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On the rate analysis of inexact augmented Lagrangian schemes for
convex optimization problems with misspecified constraints

H. Ahmadi N. S. Aybat U. V. Shanbhag

Abstract— We consider a misspecified optimization problem
that requires minimizing of a convex function f (x;θ ∗) in x
over a constraint set represented byh(x;θ ∗) ≤ 0 where θ ∗ is
an unknown (or misspecified) vector of parameters. Suppose
θ ∗ is learnt by a distinct process that generates a sequence
of estimators θk, each of which is an increasingly accurate
approximation of θ ∗. We develop a first-order augmented
Lagrangian scheme for computing an optimal solutionx∗ while
simultaneously learning θ ∗.

I. I NTRODUCTION

Consider an optimization problem inn−dimensional space
defined as follows:

X
∗(θ ∗) := argmin

x∈X∩H (θ∗)
f (x;θ ∗), (C (θ ∗))

whereθ ∗ ∈ R
d denotes the parametrization of the objective

and constraints. While traditionally, optimization research
has considered settings whereθ ∗ is available a priori, two
related problems of interest have considered regimes where
either the parameter is unavailable (robust optimization) or
when it is uncertain (stochasticoptimization:)
Robust approaches [1].For instance, whenθ ∗ is unavail-
able, but one has access to an associated uncertainty set
T , then in robust optimization, the worst-case value of the
objective is minimized:

min
x∈X

max
θ∈T

f (x;θ ). (Robust Optimization)

Stochastic approaches [2].An alternative approach con-
siders an uncertain regime whereθ : Ω → R

d is an
d−dimensional random vector defined on a suitable prob-
ability space. The resulting stochastic optimization schemes
consider the minimization of an expectation:

min
x∈X

E[ f (x;θ )]. (Stochastic Optimization)

In this paper, we consider a different approach in which the
parameter vectorθ has a nominal or true valueθ ∗ obtainable
by solving a suitably defined learning problem:

min
θ∈Θ

ℓ(θ ). (E )

Instances of such problems routinely arise whenθ ∗ is
idiosyncratic to the problem and may be learnt by the aggre-
gation of data; examples include the following: the learning
of covariance matrices associated with a collection of stocks,
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efficiency parameters associated with machines on a supply
line, and demand parameters associated with a supply chain.
A natural approach in this case is to first estimateθ ∗ with
high accuracy and then to solve the parametrized problem.
Yet, in many instances, thissequentialapproach cannot be
adopted for several reasons: (i) observations unavailablea
priori and appear in a streaming fashion; (ii) the learning
problem can be large, precluding a highly accurate a priori
resolution; (iii) unless the learning problem can be solved
exactly in finite time, any sequential scheme may provide
approximate solutions, at best.
Accordingly, we consider the development of schemes that
generate sequences{xk},{θk} such that

‖θk−θ ∗‖→ 0, dX ∗(θ∗)(xk)→0 as k→∞,

whereθ ∗ is the unique solution of (E ) and for a given closed
convex setX , dX (x),mins∈X ‖x−s‖ denotes the distance
function to X . This framework originates from prior work
on stochastic optimization/variational inequality problems [3]
and stochastic Nash games [4]. In recent work, the rate
statements derived in [3] are refined to the deterministic
regime [5]. In [6], misspecification in the constraints is
addressed in a convex regime via variational inequality
approaches; in sharp contrast, in this paper, we develop a
misspecified analog of the augmented Lagrangian scheme
for misspecified convex problems in which both the objective
and the constraints are misspecified. Augmented Lagrangian
schemes are rooted in the seminal papers by Hestenes [7] and
Powell [8], and their relation to proximal-point methods was
established by Rockafellar [9], [10]. Recently, there has been
a renewed examination of such techniques in convex regimes,
with an emphasis on deriving convergence rates [11]–[13].

In this paper, we develop an analog of the traditional
augmented Lagrangian scheme in which the subproblems are
solved with increasing exactness. Our contributions include
rate statements for the dual suboptimality, the primal infea-
sibility, and the primal suboptimality in this misspecified
regime. Throughout, our focus will be on the problem
(C (θ ∗)) whenH (θ ∗), {x : h(x;θ ∗)≤ 0}, i.e.,

min
x

f (x;θ )

subject to h(x;θ )≤ 0, x∈ X,
(C (θ ))

where f : Rn ×Θ → R∪{+∞}, h : Rn ×Θ → R
m and θ ∈

Θ ⊆ R
d denotes an estimate for the misspecified param-

eter θ ∗. Throughout, we assume thatC (θ ∗) has a finite
optimal value, given byf ∗, the corresponding Lagrangian
dual problem has a solution, denoted byλ ∗, and there isno
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duality gap. The remainder of the paper comprises of three
sections. We provide preliminaries in Section II, the main
rate statements in Section III, and conclude in Section IV.

