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Abstract— In this paper, the problem of distributed caching in
dense wireless small cell networks (SCNs) is studied using mean
Veld games (MFGs). In the considered SCN, small base stations
(SBSs) are equipped with data storage units and cooperate to serve
users’ requests either from Vles cached in the storage or directly
from the capacity-limited backhaul. The aim of the SBSs is to
deVne a caching policy that reduces the load on the capacity-
limited backhaul links. This cache control problem is formulated
as a stochastic diUerential game (SDG). In this game, each SBS takes
into consideration the storage state of the other SBSs to decide on
the fraction of content it should cache. To solve this problem, the
formulated SDG is reduced to an MFG by considering an ultra-
dense network of SBSs in which the existence and uniqueness of
the mean-Veld equilibrium is shown to be guaranteed. Simulation
results show that this framework allows an eXcient use of the
available storage space at the SBSs while properly tracking the
Vles’ popularity. The results also show that, compared to a baseline
model in which SBSs are not aware of the instantaneous system
state, the proposed framework increases the number of served Vles
from the SBSs by more than 69%.

I. Introduction

Meeting the stringent quality-of-service (QoS) requirements of
emerging wireless services requires signiVcant changes to modern-
day cellular systems [1]. One promising such change is through
the dense and viral deployment of small base stations (SBSs)
that can provide an eUective way to boost the capacity and
coverage of wireless networks. However, to beneVt from this SBS
deployment, several technical challenges must be addressed, in
terms of interference management, resource allocation, and more
importantly, backhaul management [2].
Indeed, short range and low-power SBSs must be connected

to the core network through backhaul links that are of limited
capacity and can be owned by a third party [2]. Such capacity-
limited and heterogeneous backhaul links through which the SBSs
download the content can lead to signiVcant delays when serving
a large number of requests. One of the proposed solutions to cope
with the backhaul bottleneck is via the use of distributed caching
at the network edge [3]. The idea of distributed caching is based
on the premise of Vtting the SBSs with storage devices while also
exploiting the available storage at the user equipments (UEs) to
reduce the load on the backhaul links. In particular, the SBSs can
predict the users’ requests for popular content and, then, download
this content ahead of time in order to serve users locally, without
using the backhaul.
One of the main challenges in distributed caching is to deVne

when and which Vles need to be cached at each SBS while
minimizing the load on the backhaul links. In this regard, diUerent
solutions have been proposed in the literature [3]–[10]. Two
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cases can be distinguished, encoded Vle caching and complete
Vle caching. In complete Vle caching, the SBSs can only cache
complete Vles, while in encoded Vle caching, the SBSs might store
fractions of the Vles and cooperate to serve users. A number
of works have focused on the complete Vle caching case such
as in [4]–[6]. In [4], an optimization problem is formulated in
order to minimize the service delay of the UEs. The work in [5]
proposed a geographical caching approach aimed at maximizing
the probability of Vnding the requested Vles at the SBSs. In
[6], a multicast-aware caching approach is proposed to maximize
the number of served requests for the same Vles via a single
multicast transmission. On the other hand, the authors in [7]
proposed a proactive encoded caching policy based on the mobility
information of the users. The proposed caching policy aims to
minimize the probability of serving fractions of the requested
content from the core network. Similarly, in [8], a joint encoded
caching and routing problem is formulated and then reduced to
a tractable facility location problem. In [9], the joint problem
of power and encoded cache control is formulated using an
optimization approach that aims to create more opportunities for
serving users by cooperation between the SBSs that are equipped
with multiple antennas.

Despite being interesting, none of these works consider a
practical ultra dense small cell network (SCN) which is expected
to lie at the heart of emerging 5G cellular systems in which
thousands of SBSs will be deployed within small geographical
areas [2]. In fact, network density makes it diXcult for the SBSs to
coordinate and cache the Vles according to the state of all the other
SBSs, which is necessary to prevent caching the same segments.
Moreover, none of the existing works accounts for the realistic
time-varying dynamics of the storage spaces.

