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Abstract

This paper presents a systematic algorithm to design time-invariant decentralized feedback 

controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems 

arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear 

decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based 

on a common phasing variable. The exponential stabilization problem is translated into an iterative 

sequence of optimization problems involving bilinear and linear matrix inequalities, which can be 

easily solved with available software packages. A set of sufficient conditions for the convergence 

of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The 

power of the algorithm is demonstrated by designing a set of local nonlinear controllers that 

cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 

degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a 

transpelvic prosthetic leg.

I. INTRODUCTION

The objective of this paper is to present a systematic algorithm to design decentralized 
feedback controllers that coordinate lower-dimensional subsystems to asymptotically 

stabilize periodic orbits for hybrid dynamical systems. The algorithm considers a class of 

parameterized and nonlinear decentralized feedback controllers. It provides cooperation 

among subsystems of complex 3D walking models in the presence of underactuation.

Previous work on bipedal walking made use of multilevel centralized nonlinear feedback 

control architectures to stabilize periodic orbits [1]–[11]. However, human locomotion may 

employ a decentralized control scheme relying heavily on local feedback loops [12], [13]. 

Centralized control schemes designed for bipedal robots also cannot be easily transferred to 

powered prosthetic legs, which act as decentralized subsystems. In particular, centralized 
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feedback architectures would require state measurements from both the prosthesis and 

human body, i.e., two interconnected subsystems. It would not be clinically feasible for users 

of prosthetic legs to wear sensors at all their intact joints. Although powered prosthetic legs 

already use decentralized feedback controllers related to joint impedance [14], this linear 
control method requires different control parameters at different time periods to handle the 

nonlinear dynamics of the gait cycle. The resulting “finite state machine” requires clinicians 

to spend significant amounts of time tuning each controller to a patient [15] and risks 

instability when perturbations cause the wrong controller to be used at the wrong time [16]–

[18]. The limitations of this sequential control method could possibly be addressed by the 

unifying nonlinear controllers used in dynamic walking robots. This underlines the 

importance of developing decentralized nonlinear feedback algorithms for stabilizing hybrid 

periodic orbits.

State-of-the-art decentralized controllers for large-scale systems pertain to the stabilization 

of equilibrium points for ordinary differential equations (ODEs) and not periodic orbits of 

hybrid dynamical systems [19]–[23]. The design of decentralized control schemes for hybrid 

dynamical models of bipedal robots is an extremely difficult problem. Significant 

complexity arises from the high dimensionality, strong interactions among subsystems, 

underactuation, and hybrid nature of these models. The most basic tool for analyzing the 

stability of periodic orbits of hybrid dynamical systems—the Poincaré return map [2], [22], 

[24]—must be estimated numerically, which further complicates the design of decentralized 

controllers.

The contribution of this paper is to present a systematic algorithm to design a class of 

decentralized nonlinear feedback controllers that asymptotically stabilize periodic orbits for 

the hybrid models of bipedal walking. The proposed algorithm assumes a finite set of 

parameterized local controllers so that (1) they are coordinated based on a common phasing 
variable, (2) a periodic orbit is induced, and (3) the orbit is invariant under the choice of 

controller parameters. These assumptions are satisfied for several classes of decentralized 

feedback controllers including virtual constraints [3]. We investigate nonlinear stability tools 

for hybrid systems to formulate the problem of designing decentralized nonlinear controllers 

as an iterative sequence of optimization problems involving Bilinear and Linear Matrix 

Inequalities (BMIs and LMIs). By design these optimization problems can be solved easily 

with available software packages. This paper also presents sufficient conditions on the 

Poincaré map to guarantee the convergence of the iterative BMI algorithm at a finite number 

of iterations. We previously applied a BMI algorithm for the systematic design of centralized 

feedback controllers in [25]–[27], whereas this paper presents a BMI framework for 

designing decentralized controllers. A class of novel decentralized controllers is first 

developed and then the BMI algorithm is improved for tuning the local controllers. Finally 

to demonstrate the power of the algorithm, we control the walking gait of a 3D autonomous 

robot with 9 degrees of freedom (DOFs) and 6 actuators, choosing a two-part 

decentralization scheme corresponding to a transpelvic (hip disarticulated) amputee walking 

with a robotic prosthetic leg. A byproduct of this work is the first known control strategy for 

a powered 3-DOF transpelvic prosthetic leg.
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II. HYBRID MODEL OF WALKING