II. PRELIMINARIES

The problemC (θ ) is equivalent to

min
{

f (x;θ ) : h(x;θ )+ z= 0, x∈ X, z∈ R
m
+

}
. (1)

Let λ ∈ R
m denote the vector dual variables corresponding

to the equality constraints in (1). For any givenρ > 0, define
the augmented Lagrangian function for (1),Lρ(x,λ ;θ ), such
that domLρ = X×R

m×Θ and

Lρ(x,λ ;θ ), min
z∈Rm

+

[
f (x;θ )+λ⊤(h(x;θ )+ z)+ ρ

2‖h(x;θ )+ z‖2
]
.

Through a rearrangement of terms, it can be shown that

Lρ(x,λ ;θ ) = f (x;θ )+ ρ
2 min

z∈Rm
+

∥∥∥h(x;θ )+ z+
λ
ρ

∥∥∥
2
− ‖λ‖2

2ρ

= f (x;θ )+ ρ
2 d2

R
m
−

(
λ
ρ +h(x;θ )

)
− ‖λ‖2

2ρ
, (2)

wheredX (x),mins∈X ‖x−s‖, andd2
X
(x), (dX (x))2. For

ρ = 0, let L0(x,λ ;θ ) denote the Lagrangian function:

L0(x,λ ;θ ),

{
f (x;θ )+λ⊤h(x;θ ), if λ ∈ R

m
+

−∞, otherwise.

Whenρ ≥ 0, the dual problem ofC (θ ) is defined as

max
λ∈Rm

+

{
gρ(λ ;θ ), inf

x∈X
Lρ(x,λ ;θ )

}
. (Dρ)

Throughout, we assume the following:
Assumption 1:
(i) The functionsf (x,θ ) andhi(x,θ ) are convex inx∈ X

for all θ ∈ Θ for i = 1, . . . ,m and X ⊆ R
n and Θ are

convex compact sets.
(ii) The function f (x;θ ) is Lipschitz continuous inθ over

Θ for all x ∈ X with constantL f ; i.e. for all x ∈ X,
‖ f (x;θ1)− f (x;θ2)‖ ≤ L f ‖θ1−θ2‖ for all θ1,θ2 ∈ Θ.

(iii) h(x;θ ) is an affine map inx for every θ ∈ Θ, i.e.,
h(x;θ ) = A(θ )x+ b(θ ) for some A(θ ) ∈ R

m×n and
b(θ ) ∈ R

m. SupposeA(θ ) and b(θ ) are Lipschitz
continuous inθ . Hence,h(x;θ ) is Lipschitz continuous
in θ with constantLh uniformly for all x∈ X. Clearly,
h(B(0,1);θ ) ⊆ B(b(θ ),σmax(A(θ ))) for all θ ∈ Θ,
whereB(ȳ, r) := {y : ‖y− ȳ‖ ≤ r}. Hence, there is a
constantσh s.t.h(B(0,1);θ )⊆ σhB(0,1) for all θ ∈ Θ,
sinceσmax(A(θ )) is continuous inθ andΘ is compact.

(iv) X∗(λ ;θ ) is pseudo-Lipschitz in θ uniformly
in λ with constant κX, where X∗(λ ;θ ) =
argminx∈X L0(x,λ ;θ ), i.e., for any θ1,θ2 ∈ Θ,
X∗(λ ;θ1)⊆ X∗(λ ;θ2)+κXB(0,1) for all λ ≥ 0.

Rather than focusing on the nature of the algorithm
employed for resolving the learning problem, instead we
impose a requirement that the adopted scheme produces a
sequence that converges to the optimal solution at a non-
asymptotic linear rate.

Assumption 2:There exists a learning scheme that gener-
ates a sequence{θk} such thatθk → θ ∗ at a linear rate as
k → ∞, i.e., there exists a constantqℓ ∈ (0,1) such that for
all k ≥ 0 andθ0 ∈ Θ, one has‖θk− θ ∗‖ ≤ qk

ℓ‖θ0− θ ∗‖. In
addition, at iterationk of the optimization problemC , only
θ1, . . . ,θk are revealed.

Lemma 1, pertaining to various properties of the gradient
of the dual function∇λ gρ , will be used in our analysis. The
proof of Lemma 1 can be found in [10] and is omitted here.

Lemma 1:Suppose Assumption 1 holds.

(i) For any ρ > 0 andθ ∈ Θ, the dual functiongρ(λ ;θ )
is everywherefinite, continuously differentiable con-
cave function overRm; more precisely,gρ(λ ;θ ) =
maxw∈Rm{g0(w;θ )− 1

2ρ ‖w−λ‖2}, i.e., gρ(·,θ ) is the
Moreau regularization ofg0(·,θ ) for all θ ∈ Θ. There-
fore, ∇λ gρ(λ ;θ ) is Lipschitz continuous inλ with
constant1

ρ .
(ii) For any given λ ∈ R

m
+ and θ ∈ Θ, ∇λ gρ can be

computed as∇λ gρ(λ ;θ ) = ∇λ Lρ(x∗(λ ),λ ;θ ), where
x∗(λ ) ∈ argminx∈X Lρ(x,λ ;θ ).