The main contribution of this paper is to develop a novel
approach to analyze the use of encoded caching in a network
with a large number of SBSs. For a given SCN, we assume that
each SBS has a state vector which is composed of the state of
the wireless channel between the SBS and the served UE as well
as the state of the storage unit. The dynamics of such a state
vector is modeled via an Itô process. Then, we formulate the
cache decision problem as a stochastic diUerential game (SDG)
in which the SBSs’ goal is to maximize the number of requests
served from the cache while taking into account the state of all
the other SBSs. We show that, by considering a dense network of
homogeneous SBSs, the SDG can be reduced to a mean-Veld game
(MFG) [11]–[13], in which the existence and uniquiness of the
mean-Veld equilibrium are guaranteed. In this MFG, the individual
state of the SBSs can be replaced by an average overall state, called
the mean-Veld which captures the global system state. Moreover,
it is shown that deriving the equilibrium of the formulated MFG
amounts to solving a coupled system of Hamilton-Jacobi-Bellman
(HJB) and Fokker-Planck-Kolmogorov (FPK) equations. Simulation
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results show that the proposed framework allows an eUective use
of the storage space by modeling the dynamics of the storage
spaces based on Vles’ popularities. Moreover, in the proposed
framework, the number of served requests from the SBSs can be
increased by more than 69% compared to a baseline, static model
in which the SBSs are not aware of the instantaneous system state.
The rest of the paper is organized as follows. Section II presents

the system model. In Section III, we formulate and analyze the
stochastic diUerential game and the mean Veld game. Simulation
results are presented in Section IV. Finally, conclusions are drawn
in Section V.

II. System Model

Consider a wireless SCN composed of a set N of N SBSs. The
SBSs are equipped with data storage units that allow them to serve
users’ requests via radio links. Users can request videos from a set
V of V videos. When the requested Vles are not available in the
storage units, users are served from the core network via backhaul
links. The aim from equipping the SBSs with storage units is
to reduce the traXc load of the capacity-limited backhaul links
especially during peak hours. To this end, users’ requests must be
predicted before being requested and cached at the network edge
to serve users locally via the neighboring SBSs, without using
backhaul links. An illustration of the system model is given in
Fig. ??.

We consider a caching model similar to the one proposed in [9],
in which each video is encoded using an ideal maximum distance
separable (MDS) rateless code, and then cached in the storage
units. An MDS code divides the original Vle k into segments
of qk bits, and each segment is encoded into a longer sequence
of parity bits, such that any arbitrary qk bits are suXcient to
regenerate the original segment. This caching structure allows
each node to control the number of bits to be stored in its storage.
Here, a user can be served by more than one node at the same
time without having to cache the whole Vle at all the serving
nodes. Moreover, cooperation between SBSs may allow users to
receive the requested content within a shorter time duration. The
main challenge for each SBS i is to deVne the fraction of each
Vle k that should be stored while optimizing a given cost. This
is done by deVning the values of the cache control variables
n

(i)
t = [n

(i)
1,t, ..., n

(i)
k,t, ..., n

(i)
V,t], where n

(i)
k,t ∈ [0, 1],∀k ∈ V is

the fraction of Vle k that will be downloaded by node i at time t.
The wireless network is assumed to operate using a single

frequency band, over which the two sets of SBSs and UEs request
and exchange video Vles from the set V of videos. We assume that
the users’ requests follow a Zipf distribution which is a common
model used for describing realistic Vle popularity distributions [3].
Thus, the probability of receiving a request for the kth video at
the SBSs is given by the following probability mass function:

Ωt(k, V, β) =
1
kβ∑V
i=1

1
V

,

where the parameter β characterizes the steepness of the distribu-
tion. Based on this distribution, the nodes need to deVne a caching
policy that allows them to download parts of the requested videos,
while taking into account the network conditions such as the
channel model as well as the internal state of each node described
by the storage capacity [14]. The instantaneous dynamics of these
parameters are given next.

