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On the rate analysis of inexact augmented Lagrangian scheraefor
convex optimization problems with misspecified constrairg

H. Ahmadi N. S. Aybat U. V. Shanbhag

Abstract— We consider a misspecified optimization problem efficiency parameters associated with machines on a supply
that requires minimizing of a convex function f(x,6%) in x Jine, and demand parameters associated with a supply chain.
over a constraint set represented byh(x;6) < 0 where 8" is A natyral approach in this case is to first estim@tewith

an unknown (or misspecified) vector of parameters. Suppose | . .
6" is learnt by a distinct process that generates a sequence high accuracy and then to solve the parametrized problem.

of estimators 6, each of which is an increasingly accurate Y€t, in many instances, thisequentialapproach cannot be
approximation of 6*. We develop a first-order augmented adopted for several reasons: (i) observations unavailable

Lagrangian scheme for computing an optimal solutionx" while  priori and appear in a streaming fashion; (ii) the learning

simultaneously learning 6*. problem can be large, precluding a highly accurate a priori
. INTRODUCTION resolution; (iii) unless the learning problem can be solved

exactlyin finite time, any sequential scheme may provide

approximate solutions, at best.

Accordingly, we consider the development of schemes that

27(0%):= argmin f(x8%), (¢(6*)) generate sequencgsy},{ 6} such that
XEXNA(0*)

Consider an optimization problem im-dimensional space
defined as follows:

o o 6—0%|| =0, dy=p- ®
where 8* € RY denotes the parametrization of the objective | | 2100 8Skoe,

and constraints. While traditionally, optimization restm where8* is the unique solution of4) and for a given closed
has considered settings whefé is available a priori, two convex set2’, dy-(X) = mins. - |[x—s|| denotes the distance
related problems of interest have considered regimes whdtction to 2". This framework originates from prior work
either the parameter is unavailablelust optimization) or on stochastic optimization/variational inequality preinis [3]
when it is uncertaingtochasticoptimization:) and stochastic Nash games [4]. In recent work, the rate
Robust approaches [1].For instance, whe®* is unavail- statements derived in [3] are refined to the deterministic
able, but one has access to an associated uncertainty gime [5]. In [6], misspecification in the constraints is
7, then in robust optimization, the worst-case value of thaddressed in a convex regime via variational inequality

objective is minimized: approaches; in sharp contrast, in this paper, we develop a
. fix 0 b L misspecified analog of the augmented Lagrangian scheme
min maxf(x; 8). (Robust Optimization) - ¢, misspecified convex problems in which both the objective

and the constraints are misspecified. Augmented Lagrangian
schemes are rooted in the seminal papers by Hestenes [7] and
B?owell [8], and their relation to proximal-point methodssva
established by Rockafellar [9], [10]. Recently, there hasrb
a renewed examination of such techniques in convex regimes,
with an emphasis on deriving convergence rates [11]-[13].
min E[f(x; 0)]. (Stochastic Optimization)  In this paper, we develop an analog of the traditional
xeX augmented Lagrangian scheme in which the subproblems are
In this paper, we consider a different approach in which thgg|yed with increasing exactness. Our contributions elu
parameter vectaf has a nominal or true valu# obtainable rate statements for the dual suboptimality, the primalénfe

Stochastic approaches [2].An alternative approach con-
siders an uncertain regime whe@ : Q — RY is an
d—dimensional random vector defined on a suitable pro
ability space. The resulting stochastic optimization sche
consider the minimization of an expectation:

by solving a suitably defined learning problem: sibility, and the primal suboptimality in this misspecified
min ¢(8). (&) regime. Throughout, our focus will be_ on the problem
6c0 (€(6%)) when 7 (6%) = {x: h(x; 8%) < 0}, i.e.,

Instances of such problems routinely arise whéh is min  f(x 6)

idiosyncratic to the problem and may be learnt by the aggre- X ' (€(0))

gation of data; examples include the following: the leagnin subjectto h(x;0) <0, xe X,

of covariance matrices associated with a collection ofkstpc
¢ where R'XO = RU{+»}, h:R"xO - RM™and b e
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duality gap. The remainder of the paper comprises of three Assumption 2:There exists a learning scheme that gener-
sections. We provide preliminaries in Sectioh Il, the maimtes a sequencgd} such thatf — 6* at a linear rate as

rate statements in Sectiénllll, and conclude in Sedfidn IV.