(iii) Given λ ∈ R
m
+ andθ ∈ Θ, suppose ˜x(λ ) is an inexact

solution to minx∈X Lρ(x,λ ;θ ) with accuracyα, i.e.,
x̃(λ )∈X satisfiesLρ(x̃(λ ),λ ;θ )≤ gρ(λ ;θ )+α, then

‖∇λ Lρ(x̃(λ ),λ ;θ )−∇λ gρ(λ ;θ )‖2 ≤ 2α/ρ .
Next, we examine the continuity of∇λ gρ(λ ;θ ) in θ ∈ Θ.

Lemma 2 (Lipschitz continuity of ∇λ gρ in θ ∈ Θ):
Suppose Assumption 1 holds. Then, we have that∇λ gρ(λ ;θ )
is Lipschitz continuous inθ over Θ uniformly in λ ∈ R

m

with constantκh+κXσh.
Proof: Due to limited space, we omit the proof. For

details, see Proposition 2.4 in the extended version this
paper [14].
Remark: We now comment on the conditions under which
X∗(λ ;θ ) is pseudo-Lipschitz inθ . When f (x;θ ) is a
differentiableconvex function inx for every θ , andh(x;θ )
is an affine function inx for every θ , then X∗(λ ;θ ) is
the solution set of VI(X,∇xL0(.,λ ;θ )) when λ ∈ R

m
+

and θ ∈ Θ. We consider two sets of problem classes in
providing conditions under which the associated solution
sets admit pseudo-Lipschitzian properties:1) Parametrized
quadratic programming:If f (x;θ ) is a quadratic function
for every θ ∈ Θ and X is a polyhedral set, the mapping
of the variational inequality problem is affine; such a
problem is generally referred to as an affine variational
inequality problem and denoted by AVI(X,M(θ ),q(θ ))
where M(θ )x + q(θ ) = ∇x f (x;θ ) + A(θ )⊤λ while its
solution set is denoted by SOL(X,M(θ ),q(θ )), int(K+)
denotes the interior of the positive dual cone ofK, and
K+ , {y : yTz≥ 0,∀z∈ K}. Then under Theorem 7.4 [15],
if M(θ ) is positive semidefinite overX for all θ ∈ Θ, and if
q(θ ) ∈ int

(
[SOL(X,M(θ ),0)]+

)
, then there exists scalarsε

andκ such that if max
θ̂∈Θ

{
‖M(θ̂ )−M(θ )‖,‖q(θ̂)−q(θ )‖

}
<

ε, then X∗(λ ; θ̂ ) ⊆ X(λ ;θ ) +

κ
(
‖M(θ̂ )−M(θ )‖+ ‖q(θ̂)−q(θ )‖

)
B(0,1). Under a



compactness assumption onΘ, this “local” Lipschitzian
result can be globalized.2) Parametrized convex
programming: More generally, supposef (x;θ ) is a
nonlinear convex function andB(H;ε,S) denotes an
ε−neighborhood ofH containing all continuous functions
G that are withinε distance toH when restricted to the set
S, i.e.,

‖G−H‖S, sup
y∈S

‖G(y)−H(y)‖< ε.

Then we define the associated VI(X,∇xL (.,λ ;θ )) assemi-
stableif there exist two positive scalarsc andε such that for
every∇xL (.,λ ; θ̂ ) ∈ B(∇xL (.,λ ;θ );ε,X), we have that

X∗(λ ; θ̂ )⊆ X∗(λ ;θ )
+ csup

x∈X
‖∇xL (x,λ ; θ̂ )−∇xL (x,λ ;θ )‖B(0,1).

In fact, a necessary and sufficient condition for semi-stabililty
of VI(X,F) is the following [16, Prop. 5.5.5]: There exists
two positive scalarsc andε, such that for allq∈ R

n,

‖q‖ < ε =⇒ SOL(X,q+F)⊆ SOL(X,F)+B(0,c‖q‖).
We conclude this section by presenting the misspecified

variant of the inexact augmented Lagrangian scheme with
constant penaltyρ > 0. Notably, if θk = θ ∗ for all k ≥ 0,
this reduces to the traditional version considered in [10].

Algorithm 1 Misspecified inexact aug. Lag. scheme
Given λ0 = 0∈ R

m, andρ > 0, let {αk},{θk} be given sequences.
Then for allk≥ 0,

(1) find xk such thatLρ (xk,λk;θk)≤ gρ (λk;θk)+αk;
(2) λk+1 = λk+ρ∇λ Lρ (xk,λk,θk);
(3) k := k+1;

Assumption 3:{αk} is chosen such that∑∞
k=0

√
αk < ∞.