A. Channel model

SBSs are conVgured in order to enhance the coverage of UEs
by deploying them closer to the UEs. They can be deployed either

by the operators in densely built-up areas or by the UEs inside
the buildings. To capture the eUects of the channel fading on the
transmitted signal in such environments, we use the model in [15],
which showed that the instantaneous dynamics of non-stationary
channel models can be described by a mean-reverting square
process or a mean-reverting Ornstein-Uhlenbeck process. Here, we
consider a time-varying additive Gaussian channel model which is
given by |hi,t|2. We model the dynamics of the channel by a mean-
reverting Ornstein-Uhlenbeck process which is a general model
that describes additive Gaussian channels [15]. The dynamics of
the channel are given by

dhi,t =
α

2
(µh − hi,t) dt+

1

2
σh dBi,t, (1)

where µh > 0, σh > 0 and Bi,t is a standard Brownian motion.

B. SINR model

At a given time t, the signal received by a user from its serving
SBS will experience interference from other SBS links. The signal-
to-interference-plus-noise-ratio (SINR) is given by

γi,t =
pi|hi,t|2

N0 + 1
N

∑
k 6=i,k∈N pk|hk,t|2

, (2)

where pi is the transmit power of SBS i, N0 is the background
noise level at the served user, and N is the set of all the potential
transmitters. Analogous to [16] and [17], the interference from all
the other SBSs is normalized to keep it bounded in a dense area
of SBSs.

C. Storage Unit Dynamics

The available storage capacity at the SBSs changes stochastically
depending on external control. Indeed, the storage of SBSs can be
updated by either the users or the operator. Each UE is served by
an SBS i at an instantaneous rate given by

κi,t = log(1 + γi,t).

We let s(i)k,t be the number of bits from video k that are stored at
SBS i at time t. To capture the randomness of users’ behavior, we
model the dynamics of the storage unit s(i)k,t while serving Vle k

which was requested at l(i)k (x), as follows:

ds(i)k,t =[n
(i)
k,tqk − β(1− pk,t)ζ̄i,t] dt+ σs dBi,t, (3)

where nk,t is the download rate of video Vle k by the SBS and qk
is the size of the Vle. The second term is the removal rate of Vle
k at the SBS, where β > 0 is a parameter, pk,t is the popularity
of Vle k at time t, and ζ̄t is the mean number of bits downloaded
by all the users up to time t. In fact, this term models the tradeoU
between the popularity of the Vle and the number of bits that
have been downloaded by the users in the time duration [0, t].
Here, we assume that there is no broadcasting and only one user
can download a content item k at time t from a node i. ζi,t is the
number of bits of Vle k downloaded from node i by the currently
served user and is given by

ζi,t = min
{
κi,t, s

(i)
k,tl
−
∫ t

tl

ζi,z dz +

∫ t

tl

n
(i)
k,zqk dz

}
, (4)

where tl = l
(i)
k (x) is the time at which the SBS i starts serving the

requested Vle k. The number of downloaded bits is the minimum
between the transmission rate from SBS i to the served UE and
the available bits from Vle k at node i which have not been
downloaded yet by the served UE.



III. Problem Formulation
The goal of an SBS i is to decide on the values of the cache

control variables and Vnd the fraction n
(i)
k,t ∈ [0, 1], of video k

that should be downloaded at time t for serving users. Due to the
limited capacity of the backhaul links, SBS i cannot download
more than B

(i)
t bits from the core network, resulting in the

backhaul download constraint
∑
k∈V B

(i)
k,t ≤ B

(i)
t , with B(i)

k,t the

maximum allocated backhaul for downloading the fraction n(i)
k,t of

Vle k. Each SBS i in the system aims at Vnding the optimal control
vector n

∗(i)
t = [n

∗(i)
1,t , ..., n

∗(i)
V,t ], among the set of all admissible

storage allocations Ai, that optimizes a cost function which is
deVned next.
A. SBSs’ Cost Function

The goal for each SBS i is to determine the values of the cache
control variables that maximize the amount of cached bits for Vle
k subject to its storage capacity oi, in terms of bits. We denote
the instantaneous download proVle of Vle k at all the SBSs by
nk,t = [n