We consider hybrid dynamical systems with one continuous-time phase as follows

(1)

where x ∈  denotes the state variables and  ⊂ ℝn represents the state manifold. The 

continuous-time portion of the hybrid system is given by the ODE ẋ = f(x)+g(x)u, in which 

u ∈  denotes the continuous-time control inputs and  ⊂ ℝm represents a set of admissible 

control inputs. The vector field f :  → T  and columns of g are assumed to be smooth 

(i.e., C∞). The discrete-time portion of the hybrid system is given by the instantaneous reset 
map x+ = Δ(x−), where Δ :  →  is C∞ and x−(t) := limτ↗t x(τ) and x+(t) := limτ↘t x(τ) 

represent the left and right limits of the state trajectory x(t), respectively. The switching 
manifold  is then represented by  := {x ∈  |s(x) = 0 and σ(x) < 0}, where s :  → ℝ is 

a C∞ switching function which satisfies  for all x ∈ . Finally, σ:  → ℝ is 

assumed to be C∞.

A. Hybrid Interconnected Subsystems

Throughout this paper, we shall assume that the hybrid model of (1) is composed of two 

interconnected subsystems Σ1 and Σ2 in which the local state variables and local inputs of 

the i-th subsystem are represented by xi ∈ i ⊂ ℝni and ui ∈ i ⊂ ℝmi, respectively, where 

the subscript i ∈ {1, 2} denotes the subsystem number. Our motivation comes from 

biomimetic control of powered prostheses for which the typical model may consist of two 

subsystems including the “human” body and “prosthetic” part (see Fig. 1). The global state 

variables and global inputs of (1) are then assumed to be decomposed as  and 

 which result in  = 1 × 2 and  = 1 × 2.

We shall assume that there is a desired period-one orbit for the hybrid model of (1) which is 

transversal to the switching manifold . To make this notion more precise, we present the 

following assumption.

Assumption 1 (Transversal Period-one Orbit)—There exists a bounded scalar T★ > 0 

(referred to as the fundamental period), smooth nominal local control inputs 

for i ∈ {1, 2}, and a unique nominal global state solution φ★(t) which satisfy the ODE of the 

continuous-time portion and periodicity condition as follows
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where . Furthermore, the period-one orbit  := {x = φ★(t) |0 ≤ t < 

T★} is assumed to be transversal to the switching manifold , i.e., ṡ(φ★(T★)) ≠ 0.

Sections II-B and III will present the class of decentralized feedback controllers and the 

iterative BMI optimization algorithm to exponentially stabilize the desired periodic orbit , 

respectively.

B. Class of Decentralized Feedback Controllers

In our proposed decentralized feedback control structure, the local controllers are 

parameterized and general nonlinear feedback laws which have access to their own local 

measurements (i.e., local state variables xi) as well as a subset of measurable global 

variables. Global variables are defined as quantities which depend on the global state 

variables. The global variable is said to be measurable for a subsystem if there are sensors to 

measure it along the solutions of that subsystem.

Assumption 2 (Measurable Global Variables)—It is assumed that the set of 

measurable global variables for sub-system Σi, i ∈ {1, 2}, can be written in the form of

(2)

for some smooth measurable global variable ψi(x) ∈ ℝvi and some positive integers vi ≥ 1 

and r ≥ 1. We further assume that the control input u does not explicitly appear in the 

equations of ψi(x),ψ̇
i(x), ⋯, and .

Example 1: For the case of powered prostheses in Fig. 1, without loss of generality let us 

assume that subsystems Σ1 and Σ2 represent the human and prosthetic leg parts, respectively. 

Suppose further that the human part has global orientation in its local state vector (assumed 

to come from the vestibular system), whereas the prosthetic part has only shape variables 

and therefore must utilize external inertial measurement units (IMUs) for measurements of 

orientation. Because orientation is implicitly included in the local state vector of the human 

part, its externally measured global variable set Ψ1(x) can be empty. We assume that the 

prosthetic orientation measurements come from two IMUs attached to the thigh links: one 

on the human thigh and the other on the prosthetic thigh. The set of measurable global 

variables Ψ2(x) for the prosthetic part Σ2 can then be chosen as the Euler angles, i.e., ψ2(x), 

and their first-order time-derivatives, i.e., ψ2̇(x), from these two IMUs (note that r = 2). The 

use of two IMUs by the prosthesis will later allow the BMI optimization to more easily find 

stable gaits. There is precedence for wearing sensors on the sound leg in prosthetic control 

methods [28], but we will attempt to eliminate the need for the second IMU in future work.