Under this assumption, we show(i) f ∗ −gρ(λ̄k) ≤ O(1/k)
for λ̄k ,

1
k∑k

i=1 λi, (ii) dR
m
−(h(x̄k;θ ∗)) ≤ O(1/

√
k), and (iii)

−O(1/
√

k) ≤ f (x̄k;θ ∗)− f ∗ ≤ O(1/k) for x̄k ,
1

k+1∑k
i=0xi .

After proving these bounds independently, we became aware
of related recent work [13], where Algorithm 1 is considered
with αk = α > 0 for all k≥ 0, assumingperfect information,
i.e., θk = θ ∗ for all k≥ 0. In [13], it is shown that(i) f ∗−
gρ(λ̄k) ≤ O(1/k)+α, (ii) dRm

−(h(x̄k;θ ∗)) ≤ O(1/
√

k), and
(iii) −O(1/

√
k) ≤ f (x̄k;θ ∗)− f ∗ ≤ O(1/k)+α. Therefore,

according to [13],α should be fixed as a small constant
in accordance with the desired accuracy. Sinceα is fixed
in [13], such avenues can, at best, provide approximate
solutions. In contrast, our method may start with largeα0

and gradually decrease it, ensuringboth numerical stability
and asymptotic convergence to optimality.

III. R ATE OF CONVERGENCE ANALYSIS

We begin by showing that dual variables stay bounded
by using a supporting Lemma whose proof follows from
Lemma 1(i) and the properties of proximal maps (cf. [17]).

Lemma 3:Let πρ(λ ;θ ) := argmaxw∈Rm g0(w;θ ) −
1

2ρ ‖w−λ‖2 for θ ∈ Θ, i.e., the proximal map ofg0(·;θ ).
Thenπρ(λ ;θ ) = λ +ρ∇λ gρ(λ ;θ ), andπρ is nonexpansive
in λ for all θ ∈ Θ.

Theorem 1 (Boundedness of {λk}): Let Assumptions 1–
3 hold, andλ ∗ be an arbitrary solution to the Lagrangian dual
of C (θ ∗), i.e., λ ∗ ∈ argmaxλ g0(λ ;θ ∗). Then for all k ≥ 1,
‖λk−λ ∗‖ ≤Cλ , whereCλ is defined as follows:

Cλ ,
√

2ρ
∞

∑
i=0

√
αi +ρMh

‖θ0−θ ∗‖
1−q

+ ‖λ ∗‖. (3)

Proof: We begin by deriving a bound on‖λk+1 −
πρ(λk;θk)‖ by utilizing the definition ofλk+1 from Step 2
in Algorithm 1:

‖λk+1−πρ(λk;θk)‖
= ‖λk+ρ∇λLρ(xk,λk;θk)−λk−ρ∇λ gρ(λk;θk)‖
= ρ‖∇λLρ(xk,λk;θk)−∇λ gρ(λk;θk)‖ ≤

√
2ραk, (4)

where the last inequality follows from Lemma 1 (iii). Since
gρ(·;θ ∗) is the Moreau regularization ofg0(·;θ ∗), it is
true that λ ∗ ∈ argmaxλ gρ(λ ,θ ∗) for all ρ > 0. Hence,
∇λ gρ(λ ∗;θ ∗) = 0 and λ ∗ = πρ(λ ∗,θ ∗). From this obser-
vation, we obtain the bound below:

‖πρ(λk,θk)−λ ∗‖= ‖πρ(λk,θk)−πρ(λ ∗,θ ∗)‖
≤ ‖πρ(λk,θk)−πρ(λk,θ ∗)‖+ ‖πρ(λk,θ ∗)−πρ(λ ∗,θ ∗)‖
= ρ‖∇λ gρ(λk,θk)−∇λ gρ(λk,θ ∗)‖
+ ‖πρ(λk,θ ∗)−πρ(λ ∗,θ ∗)‖
≤ ρMh‖θk−θ ∗‖+ ‖λk−λ ∗‖. (5)

This follows from the Lipschitz continuity of∇λ gρ and the
nonexpansivity ofπρ in λ (Lemma 3). Hence, from (4) and
(5), we obtain for alli ≥ 0 that

‖λi+1−λ ∗‖ ≤ √
2ραi +ρMh‖θi −θ ∗‖+ ‖λi −λ ∗‖.

For k≥ 0, by summing the above inequality overi = 0, . . . ,k,
and using the fact thatλ0 = 0, we get

‖λk+1−λ ∗‖ ≤
k

∑
i=0

(√
2ραi +ρMh‖θi −θ ∗‖

)
+ ‖λ0−λ ∗‖

≤
√

2ρ
∞

∑
i=0

√
αi +ρMh

‖θ0−θ ∗‖
1−q

+ ‖λ ∗‖.

Remark: It is worth emphasizing that the boundCλ can be
tightened whenθ ∗ is known, i.e., sinceθ0 = θ ∗, the second
term disappears.