1. PRELIMINARIES
The problem#(0) is equivalent to

min{ f(x;0) :h(x;8) +z=0, &N}

Let A € R™ denote the vector dual variables correspondin
to the equality constraints ibl(1). For any given- 0, define
the augmented Lagrangian function fior (£,(x,A; 0), such
that dom%, =X x R™x © and

xeX, zeRT}.

Zp(x,A;0) = min

ZGR
Through a rearrangement of terms, it can be shown that

Zp(x,A;0)=f(x,0)+5 mith(x-G)JrszAHZ_M
p\ XA, ) ZZGRT ) ) 2p

2
PE @

: : |
— £(x,6)+ 5dn (4 +h(x6)) - s

whered - (x) 2 ming. »- [x— s, andd%-(x) £ (d-(x))?. For
p =0, let %(x,A;0) denote the Lagrangian function:

. T .
fo(x’)\;e)é{f(x,e)+)\ h(x; 0),
_Oo’
Whenp > 0, the dual problem o%(0) is defined as
{ap2:0) 2 jnf Zoixnie)}.

Throughout, we assume the following:

Assumption 1:

(i) The functionsf(x, 8) andh;(x,8) are convex ik € X
forall 0cO fori=1,....mandX CR" and©® are
convex compact sets.

(i) The function f(x; 8) is Lipschitz continuous i@ over
© for all x € X with constantL¢; i.e. for all x € X,
[[f(x;61) — f(x;62)| <L¢||61— 6] for all 61,6, € O.
h(x;0) is an affine map inx for every 6 € O, i.e,,
h(x;0) = A(B)x+ b(0) for some A(B) € R™" and
b(@) € R™ SupposeA(6) and b(0) are Lipschitz
continuous inf. Hence h(x; 0) is Lipschitz continuous
in 6 with constant_;, uniformly for all x € X. Clearly,
h(B(0,1);0) C B(b(08),0max(A(8))) for all 6 € ©,
whereB(y,r) :={y: |ly—V] <r}. Hence, there is a
constantoy, s.t.h(B(0,1); 8) C 0,B(0,1) for all 6 € ©,
sincedmax(A(6)) is continuous i and®© is compact.
X*(A;8) is pseudo-Lipschitz in 6 uniformly
in A with constant kx, where X*(A;0)
argmine 2 %o0(x,A;0), ie., for any 6,6, € O,
X*(A;61) € X*(A;62)+ kxB(0,1) for all A > 0.

if A e RT
otherwise.

max

D
ma (Dp)

(iii)

(iv)

Rather than focusing on the nature of the algorithni(6) €

employed for resolving the learning problem, instead w
impose a requirement that the adopted scheme produce

sequence that converges to the optimal solution at a no#-

asymptotic linear rate.

n [ £066)+AT(h(x8)+2)+ §Ih(x; 6) +2]?] .

k— oo, i.e., there exists a constagt € (0,1) such that for
all k>0 and 6 € ©, one has|6— 6*|| < g¥[|6o— 6. In
addition, at iteratiork of the optimization problen¥’, only
64,...,6¢ are revealed.

Lemmall, pertaining to various properties of the gradient
of the dual functior], g,, will be used in our analysis. The
groof of Lemmd]l can be found in [10] and is omitted here.

Lemma 1:Suppose Assumptidd 1 holds.

(i) For anyp >0 and® € O, the dual functiorg,(A;0)
is everywherefinite, continuously differentiable con-
cave function overR™; more precisely,gp(A;0) =
maxycn{go(W; ) — 2 |[w— A2}, i.e.,go(-.6) is the
Moreau regularization afy(-, 0) for all 6 € ©. There-
fore, 0,0p(A;0) is Lipschitz continuous i with
constant;.

(i) For any givenA € RT and 6 € ©, [,g, can be
computed agl,gp(A;0) =0, Zp(X*(A),A;0), where
X" (A) € argmingey Zp(x,A; 0).

