressed in the branch-
and-cut framework only when they are violated.

As mentioned previously, the formulation F1 is non-
linear due to the constraints in (4). These constraints can
be linearized by introducing an auxiliary variable zijk for
every triplet of targets i, j, k ∈ T .

Proposition II.1. The constraints in (4) can be reformulated
using the following constraints:

wij ≤
∑
k∈T

zijk, ∀[i, j] ∈ A, (10)

zijk ≤ yik ∀i, j, k ∈ T, (11)

zijk ≤ yjk ∀i, j, k ∈ T, and (12)

zijk ≥ yik + yjk − 1 ∀i, j, k ∈ T. (13)

Proof. We prove the proposition by considering the follow-
ing two cases (i) yik = yjk = 1 and (ii) yik = 0 or yjk = 0.
For case (i), observe that zijk will take a value of 1 due
to the constraints (11)–(13). Similarly for case (ii), suppose
yik = 1 and yjk = 0, then zijk = 0. A similar argument
holds when yjk = 1 and yik = 0.

Now, the mixed integer linear programming formulation
for the CAGVRP is given by

(F2) Minimize
∑
e∈E

cexe +
∑

(i,j)∈A

dijwij +
∑

(i,j)∈A

fijyij

Subject to (1)–(3), (10)–(13), and (5)–(9).

If the integrality restrictions in the constraints (8) and (9)
are relaxed, then we call that model a linear programing
relaxation of the original MILP. In the following subsection,
we shall strengthen the linear programming relaxation of the
formulation F2 by introducing additional valid inequalities

(a constraint is called a valid inequality if it does not remove
any feasible solution).

A. 2-matching inequalities

This section introduces a class of valid inequalities for
the CAGVRP. These inequalities are derived from the 2-
matching inequalities for the traveling salesman problem
[28]–[30] and is also valid for the ring-star problem and
its variants [16], [17], [31]. Specifically, we consider the
following inequality:∑

e∈γ(H)

xe +
∑
e∈I

xe ≤
∑
i∈H

yii +
|I| − 1

2
, (14)

for all H ⊆ T and I ⊆ δ(H). Here H is called the handle
and I , the teeth. H and I satisfy the following conditions:
(i) no two edges in the teeth are incident on the same target
and (ii) the number of edges in the teeth is odd and greater
than equal to 3. The proof of validity of the above inequality
is given by the following proposition. One can refer to [16],
[17], [31] for the proof of this proposition.

Proposition II.2. The 2-matching inequalities in Eq. (14) is
valid of any feasible solution to the CAGVRP.

The constraints in (14) are equivalent to the blossom’s
inequality [32] for the 2-matching problem and a special
case of the comb inequalities for the symmetric traveling
salesman problem.

III. BRANCH-AND-CUT ALGORITHM

In this section, we outline the main components of
the branch-and-cut algorithm. As mentioned previously, the
branch-and-cut algorithm is an intelligent enumeration tech-
nique to find an optimal solution to an MILP. Let τ̄ denote
the optimal solution for a problem instance.

1. Initialization: Set the iteration count to k ← 1 and the
initial upper bound ᾱ on the optimal objective value as
+∞. The initial linear programming subproblem is then
defined by the constraints (1)–(3), (10)–(13), and 0 ≤
xe ≤ 1, 0 ≤ yij , wij ≤ 1 for every e ∈ E and [i, j] ∈ A
respectively. This initial linear programming subproblem
is solved and inserted into a list L.

2. Termination check and subproblem selection: If the list
L is empty, then stop. Otherwise, select a subproblem
from the list with the lowest objective value; this choice
of subproblem is called the best-first policy [33].

3. Subproblem solution: Set k ← k+1. Let α be the solution
objective value. If α ≥ ᾱ, then go to step 2. Otherwise,
if the solution is feasible for the CAGVRP, set ᾱ ← α,
update τ̄ and go to step 2; if the solution is infeasible,
then go to step 4.

4. Constraint separation and generation: Introduce violated
sub-tour elimination constraints (5), connectivity con-
straints (6) and (7) and 2-matching constraints (14). If no
constraints can be generated using the current fractional
solution, then go to 5, else go to step 3.



5. Branching: Create two subproblems by branching on a
fractional variable and insert both the subproblems in the
list L.
At the end of the branch-and-cut algorithm τ̄ will have

the optimal solution. In the following sections, we detail
the constraint separation procedure used in the step 4. This
procedure finds violated sub-tour elimination constraints,
connectivity constraints and 2-matching constraints from a
fractional solution to the subproblems defined in the algo-
rithm, if any.

A. Separation of connectivity constraints in (5)–(7)

In this section, we discuss exact separation procedures for
separating out the constraints in (5)–(7) given a fractional
solution. To this end, let (x∗, y∗, w∗) denote a fractional
solution. We first construct a support graph (G∗) based on
the fractional solution; G∗ = (V ∗, E∗), V ∗ = {i ∈ T : 0 <
y∗ii < 1} and E∗ = {e ∈ E : 0 < x∗e < 1}. Then, we
check if the graph G∗ is connected; if it is not connected,
each vertex set S corresponding to an individual connected
component, such that t0 /∈ S, generates a violated constraint
(5) for each i ∈ S. If G∗ is connected, we find the subset of
nodes S with minimum value of

∑
e∈δ(S) x

∗
e . This is done by

solving a problem of computing the max-flow on G∗, where
the capacity of each edge e is set to x∗e . We compute the
minimum cut of all pairs of nodes on G∗ and consider the
node partition S that does not contain t0. We check if this
set violates constraint (5) for each i ∈ S. If the constraint
is violated for any i, we add the corresponding inequality to
the existing pool of inequalities.