In order to coordinate the local controllers, we now consider a common set of measurable 

global variables for both subsystems Σ1 and Σ2 in the following assumption.
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Assumption 3 (Measurable Phasing Variable)—There exists a smooth and scalar 

global variable θ(x), referred to as the phasing variable, which satisfies the following 

conditions:

1. θ(x) is strictly monotonic (i.e., strictly increasing or decreasing) along the 

periodic orbit ;

2. the control input u does not explicitly appear in the equations of θ(x), 

θ̇(x), ⋯, and θ(r−1)(x); and

3. the sequence of θ and its time-derivatives up to the order (r−1), i.e.,

are measurable global variables for both subsystems Σ1 and Σ2.

From Item 1 of Assumption 3, the phasing variable can replace time, which is a key to 

obtaining time-invariant controllers that realize asymptotic orbital stability of the periodic 

orbit . Item 2 states that the relative degree of θ(x) and ψi(x) for i ∈ {1, 2} with respect to 

the control input u are the same and equal to r. Our motivation for this assumption will be 

clarified in local output functions (7). For mechanical systems, the phasing variable is 

usually taken as a holonomic quantity and hence, r = 2. Item 3 of Assumption 3 is not 

restrictive for models of bipedal walking. In particular, one can define a proper phasing 

variable based on the absolute stance hip angle in the sagittal plane. This angle θ and its 

first-order time-derivative θ̇ may be measured for Σ2 by the IMUs attached to the thigh links 

in Example 1. It is further reasonable to assume that this angle is available to the human 

through proprioception of the residual thigh.

Now we propose a class of parameterized local feedback controllers as follows

(3)

where ξi ∈ Ξi ⊂ ℝpi denotes the parameters of the local controller i to be determined. Here, 

Γi : i × ℝr × ℝrvi × Ξi → i is a general smooth function of local state variables xi, 

measurable phasing variable and its time- derivatives Θ(x), measurable global variables 

Ψi(x) for the subsystem Σi, and local parameters ξi. We remark that the local controllers of 

(3) depend on two different sets of measurable global variables. The first set is common 

between Σ1 and Σ2 and includes Θ(x), consisting of the phasing variable and its time-

derivatives, to coordinate the local controllers. In particular, the phasing variable represents 

the progress of the system (e.g., robot) on the periodic orbit (e.g., gait). The second set 

includes the individual measurable global variables Ψi(x) to improve the stability of the 

periodic orbit . For instance in Example 1, the prosthetic leg controller may improve the 

frontal stability by having access to the roll angles from the IMUs attached to the thigh links.
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Remark 1: In the case of amputee locomotion in Example 1, mathematical models for the 

local controller of the human part are not known. However for the purpose of this paper, we 

assume that the human local controller can be modeled as a phase-dependent nonlinear 

feedback law in a similar manner to [18]. Evidence suggests that phase-dependent models 

reasonably predict human joint behavior even across perturbations [13]. Since the human 

part controller does not have access to the external IMUs attached to both thighs (Ψ1 = ∅ 
but orientation is implicitly included in x1), it is better to show the local controllers of (3) as 

follows:

(4)

(5)

To have a unified notation, however, we make use of (3) for the rest of the paper. We remark 

that the objective of this paper is to show that the local feedback control structure of (4) and 

(5) can yield asymptotically stable 3D walking gaits.

C. Closed-Loop Hybrid Model

By employing the local feedback laws of (3), the parameterized closed-loop hybrid model 

becomes

(6)

where , Ξ := Ξ1 × Ξ2 denotes the set of admissible parameters; p := 

p1 + p2, fcl(x, ξ) := f(x) + g(x)Γ(x, ξ), and . The unique solution of the 

parameterized ODE ẋ = fcl(x, ξ) with the initial condition x(0) = x0 is denoted by φ(t, x0, ξ) 

for all t ≥ 0 in the maximal interval of existence. The time-to-reset function, T :  × Ξ → 
ℝ>0, is then defined as the first time at which the ODE solution intersects the switching 

manifold , i.e., T(x0, ξ) := inf {t > 0 | φ(t, x0, ξ) ∈ }.

Remark 2: In the closed-loop hybrid model of (6), the reset map Δ is also parameterized by 

ξ Our motivation for this is to extend the iterative BMI algorithm for hybrid systems with 

multiple continuous-time phases. In particular, for these systems, the reset map can be 

expressed as a composition of the flows for the remaining continuous- and discrete-time 

phases. Consequently, Δ includes the parameters of the controllers employed during other 

continuous-time phases.
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D. Invariant Periodic Orbit Assumption

Throughout this paper, we shall assume that the local feedback laws of (3) satisfy the 

invariance assumption. The invariance assumption states the periodic orbit  is invariant 

under the choice of the controller parameters . This helps us to preserve the 

orbit while tuning the parameters to improve its stability behavior. This assumption becomes 

more clear in the following assumption.