(i) Given A e RT and 6 € ©, supposex(A) is aninexact
solution to miRex -Zp(X,A;0) with accuracya, i.e.,
X(A) € X satisfies?,(X(A),A;0) <gp(A;0)+a, then

103-Zp(%(A),A;0) — 0190 (A; 0)|2 < 201 /p.
Next, we examine the continuity df,g,(A;0) in 8 € ©.
Lemma 2 I(ipschitz continuity of g, in 6 € ©):
Suppose Assumptidn 1 holds. Then, we havelhaj,(A; 0)
is Lipschitz continuous irB over ® uniformly in A € R™
with constantky, + Kx O,.

Proof: Due to limited space, we omit the proof. For
details, see Proposition 2.4 in the extended version this
paper [14]. |
Remark: We now comment on the conditions under which
X*(A;0) is pseudo-Lipschitz in6. When f(x;0) is a
differentiableconvex function inx for every 8, andh(x; 6)
is an affine function inx for every 8, then X*(A;0) is
the solution set of MIX,0x.%(.,A;0)) when A € RT
and 6 € ©. We consider two sets of problem classes in
providing conditions under which the associated solution
sets admit pseudo-Lipschitzian propertié3: Parametrized
quadratic programmingif f(x;0) is a quadratic function
for every 8 € © and X is a polyhedral set, the mapping
of the variational inequality problem is affine; such a
problem is generally referred to as an affine variational
inequality problem and denoted by AW, ,M(6),q(8))
where M(8)x + q(8) = Oxf(x;0) + A(8)TA while its
solution set is denoted by SOX,M(0),q(0)), int(K™)
denotes the interior of the positive dual cone Kf and
K* £ {y:y'z>0,vz€ K}. Then under Theorem 7.4 [15],
if M(0) is positive semidefinite oveX for all 6 € ©, and if
int ([SOL(X,M(6),0)]"), then there exists scalaes

@andk such that if ma>{||M( (e)H,Hq(é)—q(e)H} <
S a

then )i*()\,e) C X(A;0) +
k (IM(8) ~M(6)]| + a(8) ~a(6)] ) B(0,1). ~ Under a



compactness assumption @, this “local” Lipschitzian Theorem 1 Boundedness of {A¢}): Let Assumptiong]1—
result can be globalized.2) Parametrized convex [3hold, andA* be an arbitrary solution to the Lagrangian dual
programming: More generally, supposef(x;68) is a of €(8*%), i.e.,A* € argmax go(A;6*). Then for allk > 1,
nonlinear convex function andB(H;e,S) denotes an |[Ax—A*|| <C,, whereC, is defined as follows:
£—neighborhood ofH containing all continuous functions ® 60— 67|

G that are withine distance toH when restricted to the set C 220 Vai+pMpy——— + | A7 3

S, i.e i= 1_q
o Proof: We begin by deriving a bound ofiAc 1 —

s _
IG=Hls = suplGly) —HY)Il < &. (A )| by utilizing the definition ofAg,1 from Step 2

Then we define the associated(X| Ox.Z(.,A;0)) assemi- in Algorithm 1

stableif there exist two positive scalasande such that for [ A1 — T (Ak; 6) |

every 0x.Z(.,A;0) € B(0kZ(.,A;0);€,X), we have that = || A+ PO Zp (%, Ak; 6) — Ak — PO Do (A 6 ||
X*(7;8) CX*(A;8) = P Or Lo (% Ai 6) — 02 9o (Ai; B | < v/ 2pat,  (4)
+csupl|0xZ(x,A;0) — 0k Z(x,A;0)B(0,1). where the last inequality follows from Lemrha 1 (iii). Since

xeX Op(+;0%) is the Moreau regularization ofjp(-;6%), it is

In fact, a necessary and sufficient condition for semi-§tgbi  true that A* € argmax gp(A,6*) for all p > 0. Hence,
of VI(X,F) is the following [16, Prop. 5.5.5]: There exists ], g,(A*;6*) = 0 and A* = m,(A*,6*). From this obser-

two positive scalarg ande, such that for allq € R", vation, we obtain the bound below:
lall < & = SOL(X,q+F)C SOL(X,F)+B(O.clal). | (A, ) —A*|| = | (Ak, B) — (A ¥, 87