Next, we prove that the augmented Lagrangian scheme
generates a sequence{λk} such thatλ̄k → λ ∗ as k → ∞ by
deriving a rate statement on the ergodic average sequence.

Theorem 2 (Bound on dual suboptimality): Let
Assumptions 1 – 3 hold and let{λk}k≥1 denote the
sequence generated by Algorithm 1. In addition, let
λ̄k ,

1
k∑k

i=1 λi . Then it follows that for allk≥ 1:

f ∗−gρ(λ̄k;θ ∗) = sup
λ

gρ(λ ;θ ∗)−gρ(λ̄k;θ ∗)≤ Bg

k
, (6)

whereλ ∗ ∈ argmaxg0(λ ,θ ∗), Cλ is defined in Theorem 1,
andBg is defined as follows:

Bg ,
1

2ρ ‖λ ∗‖2+Cλ

(√
2
ρ

∞

∑
k=0

√
αk+

Mh‖θ0−θ ∗‖
1−q

)
.



Proof: Note that from Lemma 1 and using the fact
that the duality gap forC (θ ∗) is 0, it follows that f ∗ =
maxλ gρ(λ ;θ ∗) for all ρ > 0. Using the Lipschitz continuity
of ∇λ gρ(λ ,θ ∗) in λ with constant 1/ρ, for i ≥ 0, we get

−gρ(λi+1;θ ∗)≤−gρ(λi ;θ ∗)−∇λ gρ(λi ;θ ∗)⊤(λi+1−λi)

+ 1
2ρ ‖λi+1−λi‖2. (7)

Under the concavity ofgρ(λ ;θ ∗) in λ , we have that

−gρ(λ ∗;θ ∗)≥−gρ(λi ;θ ∗)−∇λ gρ(λi ;θ ∗)T(λ ∗−λi).

By combining the above inequality and (7), we get

−gρ(λi+1;θ ∗)

≤−gρ(λ ∗;θ ∗)−∇λ gρ(λi ;θ ∗)T(λi+1−λ ∗)+ 1
2ρ ‖λi+1−λi‖2

=−gρ(λ ∗;θ ∗)−∇λ Lρ(xi ,λi ;θi)
T(λi+1−λ ∗)

+ δ T
i (λi+1−λ ∗)+ sT

i (λi+1−λ ∗)+ 1
2ρ ‖λi+1−λi‖2

≤−gρ(λ ∗;θ ∗)− 1
ρ (λi+1−λi)

T(λi+1−λ ∗)+ 1
2ρ ‖λi+1−λi‖2

+ ‖δi‖‖λi+1−λ ∗‖+ ‖si‖‖λi+1−λ ∗‖, (8)

where δi , ∇λ gρ(λi ;θi) − ∇λ gρ(λi ;θ ∗) and si ,

∇λ Lρ(xi ,λi ;θi) − ∇λ gρ(λi ;θi). By noting that ‖λi+1 −
λi‖2+2(λi+1−λi)

T(λ ∗−λi+1) = ‖λi −λ ∗‖2−‖λi+1−λ ∗‖2,
we can rewrite (8) as

−gρ(λi+1;θ ∗)≤−gρ(λ ∗;θ ∗)+ (‖δi‖+ ‖si‖)‖λi+1−λ ∗‖
+ 1

2ρ
(
‖λi −λ ∗‖2−‖λi+1−λ ∗‖2) . (9)

By summing (9) overi = 0, . . . ,k−1, replacinggρ(λ ∗;θ ∗)
by f ∗ = supλ gρ(λ ,θ ∗) and settingλ0 = 0, we obtain

−
k−1

∑
i=0

(
gρ(λi+1;θ ∗)− f ∗

)
+ 1

2ρ ‖λk−λ ∗‖2

≤ 1
2ρ ‖λ ∗‖2+

k−1

∑
i=0

(‖δi‖+ ‖si‖)‖λi+1−λ ∗‖. (10)

Under concavity ofgρ(λ ;θ ∗) in λ , the following holds:

−
(

gρ(λ̄k;θ ∗)− f ∗
)
≤−1

k

k−1

∑
i=0

(
gρ(λi+1;θ ∗)− f ∗

)
.

By dividing both sides of (10) byk and dropping the positive
term on the left hand side, we get

f ∗−gρ(λ̄k;θ ∗)

≤ 1
k

(
1

2ρ ‖λ ∗‖2+
k−1

∑
i=0

(‖δi‖+ ‖si‖)‖λi+1−λ ∗‖
)
.

Lemma 1 and Lemma 2 imply that‖si‖ ≤
√

2αi
ρ , and

‖δi‖ ≤ Mh‖θi − θ ∗‖, resp., for all i ≥ 0. In addition, from
Theorem 1, we have‖λi −λ ∗‖ ≤Cλ for all i ≥ 1. Then by
the summability of

√
αi , we have that

∞

∑
i=0

(‖δi‖+ ‖si‖)‖λi+1−λ ∗‖

≤ Cλ

(
Mh

∞

∑
i=0

‖θi −θ ∗‖+
√

2
ρ

∞

∑
i=0

√
αi

)
. (11)

Furthermore, substituting∑∞
i=0‖θi −θ ∗‖= ‖θ0−θ ∗‖/(1−q)

into (11) gives the desired bound and completes the proof.