Assumption 4 (Invariant Periodic Orbit)—The closed-loop hybrid model (6) satisfies 

the following invariance conditions: 1)  for all (x, ξ) ∈ 𝒪̄ × Ξ, and 2) 

 for all ξ ∈ Ξ, where 𝒪̄ denotes the set closure of  and {x★} := 𝒪̄ ∩ .

To clarify the idea, we now present a family of the proposed decentralized controllers in (3) 

which satisfies the invariance assumption.

Local Output Zeroing Controllers—This family of local controllers is developed based 

on the output regulation problem for local subsystems Σi, i ∈ {1, 2}. We define a set of 

parameterized local outputs as follows

(7)

where dim(yi) = dim(ui) = mi, and Hi(ξi) ∈ ℝmi × ni and Ĥi(ξi) ∈ ℝmi × vi are local output 
matrices, to be determined, which are parameterized by ξi. In addition, xd,i(θ) and ψd,i(θ) 

represent the desired evolutions of the local state variables xi and measurable global 

variables ψi on the periodic orbit , respectively, in terms of the phasing variable θ. 

According to the construction procedure, the local outputs (7) vanish on the desired orbit . 

Furthermore, we assume that r is the relative degree of the local output yi with respect to the 

local input ui. The family of local output zeroing controllers can then be chosen as1

where the term  denotes the nominal local inputs of Assumption 1, regressed in terms 

of the phasing variable θ to preserve the periodic orbit  for the full-order model, Di(xi, ξi) 

represents a smooth local (lower-dimensional) decoupling matrix2, and the coefficients kj for 

j = 0, 1, ⋯, r−1 are chosen such that the polynomial λr + kr−1λr−1 +⋯+ k0 becomes 

Hurwitz. We remark that this family of local controllers is a decentralized approximation of 

centralized I/O linearizing controllers. In addition, it can be easily shown that 

1We remark that  is a function of (θ, θ̇, …, θ̇(j)) and (ψ, ψ̇i, …, ) for all j = 0, 1, ⋯, r−1. This underlines the importance of 
having Θ(x) and Ψi(x) measurable in Assumptions 2 and 3.
2It is assumed that Di(xi, ξi) for i ∈ {1, 2} is invertible on 𝒪̄ × Ξ for some Ξ ⊂ ℝp.
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 for all (x, ξ) ∈ 𝒪̄ × Ξ, and hence, the invariance assumption is 

satisfied. For the case of Example 1 as stated in Remark 1, we choose Ĥ1 = 0 (or Ψ1 = ∅) to 

have u1 = Γ1(x1, Θ(x), ξ1).

E. Poincaré Map and Exponential Stabilization

In order to exponentially stabilize the periodic orbit  for the closed-loop system (6), we 

define the parameterized Poincaré map as P :  × Ξ →  by P (x, ξ) := φ (T (Δ(x, ξ), ξ), 
Δ(x, ξ), ξ). This map describes the evolution of the closed-loop hybrid system (6) on the 

Poincaré section  according to the discrete-time system

(8)

From the invariance assumption, x★ is an invariant fixed point for the Poincaré map, that is 

P(x★, ξ) = x★ for all ξ ∈ Ξ. Linearization of (8) around the invariant fixed point x★ then 

results in

(9)

where δx[k] := x[k] − x★ and . Next we are interested in the following 

problem.

Problem 1 (Exponential Stabilization)—The problem of exponential stabilization of 

the periodic orbit  for the closed-loop hybrid system (6) consists of finding the parameter 

vector ξ such that the Jacobian matrix A(ξ) becomes Hurwitz.

III. ITERATIVE BMI ALGORITHM

This section creates a systematic numerical algorithm to overcome specific difficulties 

arising from the lack of a closed-form expression for the Poincaré map, high dimensionality, 

and underactuation in tuning the decentralized feedback controllers of Section II-B for the 

hybrid model of (1). The objective is to tune the parameters of the decentralized feedback 

control structure of (3), i.e., , such that the desired orbit  becomes 

exponentially stable. Our iterative algorithm designs a sequence of controller parameters 

{ξℓ}, where the superscript ℓ ∈ {0, 1, ⋯} represents the iteration number. The objective is 

then to converge to a set of parameters ξℓ that solves Problem 1. In what follows, we present 

the steps of the algorithm.