(1)
k,t, ..., n

(N)
k,t ]. The global cost at a given SBS is aUected

by the following factors.
• The inter-SBS redundancy cost: This represents the cost of

caching parts of a Vle k knowing that this Vle was already
cached by other SBSs. This cost is determined by the function
c
(i)
k,t : RN → R,nk,t 7→ c

(i)
k,t(nk,t), which models the

dependence between the cache decisions of all the SBSs. Since
a UE can be served by many SBSs at the same time, the
cache states of the other SBSs need to be considered. This will
prevent the SBS i from caching the same content as the Vles
already cached by the other SBSs. Since the cache state of an
SBS is a function of its own cache decision (see (4)), then, the
cache decision n(i)

k,t of SBS i depends implicitly on the cache

decisions n
(−i)
k,t = [n

(1)
k,t, ..., n

(i−1)
k,t , n

(i+1)
k,t , ..., n

(N)
k,t ] chosen

by all the other SBSs. The function c(i)k,t will be deVned later
in (13) (see Section 3.C).

• The in-SBS redundancy cost: This represents the cost of
caching the same bits from the same Vle at a given SBS. To
avoid this, we limit the maximum number of cached bits from
Vle k at an SBS i to the size of the Vle qk . This constraint
can be modeled by νi

[
s
(i)
k,t − qk

]
, where νi is a constant.

• The backhaul cost: This represents the cost of downloading
a fraction n(i)

k,t of Vle k in order to be cached. This fraction

of Vle k is downloaded through the allocated backhaul B(i)
k,t

for that Vle. This cost is given by the following function:
g
(i)
t (n

(i)
k,t) : R+ → R, n

(i)
k,t 7→ g

(i)
t (n

(i)
k,t):

g
(i)
t (n

(i)
k,t) =


−log(B

(i)
k,t − qkn

(i)
k,t) if n(i)

k,t <
B

(i)
k,t

qk
,

+∞ if n(i)
k,t ≥

B
(i)
k,t

qk
.

(5)

Note that, the proposed framework can accommodate any
other form of the backhaul cost function.

• The storage cost: This represents the cost of storage at the
SBS and allows modeling the limited storage capacity of
the SBS i which should not exceed oi bits. It is given by
ωi
[∑V

k=1 s
(i)
k,t − oi

]
, where ωi is a constant.

Thus, the global cost function can be written as:

J
(i)
k,t(n

(i)
k,t,n

(−i)
k,t ) =c

(i)
k,t(nk,t) + g

(i)
t (n

(i)
k,t) + νi

[
s
(i)
k,t − qk

]
+ ωi

[∑V
k=1 s

(i)
k,t − oi

]
. (6)

Next, we formulate the cache control problem as a stochastic
diUerential game.

B. Stochastic DiUerential Game Formulation

Let N be the set of players. The state of a player i at time
t with respect to a given Vle k is deVned as y

(i)
k,t = (hi,t, s

(i)
k,t),

∀i ∈ N , k ∈ V . The stochastic diUerential caching game is deVned
by (N , (Yi)i∈N ,Ai∈N , (Ji)i∈N ) where

• N is the set of SBSs;
• Yi is the set space of SBS i and follows dhi,t =

α

2
(µh − hi,t) dt+

1

2
σh dBi,t,

ds(i)k,t =[n
(i)
k,tqk − β(1− pk,t)ζ̄i,t] dt+ σs dBi,t.

(7)

• Ai is the set of admissible caching control policies for node
i; and

• J (i)
k is the cost function of node i deVned as follows:

J (i)
k = E

[∫ T

0

J
(i)
k,t(n

(i)
k,t,n

(−i)
k,t ) dt+ ψ(i)(λT )

]
,

where the function ψ(i)(λT ) : [0, 1]→ R, λT → ψ(i)(λT ) models
the cost of having a fraction λT of free storage space at the end of
the period [0, T ]. This function guarantees that the SBS’s owner
will not use all the storage space but will keep a fraction for
speciVc functionalities such as system updates or for the user’s
own usage when the SBS is owned by a user.