Next, we derive a bound on the primalinfeasibility, where
the primal iterate sequence is computed such that Step 1 in
Algorithm 1 is satisfied. Prior to proving our main result, we
provide some supporting technical lemmas.

Lemma 4:Assume thatφ(λ ) : Rm → R is a concave
function whose supremum is finite and is attained atλ ∗

φ .
In addition, assume that∇φ is Lipschitz continuous with
constantLφ . Then, for allλ ∈R

m, we have that‖∇φ(λ )‖ ≤√
2Lφ
(
φ(λ ∗

φ )−φ(λ )
)
.

This is an immediate result of Theorem 2.1.5 in [18]. Next,
we derive a bound ondRm

+

(
y+ y′

)
for any y,y′ ≥ 0.

Lemma 5:For all y,y′ ∈R
m
+, dRm

+

(
y+y′

)
≤ dRm

+

(
y
)
+‖y′‖.

Proof: The result immediately follows from the defini-
tion dRm

+
and the non-expansivity ofΠc

Rm
+
(x) , x−ΠR

m
+
(x).

We now derive the bound on the primal infeasibility.
Theorem 3 (Bound on primal infeasibility): Let

Assumptions 1–3 hold and let{λk}k≥0 and {xk}k≥0 denote
the sequences generated by Algorithm 1. Furthermore, let
x̄k =

1
k+1∑k

i=0xi . Then, it follows that

dRm
−

(
h(x̄k,θ ∗)

)
≤ V (k),

C1√
k+1

+
C2

k+1
, (12)

where C1 :=

√
2Bg
ρ +

(
Cλ
ρ

)2
, and C2 :=

√
2
ρ ∑∞

i=0
√

αi +

(Lh+Mh)‖θ0−θ∗‖
1−q .

Proof: Let ui := ∇λ Lρ(xi ,λi ;θi) for all i ≥ 0. Note
that computing∇λ Lρ using (2), we getui = h(xi ;θi) +

ΠR
m
+

(
− λi

ρ −h(xi ;θi)
)

; hence, it trivially follows that

h j(xi ,θi)≤ [ui ] j , for j = 1, . . . ,m. (13)

Under Assumption 1(iv), we have that
∣∣h j(xi ,θi)−h j(xi ,θ ∗)

∣∣≤ L j
h‖θi −θ ∗‖.

Combining this with (13), we obtain

h j(xi ,θ ∗)≤ [ui ] j +L j
h‖θi −θ ∗‖. (14)

By summing (14) fromi = 0 to i = k, it follows that

k

∑
i=0

h j(xi ,θ ∗)≤
k

∑
i=0

[ui ] j +
k

∑
i=0

L j
h‖θi −θ ∗‖. (15)

On the other hand, convexity ofh j(x,θ ∗) in x implies that

h j(x̄k,θ ∗)≤ 1
k+1

k

∑
i=0

h j(xi ,θ ∗);

hence, for all j = 1, . . . ,m, we have from (15),

h j(x̄k,θ ∗)≤ 1
k+1

(
k

∑
i=0

[ui] j +
k

∑
i=0

L j
h‖θi −θ ∗‖

)
. (16)



Hence,Lh , max{L j
h : j = 1, . . . ,m}, and (16) imply that

dRm
−

(
h(x̄k,θ ∗)

)
≤ 1

k+1

(∥∥∥∥∥
k

∑
i=0

ui

∥∥∥∥∥+Lh

k

∑
i=0

‖θi −θ ∗‖
)

≤ 1
k+1

(
k

∑
i=0

‖ui‖+Lh

k

∑
i=0

‖θi −θ ∗‖
)
. (17)

Recall that from Lemma 1 (iii), fori = 0, . . . ,k,

∥∥∥∇λ Lρ(xi ,λi ;θi)−∇λ gρ(λi ;θi)
∥∥∥≤

√
2αi

ρ
;

therefore, we obtain that‖ui‖ = ‖∇λ Lρ(xi ,λi ;θi)‖ ≤
‖∇λ gρ(λi ;θi)‖ +

√
2αi/ρ. In addition, since

‖∇λ gρ(λi ;θi)‖ ≤ ‖∇λ gρ(λi ;θ ∗)‖ + Mh‖θi − θ ∗‖, we
get the following bound:

‖ui‖ ≤ ‖∇λ gρ(λi ;θ ∗)‖+
√

2αi/ρ +Mh,θ‖θi −θ ∗‖.

On the other hand, by Lemma 4, we have

‖∇λ gρ(λi ;θ ∗)‖ ≤
√

2
ρ
(

f ∗−gρ(λi ;θ ∗)
)
.