A. Step 1: Sensitivity Analysis and BMI Optimization

During iteration number ℓ, based on the Taylor series expansion of the Jacobian matrix 

around ξℓ, i.e.,
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(10)

a sensitivity analysis is employed to translate Problem 1 into an approximate exponential 

stabilization problem which can be expressed in terms of BMIs. In (10), Δξ is an increment 

in controller parameters with a sufficiently small norm ||Δξ||, “⊗” represents the Kronecker 

product, and Ā(ξℓ) is referred to as the sensitivity of the Jacobian matrix with respect to ξ. 

Effective numerical approaches to calculate the Jacobian matrix A(ξℓ) as well as the 

sensitivity matrix Ā(ξℓ) have been developed in [25, Theorems 1 and 2]. Next we present the 

approximate stabilization problem.

Problem 2 (Approximate Exponential Stabilization)—The problem of approximate 

exponential stabilization consists of tuning/incrementing the controller parameters Δξℓ := 

ξℓ+1 − ξℓ such that the first-order approximation of the Jacobian matrix, i.e.,

(11)

becomes Hurwitz.

In this paper, we follow the BMI optimization approach of [25] to solve Problem 2. However 

unlike [25], we repeat this approach in an iterative manner to converge to a set of stabilizing 

parameters3. In particular, during each iteration, we set up the following optimization 

problem

(12)

(13)

(14)

(15)

3We have observed that for decentralized control problems one need to apply the BMI algorithm iteratively to converge to a stabilizing 
solution.
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in which W = W⊤ is a positive definite symmetric matrix, μ > 0 is a scalar to tune the 

spectral radius of Â, and η is a dynamic upper bound on  to have a good 

approximation based on the Taylor series expansion in (10)4. Finally, w > 0 is a weighting 

factor as a trade-off between increasing μ (i.e., decreasing the spectral radius of Â) and 

decreasing η in the cost function (12). We remark that (13) and (14) represent BMI and LMI 

constraints, respectively.

B. Step 2: Iteration

Let (Wℓ★, Δξℓ★, μℓ★, ηℓ★) represent a local minimum for the BMI optimization problem 

(12)–(15)5. If the requirements of Problem 1 are satisfied at

(16)

the algorithm terminates. Otherwise, the algorithm continues by coming back to the step of 

the sensitivity analysis and BMI optimization around the updated parameter ξℓ+1. In case the 

BMI optimization is not feasible, then the search process is not successful and the algorithm 

terminates.

C. Sufficient Conditions for Convergence of the Algorithm

The objective of this section is to present a set of sufficient conditions under which the 

iterative algorithm stabilizes the periodic orbit  for the closed-loop hybrid model (6) at a 

finite number of iterations. The conditions are presented in terms of the Poincaré map and its 

first-, second-, and third-order derivatives. For this goal, we present a non-smooth 
optimization problem which is equivalent to the BMI optimization problem (12)–(15). It is 

important to remak that we will not solve the non-smooth optimization problem numerically 

during the iterative algorithm. However, we will make use of this equivalent problem for the 

proof of the convergence in Theorems 1 and 2.

Lemma 1—The BMI optimization problem (12)–(15) is equivalent to

(17)

(18)

4In particular, V(δx) = δx⊤W−1δx is a Lyapunov function for δx[k+1] = Â(ξℓ, Δξℓ) δx[k] and  represents an upper bound for 
the spectral radius of Â(ξℓ, Δξℓ).
5More details about the local solutions will be presented in Section IV-B.
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(19)

where ρ(.) represents the spectral radius.

Proof: See Appendix.

Let us consider the Jacobian matrix A(ξ) ∈ ℝn×n. For later purposes, we define the 

vectorization of the real and approximate Jacobian matrices as a(ξ) := vec(A(ξ)) ∈ ℝn2
 and 

â(ξ, Δξ):= vec(Â(ξ, Δξ)) ∈ ℝn2
, where “vec(.)” represents the matrix vectorization operator. 

For the scalar case, i.e., n = 1, one can present a closed-form expression for the global 

solution of the equivalent problem (17)–(19). This helps us to present a set of sufficient 

conditions to guarantee the convergence of the iterative algorithm to a stabilizing set of 

parameters at a finite number of iterations.