Assume that, at each time t ∈ [0, T ], a player i can observe
the current state y

k,t
= (y

(1)
1,t , ...,y

(i)
k,t, ...,y

(N)
k,t ) of the system

with respect to Vle k. However, this player has no additional
information about the strategy of the other players. In particular,
it cannot predict the future actions of the other players. In this
case, the solution of the game can be captured via the following
equilibrium concept:

DeVnition 1: A control strategy n∗t is said to be a feedback
Nash equilibrium of the SDG if and only if ∀i ∈ N , ∀k ∈ V, n(i)∗

k,t

is the solution of the control problem

v
(i)
k,t(yk,t) = inf

n
(i)
k,t

J (i)
k . (8)

v
(i)
k,t(yk,t) is called the value function.
A condition for the existence of a feedback Nash equilibrium

for the SDG is the existence of a solution to the following HJB
equations for each SBS i and Vle k [18]:

∂tv
(i)
k,t(yk) +

[
n
(i)
k,tqk − β(1− pk,t)ζ̄i,t

]
∂sv

(i)
k,t(yk)

+
α

2
(µh − hi,t)∂hv(i)k,t(yk) +

σ2
S

2
∂2
ssv

(i)
k,t(yk) (9)

+
σ2
h

2
∂2
hhv

(i)
k,t(yk) + J

(i)
k,t(n

(i)
k,t,n

(−i)
k,t ) = 0.

A suXcient condition for the existence and uniqueness of a solu-
tion v(i)k,t(yk) to the corresponding HJB equation is the smoothness
of the drift functions of the dynamic equations and the cost
function, i.e. the functions belong to C∞ [18]. However, even if
the choice of the functions in our system guarantees the existence
and uniqueness of the solution, solving the V × N coupled HJB
equations can be complex in a dense network of SBSs. Moreover,
it is very diXcult for a given SBS to observe all the states of
the other nodes in a large scale wireless network. Interestingly,
the analysis of the system becomes tractable using a mean-Veld
approximation, when the number of players is considered very
large. This solution is mainly practical for the emerging SCNs



that are expected to include millions of connected devices. Thus,
we will study the asymptotic case in the following section.

C. Mean-Field Game Formulation

We are interested in solving a stochastic optimal control prob-
lem when the number of SBSs is large (N → ∞). To study the
convergence of the system into the mean Veld, we assume that the
state and download control preserve the exchangeability property
which is deVned as follows.

DeVnition 2: The states y
(1)
k,t,y

(2)
k,t, ...,y

(N)
k,t are said to be

exchangeable under the strategy n(i)
k,t if they generate a joint law

which is invariant by permuting the SBSs’ indices, i.e.,

L(y
(1)
k,t, ...,y

(N)
k,t |n

(i)
k,t) = L(y

(π(1))
k,t , ...,y

(π(N))
k,t ),

for any bijection π deVned over {1, ..., N}.
To guarantee this property, we make the following assumptions:

• Each SBS knows its individual state; and
• Each SBS implements a homogeneous caching policy: n(i)

k,t =

fk(t,y
(i)
k,t).

Due to this exchangeability property, all the players become
indistinguishable and thus we can focus on a generic SBS whose
state is now given by yk,t = [ht, sk,t]. Under the exchangeability
property, we can simplify the previous system of coupled HJB
equations by considering that a given player deVnes its control
policy based only on its state and the mean-Veld. By considering
such a system, a player does not require the knowledge of each
player’s state in the system but only the distribution of those
players over the states. The convergence of the SDG to a mean
Veld game is provided in he following result.
Theorem 1: DeVne MN

k,t = 1
N

∑N
i=1 δy(i)

k,t

as the occupancy

measure of the N SBSs. Suppose that the states y
(i)
k,t and the

caching control n(i)
k,t preserve the exchangeability property, then

MN
k,t converges in distribution to mk . Moreover, the law mk,t is

the solution of the following FPK equation:

mk,0(yk) = ρ0(yk), ∀yk
∂tmk,t(yk) +

[
nk,tqk − β(1− pk,t)ζ̄t

]
∂smk,t(yk)

+
α

2
(µ− ht)∂hmk,t(yk)− σ2

s

2
∂2
ssmk,t(yk)

− σ2
h

2
∂2
hhmk,t(yk) = 0.