We conclude this section by presenting the misspecified < || T (Ak, 6) — T (Ak, 87) || + || T (Ak, 87) — T (A, 07) ||
variant of the inexact augmented Lagrangian scheme with:p”DAgp(,\k,gk)_ 02 0o (Ak, 07)]|
constant penalty > 0. Notably, if 6 = 6* for all k> 0, N x gr
this reduces to the traditional version considered in [10]. 17 (A. 67) . H(A",6 )U
< PMn|6c— 87| + [|A— A 7. ®)

This follows from the Lipschitz continuity ofl, g, and the

Algorithm 1 Misspecified inexact aug. Lag. scheme
GivenAg=0€R™, andp > 0, let {ak},{6k} be given sequences.

Then for allk > 0 nonexpansivity ofi, in A (Lemma3B). Hence, from[14) and
(1) find ¢ such thatZp (xc Ac; 6) < dp (A B) + i (), we obtain for alli > 0 that
e Aisr = A°1 < /25 -+ oMy — 07| + A~ A°].

] ] Fork > 0, by summing the above inequality ovet O, ... Kk,
Assumption 3:{ay} is chosen such thaty’ o /Gy < . and using the fact thato = 0, we get

Under this assumption, we shofly f* —gp(Ax) < 0(1/k) k

for Ax2 15K A, (ii) dpm(h(X; 8%)) < €(1/vk), and (i) [Akra— A7 < Z}(\/Zpai +PM|| 6 — G*II) +[[A0— A7

—0(1/vVk) < f(X;0%) — * < 0(1/K) for % £ 2r 5K o%. =

After proving these bounds independently, we became aware < \/% Z}\/EH_th

of related recent work [13], where Algorithih 1 is considered i=

with ax = a > 0 for all k > 0, assumingerfect information ]

i.e., 6= 6" for all k> 0. In [13], it is shown tha(i) f*— Remark: It is worth emphasizing that the bou@j can be

9o(A) < O(1/K) +a, (i) dgm(h(Xc; 6%)) < 0(1/vk), and tighten_ed wherf* is known, i.e., sincédy = 6*, the second

(i) —O(1/VK) < (X 0) — f* < &(1/K) + a. Therefore, t€rm disappears. ,

according to [13],a should be fixed as a small constant Next, we prove that the augmented Lagrangian scheme

in accordance with the desired accuracy. Siacés fixed 9enerates a sequen¢ay} such thatly — A* ask — o by

in [13], such avenues can, at best, provide approxima?éenvmg a rate statement on the er_god|_c average sequence.

solutions. In contrast, our method may start with lage ~ '€orem 2 Bound on dual suboptimality): Let

and gradually decrease it, ensuringth numerical stability Assumptions[It {13 hold and_ lefAti1 denot.e_ the

and asymptotic convergence to optimality. sequence generated by Algorithid 1. In addition, let

o 1ok - :
Ill. RATE OF CONVERGENCE ANALYSIS Ak = g 2i=1Ai. Then it follows that for allk > 1:

We begin by showing that dual variables stay bounded f*_gp(Xk;e*) = sup gp(A;G*)—gp(Xk;e*) < @7 (6)

by using a supporting Lemma whose proof follows from A

Lemmall(i) and the properties of proximal maps (cf. [17]).where A* € argmaxgo(A, 6%), C, is defined in Theorerl 1,
Lemma 3:Let  7(A;6) = argmaycmJo(W;6) — andBy is defined as follows:

%Hw—/\”2 for 6 € ©, i.e., the proximal map ofj(-;0).