Theorem 1 (Convergence of Algorithm for n = 1)—Consider the ∞ scalar function 

a : ℝ → ℝ and suppose that there is ξ̄ ∈ ℝ such that a(ξ̄) = 0. Let ℬ represent a compact 

(closed and bounded) ball around ξ̄ such that 1) a′(ξ) ≠ 0 for all ξ ∈ ℬ, and 2)

(20)

where a′(ξ) denotes the first-order derivatives of a(ξ). Then, there are δ > 0 and N < ∞ such 

that for all initial guesses ξ0 ∈ ℬ with the property |ξ0 − ξ̄|< δ, the iterative algorithm 

stabilizes the origin for (9) at N iterations, that is, |a(ξℓ)| < 1 for all ℓ > N.

Proof: See Appendix.

For the multi-dimensional case, i.e., n > 1, there is not a closed-form expression for the 

optimal solution of (17)–(19) or for that of (12)–(15) to investigate the convergence of the 

algorithm similar to that presented in Theorem 1. However from Lemma 1, one can still 

present an alternative set of sufficient conditions to guarantee the stability of the real 

Jacobian matrix during iteration ℓ + 1 based on a local optimal solution obtained during 

iteration ℓ. For this purpose, let χ(z) := det(zI − A) represent the characteristic equation of a 

given matrix A. Then ρ(A) < γ is equivalent to the monic polynomial 

 being Hurwitz. From Jury stability criterion, this is also equivalent to 

the existence of n + 1 smooth inequality constraints on (a, γ) with γ ≠ 0 as follows:

(21)

where a := vec(A) ∈ ℝn2
. This enables the following result.
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Theorem 2 (Convergence of Algorithm for n > 1)—Assume that the BMI 

optimization problem (12)–(15) is feasible during iteration ℓ. Suppose further that (Δξℓ★, μℓ★) 

denotes a local optimal solution (not necessarily the global solution). Then there is ε > 0 

such that if 1) ||Δξℓ★||< ε, and 2) the conditions

(22)

for α = 1, ⋯, n + 1 are satisfied, then the algorithm terminates at the iteration ℓ+1, that is, 

A(ξℓ+ Δξℓ★) becomes Hurwitz. Here aβ(ξ) represents the β-th component of a(ξ) and 

denotes the corresponding Hessian matrix.

Proof: See Appendix.

We remark that the inequality conditions (22) can be viewed as n + 1 LMI conditions on n2 

Hessian matrices  for β = 1, ⋯, n2. Hence, one can interpret these conditions as 

convexity requirements on the elements of a(ξ) at ξ = ξℓ.

IV. APPLICATION TO ROBOTIC WALKING

Virtual constrains are kinematic relations among the generalized coordinates enforced 

asymptotically by continuous-time feedback control [2], [3], [7], [16], [17], [25], [26], [29]–

[33]. They are defined to coordinate the links of the bipedal robot within a stride. In this 

approach, holonomic output functions y(x) define desired virtual constraints, i.e., y ≡ 0, that 

are typically enforced by centralized input-output (I/O) linearizing feedback laws during the 

continuous-time portion of the hybrid system. Virtual constraint controllers have been 

validated numerically and experimentally for stable 2D and 3D underactuated bipedal robots 

[8], [29], [30], [34], [35] as well as 2D powered prosthetic legs [16]–[18]. The stability of 

walking gaits in the virtual constraints approach depends on the choice of the output 

functions [25]. The application of virtual constraints to prosthetics presents some challenges 

not previously encountered in autonomous robots, because centralized virtual constraint 

controllers would require state feedback from the human body. To overcome this problem 

associated with human interaction, [16] has approximated virtual constraint controllers using 

local high-gain PD controllers in simulations of a 2D powered prosthetic leg, but safety 

concerns limited the experimental implementation to inaccurate low-gain controllers. The 

local output functions for the prosthetic subsystem were also defined based on physical 
intuition. A recent approach measures the human interaction forces for exact local virtual 

constraint control [18], but multi-axis force sensors that are light enough for prosthetic limbs 

are extremely expensive.

There is currently no algorithm to systematically design decentralized virtual constraints to 

induce stable walking in bipedal robots and powered prosthetic legs. The objective of this 

section is to employ the iterative BMI optimization to search for stabilizing local virtual 
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constraints. We remark that the BMI optimization takes into account the interactions among 

the subsystems while searching for the optimized virtual constraints, preventing the need to 

employ impractical high-gain local controllers or expensive force sensors to deal with 

interactions.