Proof: The proof is given in Appendix I.
Under the exchangeability property and for N →∞ and ∀k ∈
V we have, γi,t → γt, which can be derived as in [17].

Hence, the dynamics of the state for a generic SBS can be
deVned by the following system of diUerential equations:{

dht =
α

2
(µ− ht) dt+ σh dBt,

dsk,t =
[
nk,tqk − β(1− pk,t)ζ̄t

]
dt+ σs dBt.

(10)

The aim for each node is to choose a caching control nk,t for each
Vle k ∈ V in order to minimize the following cost function:

Jk = E

[∫ T

0

Jk,t(nk,t,mk,t) dt

]
+ ψ(λT ). (11)

Now we can redeVne the cost function as a function of the mean
Veld process. In this regard, we deVne the function ck,t(mk,t)
which is now a function of the mean Veld processmk,t. Intuitively,
the larger is the expected cached fractions of Vle k in the network,
given by φk = d

dt

∫ qk
0
skmk,t(yk)dh, the lower is the interest of

the SBS in caching bits from that Vle. However, when the mean

number of cached bits of Vle k is low, the cost should be deVned
in order to encourage the SBS to cache bits of Vle k until a given
threshold. On the other hand, an SBS would aim to cache more bits
from Vle k when the expected requests for that Vle is high. Thus,
the cost depends as well on the distribution of users’ requests.
The cost can then be written as

ck,t(mk,t) = exp(−%1φk) +
%2φk

Ωt(k, V, β)
, (12)

where %1 and %2 are constants.
The value function for a generic SBS is given by

vk,t(yk) = inf
nk,t

{Jk}. (13)

Finding the optimal control of a given SBS and Vle k amounts
to jointly solving the following mean Veld problem:

∂tvk,t(yk) +
[
nk,tqk − β(1− pk,t)ζ̄t

]
∂svk,t(yk)

+
α

2
(µh − ht)∂hvk,t(yk) +

σ2
s

2
∂2
ssvk,t(yk) +

σ2
h

2
∂2
hhvk,t(yk)

+ Jk,t(nk,t,mk,t) = 0,

mk,0(yk) = ρ0(yk),∀yk,
∂tmk,t(yk) +

[
nk,tqk − β(1− pk,t)ζ̄t

]
∂smk,t(yk)

+
α

2
(µ− ht)∂hmk,t(yk)− σ2

s

2
∂2
ssmt(y)

− σ2
h

2
∂2
hhmk,t(yk) = 0.

The advantage of the mean Veld formulation is that SBSs do
not need full knowledge of the state or the caching strategy of
other SBSs to compute the outcome of the game. Also, in order
to Vnd the optimal power control an SBS has to solve only one
HJB equation for a given Vle. To compute the optimal download
control, we have to solve the two coupled equations in vk and
mk . From the optimization standpoint, Vnding the solution of the
stochastic optimal control amounts to Vnding the optimal caching
control that minimizes the Hamiltonian. The Hamiltonian function
is deVned as follows:

H(yk,mk,t,∇vk) = {α
2

(µh − ht)∂hvk,t(yk)

+
[
nk,tqk − β(1− pk,t)ζ̄t

]
∂svk,t(yk)}+ Jk,t(nk,t,mk,t) (14)

with ∇vk the gradient.
The optimal value of the number of bits that should be down-

loaded by each SBS is given in the following result.
Proposition 1: The optimal control n∗k,t of the stochastic

mean Veld game is given by

n∗k,t =
1

qk

[
Bt,k − 1

2∂svk,t(yk)

]
. (15)

Proof: The proof is given in Appendix II.