Thenm,(A;6) = A +p0,0,(A;0), and 1y, is nonexpansive By 2 L|IA*[2+C, (\/E i\/a_‘d' Mh||60—6*|>
z :
K=

160 — 6"

— +A7.
e I

in A for all 8 € ©. 2p 1-q



Proof: Note that from Lemmd]l and using the factFurthermore, substituting;” |6 — 6*|| = ||60— 6*||/(1—Qq)

that the duality gap fofs(6*) is O, it follows that f* = into (I1) gives the desired bound and completes the proof.
max, gp(A; 6%) for all p > 0. Using the Lipschitz continuity [ |
of 0ygp(A,6%) in A with constant ¥p, fori >0, we get Next, we derive a bound on the primafeasibility, where

. . . the primal iterate sequence is computed such that Step 1 in
—0p(4i+1:67) < —Gp(Ai;67) —DhGp(A; ) " (Aia— A1) AlgoprithmEI] is satisfigd. Prior to prO\I/Ding our main result,pwe
+ 55 A= AilJ% (7)  provide some supporting technical lemmas.

Lemma 4:Assume thatg(A) : R™ — R is a concave
function whose supremum is finite and is attainedx\gt
—0p(A%;8%) > —gp(Ai; 8°) — 0rgp(Ai;0F) T (A" = Ap). In addition, assume thdflg is Lipschitz continuous with
constant_y. Then, for allA € R™, we have thaf|0¢(A )| <

V/2Lo(9(Ag) — 9(1).

Under the concavity ofjp(A;68%) in A, we have that

By combining the above inequality and (7), we get

—09p(Ai41;67) This is an immediate result of Theorem 2.1.5 in [18]. Next,
—gp(A%0%) = Tx0p(Ai; 0%) T (Aiy1— A%) + %HAiH—AiHZ we derive a bound odgm (y+Y') for anyy,y > 0.
= go(A% 07— Oy L% A 8)T Ayt — A7) Lemma 5:For ally,y’ € RT, dg (y+Y) <dgm(y) + Iyl
. . Proof: The result immediately follows from the defini-
+3 A1 = A +8 A1 =A%) + & A — Al , - A
P+ i+1 2p 1M1 A tion dgm and the non-expansivity difm (x) = X — Mgn(X).
<—0p(A"0") = 2(Aita—A) (A1 =A%)+ 55 [Aiva = A? _ o :
8= A s A — A, 8) We now derive the bound on the primal infeasibility.

Theorem 3 Bound on primal infeasibility): Let
where & £ [0,0p(A;;68) — 0)0p(Ai;60*) and s £ Assumptiong1lE3 hold and It }k=0 and {x}«=o denote
0)Zp(Xi,Ai;8) — 0r0p(Ai;8). By noting that ||Ai.1 — the sequences generated by Algorithim 1. Furthermore, let
MlP+2(Ai 1 =A)T (A" = A1) = A=A 2= A =A%) X = 55K 0% Then, it follows that
we can rewrite[(8) as

> Nn* N Cl C2
~0p(Xi11:07) < ~Gp(A*16%) + (181 + IS I1) A1 — A" den (%0 0)) <702 S 75 (12
+ 35 (1A = A2 = A= A%)%) . (9)
h . 2By Cy 2 d . 2 <o -
By summing [) oveii = 0,....k—1, replacingg,(A*;0*) Where Cy i= /5% + (7) , and G = \/%Ei:ox/E‘F
by f* =sup, gp(A,0*%) and settingho = 0, we obtain (M) G067
— Proof: Let u; == 0,.%,(x,A; 6) for all i > 0. Note
—_Z) (gp()‘Hl; 6") — f*) + 95 A= A% that computing[,.%, using [2), we getu; = h(x;8) +
= kel Mgm (—— —h(x; 9)); hence, it trivially follows that
< AIAf)2+ S+ s Aiza—A%]. (20
25 1Al iZo(” [+1sl) [Aira =A% (10) hi(.8) < [, for j=1.. 13)

Under concavity ofgp(A;6%) in A, the following holds: Under AssumptiofilL(iv), we have that

~(9p(A0") — 1) < =3 Za(g” A0 = 1), [hj (%, 6) —h;(x,6%)] < L} |6 —67]].
By dividing both sides of (110) b and dropping the positive Combining this with [(1B), we obtain
term on the left hand side, we get hj(xi,8%) < [u]j +L}||6 — 67 (14)

F =g hao) By summing [(I%) from =0 toi =k, it follows that
1 1 5 k—1
< gl Gl +HlIsiD A =A%)