A. 3D Underactuated Bipedal Robot

We apply the iterative BMI algorithm to tune the local output matrices for a set of 

decentralized virtual constraints in the form of (7) to exponentially stabilize the walking gait 

of a 3D underactuated bipedal robot. The model of the robot consists of a rigid tree structure 

with a torso and two identical legs with point feet6. Each leg includes 3 actuated DOFs: a 2 

DOF hip (ball) joint with roll and pitch angles plus a 1 DOF knee joint in the sagittal plane 

(see Figs. 1 and 2). During the single support phase, the model has 9 DOFs with 6 actuators. 

In particular, the roll, pitch and yaw angles associated with the torso frame are unactuated. 

The kinematic and dynamic parameter values for the links are taken according to those 

reported in [36] for a 3D human model. The continuous-time portion of the hybrid system in 

(1) is constructed based on the right stance phase Lagrangian dynamics with 18 state 

variables. The discrete-time portion is then taken as the composition of the right-to-left 

impact, left stance phase, and left-to-right impact models. The impact maps assume rigid 

and instantaneous contact models [37]. A desired periodic gait  is then designed using the 

motion planning algorithm of [8] for walking at 0.6 (m/s) with the cost of mechanical 

transport CMT = 0.07.

The two-part decentralization scheme in Fig. 2 is motivated by a transpelvic amputee (the 

“human” part) walking with a prosthetic left leg (the “prosthetic” part). The prosthetic 

subsystem Σ2 includes the 3 DOFs of the left leg with the corresponding 3 actuators and 

hence, dim(x2) = 6 and dim(u2) = 3. The human subsystem Σ1 consists of the rest of the 

model, including the torso and right leg, with dim(x1) = 12 and dim(u1) = 3. The set of 

measurable global variables  for subsystem Σ2 includes two roll 

and yaw angles as well as their velocities provided by the two IMUs attached to the model 

thighs (i.e., dim(ψ2) = 4 and dim(Ψ2) = 8). Next the local output matrices to be determined 

then include H1(ξ1) ∈ ℝ3×6, H2(ξ2) ∈ ℝ3×3, and Ĥ2(ξ2) ∈ ℝ3×4, or equivalently 39 

parameters7. However, since the typical walking period includes two steps, we need to 

determine these matrices for the right and left stance phases and hence, the total number of 

parameters is 39 × 2 = 78, i.e., ξ ∈ ℝ78.

B. PENBMI Solver and Numerical Results

BMIs are NP-hard problems. However, available software packages like PENBMI [38] are 

general purpose, local solvers which guarantee the convergence to a critical point satisfying 

the first-order Karush-Kuhn-Tucker (KKT) conditions. An initial set of local virtual 

constraints with the parameter vector ξ0 ∈ ℝ78 is assumed based on physical intuition to 

6We make use of the point foot assumption to simplify the hybrid model of walking, but the results can be applied to hybrid models of 
walking with nontrivial feet.
7We remark that Ĥ1 = 0. In addition, since the outputs in (7) need to be holonomic, we replace xi and xd,i(θ) in (7) with the local 
configuration variables qi and the corresponding desired evolution qd,i(θ), respectively.
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initiate the iterative algorithm. For this set of local virtual constraints, the dominant 

eigenvalues of the 17 ×17 Jacobian of the Poincaré map and the corresponding spectral 

radius become {0.1029 ±1.7223i,−0.4683,−0.4178} and 1.7253, respectively. Hence, the 

orbit is unstable. To stabilize the orbit, we employ the iterative BMI algorithm with the 

weighting factor w = 1. The BMI optimization problem (12)–(15) during each iteration of 

the algorithm is then solved with the PENBMI solver from TOMLAB [39] integrated with 

MATLAB environment through YALMIP [40]. The BMI optimization procedure on a 

computer with a dual 2.3 GHz Intel Xeon E5-2670 v3 processor takes approximately 15 

minutes. The iterative algorithm successfully converges to a stabilizing set of parameters 

after 5 iterations. For the BMI optimized parameters, the dominant eigenvalues and spectral 

radius of the Poincaré map Jacobian become {0.4908,−0.0058 −0.4681i,−0.3153} and 

0.4908, respectively, and hence, the desired periodic gait  becomes exponentially stable 

(71.56% decrease in the spectral radius). Figure 2 depicts the phase portraits of the BMI 

optimized closed-loop system. Here, the simulation starts off of the orbit at the beginning of 

the right stance phase with an initial error of −2 (deg/s) in the velocity components. 

Convergence to the periodic orbit is clear. The animation of this simulation can be found at 

[41].