IV. Numerical Results

To solve the HJB-FPK system of equations, we proceed by
solving iteratively the two equations using a simple Vxed-point
algorithm until convergence. We assume a static channel model
and thus the state is only deVned by the cache state of the
SBSs. The transmit power is set to p = 1 W and the noise to
N0 = −80 dBm. In Fig. 1, we show the evolution of m∗ for one
Vle whose popularity increases over 24 hours. For this, the Vle
size is normalized to 1 and the storage capacity of the SBSs is set
to o = 2/5. The initial distribution of the SBSs follows a normal
distribution N (0.2, 0.1). Fig. 1 shows that the cached fraction of



Fig. 1: Density solution m∗(sk, t) as a function of time t and the
cached fraction of Vle k.

the Vle at the SBSs decreases when the Vle’s popularity is low, thus
making the storage space available for other more popular Vles.
When more requests are expected for that Vle, all the SBSs cache
a higher fraction of the Vle, in the limit of their storage capacity.
This allows all the users to be served by any random subset of SBSs
in their proximity, improving the experienced quality in terms of
download time.
In Fig. 2, we compare the proposed framework with a baseline

method in which the SBSs are not aware of the instantaneous
global state of the system. To deVne their optimal download rate
and minimize the cost, the SBSs make their decisions based on
the information from their previous experience by averaging the
storage state over the past time periods. The two methods are
compared in terms of the fraction of satisVed requests from the
cache of the SBSs without using the backhaul with respect to
the inter SBS site distance that models the density of the SBSs
in the network. That is, the smaller is the distance between the
SBSs, the denser is the network; here, one unit of inter SBS
distance is set equal to 25 m. The comparison is performed for
two diUerent cases. The Vrst case corresponds to scenarios that
exhibit a large variability in the Vle popularity (LVP), from a
given time period to another. In the second case, the popularity is
assumed to change slightly (SVP). We can see from Fig. 2, that the
denser the network, the higher is the number of requests served
by the SBSs. In fact ,densifying the networks results in a given
user being in the coverage area of a large number of SBSs which
increases the probability of Vnding the requested Vle at one of
the SBSs in its vicinity. The performance of the baseline model
is closer to the proposed model when the popularity of the Vles
changes slightly. This is due to the fact that the SBSs in this model
update their storage space based on the past information which
remains valid when the popularity changes slightly. However, the
proposed algorithm outperforms the baseline model by increasing
the number of served requests from the SBSs by up to 69%,
when the popularity of the Vles varies largely. In this case, fewer
requests are served from the SBSs in the baseline model due to
the signiVcant changes in the SBSs’ states over time, which does
not allow the SBSs to adapt their control variables according to
the real system state.

V. Conclusions
In this paper, we have studied the problem of distributed

caching in ultra-dense small cell networks. We have formulated
the cache control problem as a mean-Veld game in which the SBSs
aim to minimize a given cost function while taking into account
the cache state of all the other SBSs in the network. We have
analyzed and showed the existence and uniqueness of the mean
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Fig. 2: Fraction of served requests from the BSBs with respect to
the variation of popularity over time and inter SBS distance

Veld equilibrium which is the solution of a coupled system of HJB
and FPK equations. We have showed through simulations, that
the proposed method enables eXcient use of the storage space
eXciently by adapting the control variable to the popularity of
the Vles and the global state of the storage spaces in the network.
Moreover, the proposed approach signiVcantly decreases the load
on the backhaul links by serving more requests locally from the
SBSs.
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Appendix I

Proof of Theorem 1

To prove the weak convergence of the occupancy measureMN
t

to the mean Veld process m in the caching control problem, we
use Theorem 25.10 in [19] which gives a necessary and suXcient
condition for weak convergence. Theorem 25.10 which is a result
of Helly’s Theorem, states that tightness is a necessary and suX-
cient condition for weak convergence. Thus, since (R2,B(R2))
is a separable complete metric space, then every sequence of
probability measure deVned on this space is tight, which leads
to the weak convergence of MN

t to the mean Veld process m.
Next we derive the FPK equation which describes the evolution
of the density of users per state. In what follows, we omit the Vle
index k for ease of notation and the proof is applicable ∀k ∈ V :

m0(y) = ρ0(y),∀y
∂tmt(y) + û1(y, t)∂smt(y) + û2(y, t)mt(y)