Lemmal[l and Lemmd&l2 imply thafs|| < /2%, and

4 /- On the other hand, convexity dnfj(x, 6*) in x implies that
& < My||6 — 67|, resp., for alli > 0. In addition, from

Theoren{dL, we havéA; —A*|| <C, for all i > 1. Then by . 1 N

the summability of,/a;, we have that hj (%, 0") < mgohj (xi,0%);
zo(l\dH + sl A=A hence, for allj = 1,...,m, we have from[(15),
=

- CA<Mh_i||9.—6*|+\/%i\/E>. a1 hJ-(x‘k,e*)gk—(gou. +20L e - e*|) (16)



_ 1 K .
dhn (%0 6)) < 7 { |3,
tion, f(X¢, 08*) could be less tharf*, as a consequence of

Hence, L, £ max{Lg]: j=21,...,m}, and [I6) imply that  The result follows by incorporating these bounds irifdl (18).
YL S (16— 67 We now proceed to derive and upper boundsféxy, 8*) —
Z) f*. In contrast with standard unconstrained convex optimiza-
k
< &1 <20|ui|+|_h ZJ|6.—6*|>. (17) infeasibility of .
i= i= Theorem 4 lfound on primal suboptimality): Let As-

Recall that from Lemma@l1 (iii), fof =0, ... .k, sumption1EB hold and lefx} and {A} be the sequences
generated by Algorithrl 1. In addition, let = WllZik:oXk-
2ai; Then the following holds:
|02 (6,205 8) ~ Drgo(Ais8) | < o g
f(% 07—t > -Lr20— 2 v @)
therefore, we obtain that|ui|| = [|0).%(%,Ai;8)| < U2
10,00 (Ai;8)| + +/2ai/p. In addition, since f(x;0")— "< o (22)
[029p(A;8)[ < [I0x0p(Ai;67)[| + Mn||6 — 67, we
get the following bound: for any A* € argmaxgo(A, 6*), where 7' (k) is defined
P 2H90 6 H 16-67)] 0 [
Il < 102G 0]+ V2 B+ Mgl 07, 1 TheoremEBY = 2 +(Clar2b) B
i=0™1-
On the other hand, by Lemna 4, we have Proof:  Proof of the lower bound. Since
. * P sSup, 0p(A;0%) = minex Zp(x,A%;0%) = f*, we have
1520 (A %)) < /2 (F* = 0o (Ai:6%)). that for allk > 0,

Combining this with the previous inequality leads to £ < .2 (%A% 6%)

2 2ai ey P2 ATy AP
. 2= i g* * = (X0 —dgm ( h(X¢; 6" -
|u.|g\/p(f Gp(4:67)) +1/ =5+ Mall &~ 07 (7:07) + 5 n (h(R; %)+ 7) — 15
* 2 %12
By substituting this bound int 7), we get that < f(x.' 0" P m(h(X.: O* M _M
y 9 4 (17), we g _f(Xk,G)—l—Z(dR(h(xk,G))-i- 5 2
k
dgm (h()?k,e*) < 1 Z)\/E f* —gp(/\i;e*)) where the first equality is a consequence[df (2) while the
k+1, second inequality follows from Lemnia 5. By expanding the
second term above inequality, we obtain
k+1 go + (Ln+ M) gne o T
f* < (% 87) + 5dim (h(X 67)) + dem (h(X; 67)) |47
S . N* p 2 *
2 < f(x; 0%+ 7K+ ||[A*| 7 (K)
< _ *

where the last inequality follows from Theorémh 3.
1 K [2a k i Proof of the upper bound. Let x* be an optimal solution
+ K+ 1 Z) o + (Lh+Mn) _Z)”G' —07), (18) ¢ ¢ (0*). Step 1 of Algorithn1lL implies that for all> 0
1= 1=
where the last inequality follows from concavity of square- Zp(%,Ai;8) < Zp(X, A 8) + ai.