V. CONCLUSIONS

This paper introduced an algorithm to systematically design time-invariant decentralized 

feedback controllers for exponential stabilization of periodic orbits for a class of hybrid 

dynamical systems arising from bipedal walking. The algorithm is developed based on an 

iterative sequence of optimization problems involving BMIs and LMIs. It can address a 

general form of parameterized and nonlinear local controllers in which the coordination of 

lower-dimensional subsystems is done by a common measurable phasing variable. The 

algorithm accounts for high degrees of underactuation and strong interactions among 

subsystems and can be solved effectively with available software packages. The numerical 

results illustrate the power of the algorithm in designing stabilizing local nonlinear 

controllers for a hybrid model of walking with 18 state variables and 78 control parameters. 

For future research, we will investigate the scalability of the algorithm and its capability in 

stabilizing larger size interconnected systems. We will also investigate the design of robust 

decentralized feedback solutions against uncertainties in the hybrid models.
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APPENDIX

Proof of Lemma 1

For a given matrix A, ρ(A) < γ for some positive γ is equivalent to matrix  being 

Hurwitz. This is equivalent to the existence of Y = Y⊤ > 0 such that . Pre 

and post multiplying this latter inequality by W = Y−1 > 0 and employing Schur’s 

complement Lemma results in [W AW; ★ γ2 W] > 0. Finally choosing γ2 := 1− μ < 1 in the 

BMI problem (12)–(15) together with  from the LMI (14) completes the proof.

Proof of Theorem 1

For the scalar case, ρ(â(ξℓ, Δξℓ)) < γ is equivalent to |â(ξℓ, Δξℓ)|= |a(ξℓ) + a′(ξℓ) Δξℓ|< γ. 

Using this fact, the Lagrange multipliers and assumption (20), it can be shown that the 

global optimal solution of (17)–(19) is given by , where aℓ := a(ξℓ) and a′ℓ := 

a′(ξℓ). This results in the parameter update law  with an 

equilibrium point at ξ = ξ̄. It can also be shown that under assumption a′(ξ) ≠ 0 for ξ ∈ ℬ, 

 and hence, the equilibrium point ξ̄ is exponentially stable. This 

implies the existence of δ > 0 such that for all ξ0 ∈ ℬ with the property |ξ0− ξ̄|< δ, limℓ→∞ 
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ξℓ = ξ̄. Furthermore, |ξℓ − ξ̄|≤|ξ0 − ξ̄|< δ for ℓ = 0, 1, ⋯ which follows that ξℓ ∈ ℬ for ℓ = 0, 1, 

⋯. Finally, since a(ξ) is smooth, limℓ→∞ a(ξℓ) = a(limℓ→∞ ξℓ) = a(ξ̄) = 0 which implies that 

there is N > 0 such that for all ℓ > N, |a(ξℓ)| < 1.

Proof of Theorem 2

The proof is similar to that presented in [27, Theorem 2]. During iteration ℓ, we define an 

error function E(Δξ) ∈ ℝn+1 with the components

for α = 1, ⋯, n + 1, where . This function satisfies E(0) = 0 and . The 

conditions (22) imply that  for α = 1, ⋯, n + 1 which are second-order 

optimality conditions under which the components of E reach a local maximum at Δξ = 0. 

Hence, for ||Δξℓ★||< ε, Eα(Δξℓ★) ≤ Eα(0) = 0 or Fα(a(ξℓ + Δξℓ★), γℓ) ≤ Fα(â(ξℓ, Δξℓ★), γℓ)< 0 

for α = 1, ⋯, n + 1. Hence, ρ(A(ξℓ + Δξℓ★)) < γℓ. Finally, from the feasibility assumption of 

the BMI problem and the equivalent problem in Lemma 1, .
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Fig. 1. 
Illustration of the local subsystems and proposed decentralized feedback control scheme for 

stabilization of hybrid periodic orbits for bipedal walking. The subsystem Σ2 (i.e., prosthetic 

part), shown by the dashed ellipse, includes the degrees of freedom and actuators for the left 

leg. Σ1 (i.e., human part) consists of the rest of the model.
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Fig. 2. 
Phase portraits for the torso Euler angles (yaw, roll and pitch) during 50 consecutive steps of 

3D walking by the BMI optimized decentralized feedback control scheme together with the 

structure of the 9 DOFs autonomous bipedal robot. The model consists of three unactuated 

Euler angles and 6 actuated revolute joints. Subsystems Σ1 and Σ2 with the corresponding 

DOFs have been shown in the figure.
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