Combining this with the previous inequality leads to

‖ui‖ ≤
√

2
ρ

(
f ∗−gρ(λi ;θ ∗)

)
+

√
2αi

ρ
+Mh‖θi −θ ∗‖.

By substituting this bound into (17), we get that

dRm
−

(
h(x̄k,θ ∗)

)
≤ 1

k+1

k

∑
i=0

√
2
ρ

(
f ∗−gρ(λi ;θ ∗)

)

+
1

k+1

(
k

∑
i=0

√
2αi

ρ
+(Lh+Mh)

k

∑
i=0

‖θi −θ ∗‖
)

≤

√√√√ 2
ρ

(
f ∗− 1

k+1

k

∑
i=0

gρ(λi ;θ ∗)

)

+
1

k+1

(
k

∑
i=0

√
2αi

ρ
+(Lh+Mh)

k

∑
i=0

‖θi −θ ∗‖
)
, (18)

where the last inequality follows from concavity of square-
root function

√·. The first term in (18) can be bounded using
(10), which states that

f ∗− 1
k+1

k

∑
i=0

gρ(λi ;θ ∗)

≤ 1
k+1

(
Bg+gρ(λ0;θ ∗)−gρ(λk+1;θ ∗)

)
. (19)

Note thatgρ(λ0;θ ∗)− f ∗ ≤ 0, and using Lipschitz continuity
of ∇gρ , we have f ∗ − gρ(λk+1;θ ∗) ≤ 1

2ρ ‖λk+1 − λ ∗‖2 ≤
1

2ρ C2
λ . The remaining terms in (18) can also be bounded:

1
k+1

(
k

∑
i=0

√
2αi

ρ
+(Lh+Mh)

k

∑
i=0

‖θi −θ ∗‖
)

≤

1
k+1

[
∞

∑
i=0

√
2αi

ρ
+

(Lh+Mh)‖θ0−θ ∗‖
1−q

]
. (20)

The result follows by incorporating these bounds into (18).

We now proceed to derive and upper bounds onf (x̄k,θ ∗)−
f ∗. In contrast with standard unconstrained convex optimiza-
tion, f (x̄k,θ ∗) could be less thanf ∗, as a consequence of
infeasibility of x̄k.

Theorem 4 (bound on primal suboptimality): Let As-
sumption 1–3 hold and let{xk} and{λk} be the sequences
generated by Algorithm 1. In addition, let ¯xk =

1
k+1 ∑k

i=0xk.
Then the following holds:

f (x̄k;θ ∗)− f ∗ ≥−ρ
2

V
2(k)−‖λ ∗‖V (k) (21)

f (x̄k;θ ∗)− f ∗ ≤ U
k
, (22)

for any λ ∗ ∈ argmaxg0(λ ,θ ∗), where V (k) is defined

in Theorem 3,U := ρ
2 L2

h
‖θ0−θ∗‖2

1−q2
ℓ

+
(
C̄Lh+2L f

) ‖θ0−θ∗‖
1−qℓ

+

∑∞
i=0 αi .

Proof: Proof of the lower bound. Since
supλ gρ(λ ;θ ∗) = minx∈X Lρ(x,λ ∗;θ ∗) = f ∗, we have
that for all k≥ 0,

f ∗ ≤ Lρ(x̄k,λ ∗;θ ∗)

= f (x̄k;θ ∗)+
ρ
2

d2
R

m
−

(
h(x̄k;θ ∗)+

λ ∗

ρ

)
− ‖λ ∗‖2

2ρ

≤ f (x̄k;θ ∗)+
ρ
2

(
dRm

− (h(x̄k;θ ∗))+
‖λ ∗‖

ρ

)2

− ‖λ ∗‖2

2ρ
,

where the first equality is a consequence of (2) while the
second inequality follows from Lemma 5. By expanding the
second term above inequality, we obtain

f ∗ ≤ f (x̄k;θ ∗)+ ρ
2 d2

Rm
−
(h(x̄k;θ ∗))+dRm

− (h(x̄k;θ ∗))‖λ ∗‖

≤ f (x̄k;θ ∗)+
ρ
2

V
2(k)+ ‖λ ∗‖V (k),

where the last inequality follows from Theorem 3.
Proof of the upper bound. Let x∗ be an optimal solution
to C (θ ∗). Step 1 of Algorithm 1 implies that for alli ≥ 0

Lρ(xi ,λi ;θi)≤ Lρ(x
∗,λi ;θi)+αi .

Hence, by the definition ofLρ , it follows that

f (xi ;θi)+
ρ
2

d2
R

m
−

(
h(xi ;θi)+

λi

ρ

)
− ‖λi‖2

2ρ
≤

f (x∗;θi)+
ρ
2

d2
R

m
−

(
h(x∗;θi)+

λi

ρ

)
− ‖λi‖2

2ρ
+αi,

which leads to

f (xi ;θi)− f (x∗;θi)≤ (23)

ρ
2 d2

Rm
−

(
h(x∗;θi)+

λi

ρ

)
− ρ

2d2
Rm
−

(
h(xi;θi)+

λi

ρ

)
+αi .