+ σ̂1∂
2
ssmt(y) + σ̂2∂

2
hhmt(y) = 0,

where û1(y, t) = −
[
nk,tqk − β(1− pk,t)ζ̄t

]
, û2(y, t) = α

2
(µ −

ht), σ̂2 =
σ2
h
2

and σ̂1 =
σ2
s
2
. Let ϕ(y, t) be a test function that

belongs to C2 (R2) in space and C1(R) in time. By applying Ito’s
lemma we obtain

dϕ(y, t) =

2∑
i=1

f̂i
∂ϕ

∂yi
(y, t) +

2∑
i,j=1

σ̂ij
∂ϕ

∂yi∂yj
(y, t)

+
2∑
i=1

σi
∂ϕ

∂yi
(y, t)dBi, (16)

where f̂ = (û1(y, t), û2(y, t)) and f̂i represents the ith entry of
the vector f̂ . σ̂ = 1

2
(σ1, σ2)(σ1, σ2)T and σ̂ij represents an entry

of the matrix σ̂. By taking the expectation value on both sides we
obtain

Edϕ(y, t) =E

2∑
i=1

f̂i
∂ϕ

∂yi
(y, t) +E

2∑
i,j=1

σ̂ij
∂ϕ

∂yi∂yj
(y, t). (17)

Because Brownian motion is a martingale, thus
E
∑2
i=1 σi

∂ϕ
∂yi

(y, t)dBi = 0. By deVnition we have
E[ϕ(y, t)] =

∫
R2 ϕ(x, t)mk,t(x)dx. By substituting in (17),

we obtain∫
R2

ϕ(y, t)mt(y)dy =

∫
R2

[ 2∑
i=1

f̂i
∂ϕ

∂yi
(y, t)

+

2∑
i,j=1

σ̂ij
∂ϕ

∂yi∂yj
(y, t)

]
mt(y)dy.

After integrating by parts on the right-hand side we get

∫
R2

ϕ(y, t)mt(y)dy =

∫
R2

[ 2∑
i=1

f̂i
∂mt

∂yi
(y)ϕ(yt)

−
2∑

i,j=1

σ̂ij
∂mt

∂yi
(y)

∂ϕ

∂yj
(y, t)

]
dy. (18)

A further integration by part of the second term on the right-
hand side gives ∫

R2

2∑
i,j=1

σ̂ij
∂mt

∂yi
(y)

∂ϕ

∂yj
(y, t) =

−
∫
R2

2∑
i,j=1

σ̂ij
∂2mt

∂yi∂yj
(y)ϕ(y, t)dy. (19)

By substituting in (18), we have∫
R2

ϕ(y)

[
mt(y)−

2∑
i=1

f̂i
∂mt

∂yi
(y)

−
2∑

i,j=1

σ̂ij
∂2mt

∂yi∂yj
(y)

]
dy = 0. (20)

Then using the generalized variational lemma we have that
[lemma 7.1.2] [20]

mt(y)−
2∑
i=1

f̂i
∂mt

∂yi
(y)−

2∑
i,j=1

σ̂ij
∂2mt

∂yi∂yj
(y) = 0, (21)

which completes the proof.

Appendix II
Proof of proposition 1

H(yk,mk,t,∇vk) = {
[
nk,tqk − β(1− pk,t)ζ̄t

]
∂svk,t(yk)

+
α

2
(µh − ht)∂hvk,t(yk) + Jk,t(nk,t,mk,t)}. (22)

The derivative of H(yk,mk,t,∇vk) with respect to nk,t gives

∂nH(yk,mk,t,∇vk) = qk
[
∂svk,t(yk) + 1

Bk,t−qknk,t

]
. (23)

By setting it to 0, we get n∗k,t which can be written as follows:

n∗k,t =
1

qk

[
Bk,t + 1

∂svk,t(yk)

]
. (24)
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