We use a similar procedure to find violated connectivity
constraints (6)–(7) for the UAV sub-tours. Based on the
fractional solution w∗, we construct graph G∗u = (V ∗, A∗),
A = {[i, j] : 0 < wij < 1}. Similar to the previous
procedure we find the violated constraints (6)–(7) defined
by S, such that the subset S does not contain any targets
that are visited by the ground vehicle.

B. 2-matching Constraints

To find the violated 2-matching constraints, we follow the
procedure described in [16], [30]. We consider each con-
nected component H of G∗ as a handle of a possible violated
2-matching inequality, whose two-target teeth correspond to
edges in e ∈ δ(H) with x∗e = 1. We reject the inequality if
the number of teeth is even. If the inequality is violated, then
we add this inequality to the pool of violated inequalities.

IV. COMPUTATIONAL RESULTS

In this section, we discuss the computational results of the
branch-and-cut algorithm. The algorithm was implemented
in Julia [34] using JuMP [35] (a mathematical modelling
framework for the Julia programming language) and CPLEX
12.6. The internal CPLEX cut-generation routines were dis-
abled and CPLEX was used only to manage the enumeration
(branch-and-bound) tree. All the simulations were performed
on a Macbook Pro with an Intel Core i5, 2.7 GHz processor.

The performance of the algorithm was tested on several
randomly generated instances.

Instance generation: We generated twenty instances, five
for each value of |T | ∈ {10, 20, 30, 40}. The coordinates of
the targets are generated randomly from a uniform distribu-
tion in a 100 × 100 grid. For every pair of targets i, j, the
travel cost for the ground vehicle to traverse the edge (i, j) is
chosen to be equal to the Euclidean distance between them
(lij), and the cost of travel by the UAV is chosen to be
α · lij , where α is a scaling factor and α ∈ {0.1, 0.2, 0.3}.
We tested the algorithm for a total of 60 instances. Tables I
and II summarize the computational results of the algorithm.
In Table I, the first column refers to the problem size, second
column refers to the scaling factor α, the third, fourth and the
fifth columns refers to the cost of the optimal tour, cost of the
ground vehicle tour and cost of the UAV tour averaged over
five instances. In Table II, the average number of SEC cuts
generated and the number of nodes explored in the branch-
and-cut tree are listed in third and fourth columns. The last
column indicates the number of instances out of five that
were solved to optimality with in the allowed computation
time of 9000 seconds.

TABLE I
AVERAGE OF OPTIMAL TRAVEL COSTS

|T | α Avg. opt. cost Avg. GV cost Avg. UAV cost

0.1 255.90 243.27 12.63
10 0.2 266.74 246.89 19.85

0.3 275.50 256.03 19.48

0.1 303.24 276.79 26.45
20 0.2 328.68 280.08 48.60

0.3 351.19 290.80 60.40

0.1 283.53 246.85 36.68
30 0.2 318.54 254.30 64.24

0.3 349.39 259.52 89.86

0.1 310.44 264.19 46.24
40 0.2 357.79 268.86 88.94

0.3 397.91 281.71 116.19

TABLE II
BRANCH-AND-CUT ALGORITHM STATISTICS

|T | α SEC cuts B&C nodes I

0.1 167.00 5.80 5
10 0.2 138.80 5.00 5

0.3 170.80 6.20 5

0.1 2206.60 46.00 5
20 0.2 3213.20 54.20 5

0.3 6263.40 113.20 5

0.1 12764.80 247.60 5
30 0.2 29796.40 576.80 5

0.3 39399.40 761.40 5

0.1 66680.60 1017.20 5
40 0.2 102671.00 1372.80 2

0.3 126649.80 1517.80 1

The results tabulated in Tables I and II indicate that
the proposed branch-and-cut algorithm can solve instances
involving up to 40 targets with modest computation times.
In summary we were able to solve 53/60 instances to opti-
mality. For the remaining 7 instances, the algorithm produced



feasible solutions that were within 3% of the upper bound to
the optimal (computed by CPLEX by solving corresponding
dual problem). The plot in Table III shows the average
computation times for all the instances.

TABLE III
AVERAGE COMPUTATION TIME NEEDED TO FIND OPTIMAL SOLUTION

|T | α = 0.1 α = 0.2 α = 0.3

10 0.98 0.89 0.89
20 10.53 15.12 29.27
30 220 665 853
40 4588 7643 8156

With α equal to 0.1, the maximum computation time
needed to solve instances with 30 targets is 420 seconds,
which is quite reasonable. In general, we observe that the
instances with a scale factor of α = 0.3 are more difficult
to solve, and need more computation time. This is expected
for the following reason: suppose the cost of travel by the
UAV is zero, then the algorithm would try to assign as many
targets as possible to the UAV. As the cost of travel by
the UAV is increased, it has to find the right partitioning
of the targets to be assigned to the ground vehicle and the
UAV, that minimizes the total cost. This makes the problem
combinatorially more difficult.

V. CONCLUSION

We presented a path planning problem (CAGVRP) that
arises in cooperative routing of a ground vehicle and an
UAV with communication constraints. A MILP formulation
is presented along with separation algorithms to find vi-
olating inequalities. The formulation and separation algo-
rithms are integrated into a branch-and-cut framework, and
implemented using CPLEX callable libraries. The algorithm
was tested on several randomly generated instances with 10,
20, 30 and 40 targets. The algorithm could find optimal
solutions for instances up to 40 targets. The limitation of this
algorithm is that it may not be able to solve larger instances
and one might have to rely on heuristics. Future directions
for this work includes finding better separation algorithms,
addressing the nonlinear constraints in the branch-and-cut
sub-routines instead of linearizing, and developing efficient
heuristics. Also the problem can be generalized for multiple
air vehicles and/or multiple ground vehicles.
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