Step 2 of Algorithm 1 implies that

dRm
−

(
h(xi ;θi)+

λi

ρ

)
=

‖λi+1‖
ρ

. (24)



In addition, by using Lemma 5, it follows that

dRm
−

(
h(x∗;θi)+

λi

ρ

)
≤ dRm

− (h(x
∗;θi))+

‖λi‖
ρ

. (25)

Substituting (24) and (25) in (23), we obtain for alli ≥ 0

f (xi ;θi)− f (x∗;θi)≤
ρ
2

(
dRm

− (h(x
∗;θi))+

‖λi‖
ρ

)2

− 1
2ρ

‖λi+1‖2+αi =
ρ
2

d2
Rm
−
(h(x∗;θi))+dRm

− (h(x
∗;θi))‖λi‖

+
1

2ρ

(
‖λi‖2−‖λi+1‖2

)
+αi. (26)

From Lipschitz continuity ofh j in θ for j = 1, . . . ,m,

h j(x
∗;θi)≤ h j(x

∗;θ ∗)+Lh‖θi −θ ∗‖;

=⇒ dRm
− (h(x

∗;θi))≤ dRm
− (h(x

∗;θ ∗))+Lh‖θi −θ ∗‖. (27)

Since h j(x∗;θ ∗) ≤ 0 for j = 1, . . . ,m, it follows that
dRm

−(h(x
∗;θ ∗)) = 0, and inequality (27) becomes

dRm
− (h(x

∗;θi))≤ Lh‖θi −θ ∗‖.
By substituting (27) into (26), we get for alli ≥ 0

f (xi ;θi)− f (x∗;θi)≤ ρ
2 L2

h‖θi −θ ∗‖2+C̄Lh‖θi −θ ∗‖
+ 1

2ρ
(
‖λi‖2−‖λi+1‖2)+αi,

where the last inequality follows from‖λi − λ ∗‖ ≤ Cλ
(Theorem 1), i.e.,‖λi‖ ≤ C̄ :=Cλ +‖λ ∗‖ for all i ≥ 0. Next,
from the Lipschitz continuity off in θ , it follows that

f (xi ;θi)− f (x∗;θi)≥ f (xi ;θ ∗)− f (x∗;θ ∗)−2L f‖θi −θ ∗‖.
Combining two above inequalities results in the following:

f (xi ;θ ∗)− f ∗ ≤ ρ
2 L2

h‖θi −θ ∗‖2+
(
C̄Lh+2L f

)
‖θi −θ ∗‖

1
2ρ

(
‖λi‖2−‖λi+1‖2

)
+αi .

Summing the above inequality fori = 0 to k, we get

k

∑
i=0

(
f (xi ;θ ∗)− f ∗

)
≤ ρ

2 L2
h

k

∑
i=0

‖θi −θ ∗‖2+
k

∑
i=1

αi

+
(
C̄Lh+2L f

) k

∑
i=0

‖θi −θ ∗‖+ 1
2ρ

k

∑
i=0

(
‖λi‖2−‖λi+1‖2)

≤ ρ
2L2

h
‖θ0−θ ∗‖2

1−q2 +
(
C̄Lh+2L f

) ‖θ0−θ ∗‖
1−q

+
∞

∑
i=0

αi .

Since f (x;θ ) is convex inx, dividing both sides of the above
inequality byk gives the desired result.

IV. CONCLUSION

In this paper, we consider the setting of an optimization
problem complicated by misspecification both in the function
and in the constraints. The parameter misspecification may
be resolved through a learning problem. Suppose we have
access to a learning data set, collected a priori. One avenue
for contending with such a problem is through an inherently
sequential approach that solves the learning problem and
utilizes this solution in subsequently solving the computa-
tional problem. Unfortunately, unless accurate solutionsof

the learning problem are available in a finite number of
iterations, sequential approaches can only provide approx-
imate solutions. Instead, we focus on a simultaneous ap-
proach that combines learning and computation by adopting
inexact augmented Lagrangian (AL) scheme with constant
penalty parameter. In this regard, we made the following
contributions: (i) Derivation of the convergence rate for dual
optimality, primal infeasiblity and primal suboptimality; (ii)
Quantification of the effect of learning on the rate.

Our future work lies in deriving the overall iteration com-
plexity analysis, which incorporates the number of iterations
required to solve the subproblems arising in the AL scheme
and quantify the resulting impact of learning.

REFERENCES

[1] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski,Robust optimization,
ser. Princeton Series in Applied Mathematics. Princeton University
Press, Princeton, NJ, 2009.

[2] A. Shapiro, D. Dentcheva, and A. Ruszczyński,Lectures on stochastic
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