root function,/-. The first term in[(IB) can be bounded usin

(), which states that gHence, by the definition ofz), it follows that

. TR f(:6) + 22 <h<>q;e.>+ﬁ) i 1
k12,0 2 " )20
1 o P (g MY AP
Sk 1(Bg+9p(/\o )= 0o(Akr1;6%)) . (19) (X' 8) + S dim (h(x 16)+ p) 2 +ai,
Note thatg, (Ao; 6*) — f* <0, and using Lipschitz continuity which leads to
f Ogp, have f* — gp(Aks1;0%) < 22 || Adkr — A*||2 <
of 0Jgp, we have 9o (Ak41:67) < 5511 Aksa €< F(x:8) — f(x":8) < 23)

%C)Z\. The remaining terms i (18) can also be bounded:

Aj Aj
02 <h<x*;e.>+5') B2, <h<>q;9.>+5') .

K |2ai
+ (Lh+Mp) 60"
k+1 <Z§ (Ln+Mn Z;” | Step 2 of Algorithn{ll implies that

Oli Lh+|V|h ||90 9*”]

(20) dgm (h(xi; 6)+ %) _ il (24)

k P




In addition, by using Lemmél 5, it follows that
A A\
dgrm <h(x*; &)+ 5') < dgm (h(X'; 6)) + |TIH'

Substituting [[2¥) and (25) i1 (23), we obtain for al 0

(25)

N 2
f(xi;8) ~ fx;6) < 2 (dRm (h(x*;e.>>+@)
— 5 Al o= 5 i (03 8) + dam (B ) 4

1
25 (NP = 12i:a]) + i (26)

the learning problem are available in a finite number of
iterations, sequential approaches can only provide approx
imate solutions. Instead, we focus on a simultaneous ap-
proach that combines learning and computation by adopting
inexact augmented Lagrangian (AL) scheme with constant
penalty parameter. In this regard, we made the following
contributions: (i) Derivation of the convergence rate faab
optimality, primal infeasiblity and primal suboptimaljt(ii)
Quantification of the effect of learning on the rate.

Our future work lies in deriving the overall iteration com-
plexity analysis, which incorporates the number of itenagi
required to solve the subproblems arising in the AL scheme

From Lipschitz continuity oh;j in 6 for j=1,...,m,
hj(x*;6) < hj(x*;8") +Ln 6 — 67;

= drm (h(X";8)) < dgm (N(X";67)) +Lnl|6 — 67| (27) [
Since hj(x*;8*) < 0 for j=1,....m it follows that
dgm (h(x*; 6* )) =0, and inequality[{27) becomes 2]

dgm (N(X"; 6)) < Ln|[6 — 67|.
By substituting [(2I7) into[(26), we get for all> 0
f(x;6)— f(x;6) < 5LE[8 — 67||>+CLn|| 6 — 67|
+25 (1A% = 112 42]1%) + o,

where the last inequality follows fromjjAi — A*|| < C,
(Theorent), i.e.|Ai|| <C:=C, +||A*|| for all i > 0. Next,
from the Lipschitz continuity off in 8, it follows that

f6;6) — F058) > f(x;67) — f(x;67) — 2L & — 67
Combining two above inequalities results in the following:
f(x;0%) — f* < 5L3]16 — 0|2+ (CLa+2Ls) |6 — 07
5 (I = IAal?) + i

Summing the above inequality fore= 0 to k, we get
k

%(f(x.,e )— f* ) < PLzzjue %2+ Zla'
(CLh-i-ZLf Z}”G 6*H+2p Z}(H)HHZ—H)\leZ)
_ozlleo=0'|2 LSNP

<sbh——s— -
Sincef(x; 0) is convex inx, dividing both sides of the above
inequality byk gives the desired result. m

(3]

(4]

[0
[10]

11]
[12]

(C_Lh + 2L ¢ (13]

IV. CONCLUSION [15]

In this paper, we consider the setting of an optimization
problem complicated by misspecification both in the funttio (16
and in the constraints. The parameter misspecification may
be resolved through a learning problem. Suppose we have
access to a learning data set, collected a priori. One ave
for contending with such a problem is through an inherently
sequential approach that solves the learning problem ab@!
utilizes this solution in subsequently solving the computa
tional problem. Unfortunately, unless accurate solutiohs

and quantify the resulting impact of learning.
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