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Resilient Randomized Quantized Consensus

Seyed Mehran Dibaji, Hideaki Ishii, and Roberto Tempo

Abstract—We consider the problem of multi-agent consensus
where some agents are subject to faults/attacks and might make
updates arbitrarily. The network consists of agents taking integer-
valued (i.e., quantized) states under directed communication
links. The goal of the healthy normal agents is to form consensus
in their state values, which may be disturbed by the non-normal,
malicious agents. We develop update schemes to be equipped by
the normal agents whose interactions are asynchronous and sub-
ject to non-uniform and time-varying time delays. In particular,
we employ a variant of the so-called mean subsequence reduced
(MSR) algorithms, which have been long studied in computer
science, where each normal agent ignores extreme values from
its neighbors. We solve the resilient quantized consensus problems
in the presence of totally/locally bounded adversarial agents
and provide necessary and sufficient conditions in terms of the
connectivity notion of graph robustness. Furthermore, it will
be shown that randomization is essential both in quantization
and in the updating times when normal agents interact in
an asynchronous manner. The results are examined through a
numerical example.

I. INTRODUCTION

In recent years, studies on networked control systems with

an emphasis on cyber security have received a growing atten-

tion. Due to the use of general purpose networks in large-

scale control systems, security against malicious intrusions

is becoming a key issue. One of the fundamental problems

is the so-called resilient consensus, which is the multi-agent

consensus problem (e.g., [27], [33]) in the presence of agents

subject to faults and attacks. In such problems, non-faulty

agents collaborate with each other to attain global agreement

while the faulty agents may make updates arbitrarily, which

can affect the behavior of the normal agents. The resilient

versions of the consensus algorithms provide the means to

protect multi-agent systems from faults and cyber attacks in

applications such as autonomous mobile agents and sensor

networks.

More specifically, in resilient consensus problems, each

non-faulty (or normal) agent is assumed to be aware of only

local information available from its neighbors regarding their

states. In contrast, malicious agents may have more global

information regarding the behavior of normal agents, by even

exchanging information over links not present in the network.

The objective in these problems is to design distributed control

protocols for the normal agents to achieve consensus among
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themselves and to establish conditions under which such

resilient consensus can be attained.

Resilient consensus has a rich history in the area of dis-

tributed algorithms in computer science (see, e.g., [26] and the

references therein). It is however highlighted that many works

there deal with networks of complete graphs. This may be due

to the fact that agents in this area are often models of computer

terminals connected over wired networks, performing load

balancing through consensus algorithms. From the current

perspective of multi-agent consensus in systems and control,

it is of interest to find the minimum requirement on networks

to warrant resiliency against faults and attacks. In this paper,

we will address this fundamental issue in a problem setting

that is in accordance with the computer science literature.

In particular, we consider resilient consensus problems in

the setting where the agents take integer-valued states and

the underlying network for their communication is directed

and non-complete. Quantized consensus has been motivated

by concerns on limited capabilities in communications and

computations of the agents, and various studies have recently

been carried out for the case without any malicious agents

[1], [4], [6], [7], [16], [17], [19], [20], [22], [25], [29]. For

enhancing resiliency, we employ a distributed update scheme

in which each normal agent ignores its neighbors whose states

appear extreme and unsafe in the sense that they differ the

most from its own. By assuming that the maximum number

f of malicious agents in the network is known, each normal

agent neglects up to f largest and up to f smallest values

from its neighbors. Such update schemes are often called

mean subsequence reduced (MSR) type algorithms. We study

the problem for both synchronous and asynchronous updates

for the normal agents and obtain necessary and sufficient

conditions in the underlying network structure for the agents’

communication.

For resilient consensus in our problem setting, the critical

notion for network structures is called graph robustness. It is a

measure of connectivity within a graph and characterizes how

well groups within the network are connected via multiple

paths. It was first introduced by [24] for resilient consensus in

the real-valued states case with first-order agent dynamics and

then was further explored in [9], [37]. The resilient approach

has moreover been extended to networks with higher-order

agents. In [10], [13], we derived similar results for vehicle

agents having second-order dynamics. Furthermore, an MSR-

type algorithm is constructed for the application of clock

synchronization in wireless sensor networks [21], where each

node is equipped with an update scheme of two states.

Our viewpoint has been motivated by the recent literature

in control on multi-agent systems and has led us to introduce

features in the update schemes and communication delays

different from those in computer science. It is evident that in
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control, real-time aspects in algorithms have more significance.

On the other hand, the condition on graph structures may be

relaxed by following an approach based on fault detection

and isolation techniques; this will however require to equip

all agents with banks of observers (e.g., [30]), which may be

difficult to implement considering the limited computational

resources on the agents.

We emphasize that the proposed update schemes employ

probabilistic techniques, which turn out to be very important in

the implementation of our algorithms. For general references

on randomization-based algorithms in systems and control,

we refer to [35], [36]. Randomization is introduced for two

objectives. One is in quantization. Since the update schemes

involve iterative weighted averaging of integer-valued states,

the resulting real number must be rounded by a quantizer. We

employ quantizers that perform randomization. They have an

effect similar to dithering, commonly used in speech and video

processing, for controlling statistical properties introduced by

quantization noises [39]. It will be shown that deterministic

quantizers are not sufficient. Related phenomena have been

found in [1], [6], [7], [19] for quantized average consensus

problems over undirected graphs with no malicious agent.

The other part where randomization is utilized is in the up-

dating times of the agents. This is sometimes called gossiping

(see, e.g., [20], [32], [36]), but has not been exploited in the re-

cent studies of resilient consensus discussed above. Our novel

finding is that for asynchronous updates in the normal agents,

randomized updating is essential in establishing resilient con-

sensus under the minimal robustness requirement in the agent

network. The intuitive reason is that due to gossipping, the

malicious agents have less information about the normal agents

and thus cannot coordinate their behaviors well to misguide

them. In particular, with randomization in updating times,

the necessary and sufficient condition coincides with that for

the synchronous counterpart. We will show some scenarios

under deterministic updates, where consensus fails on graphs

possessing sufficient connectivity for the synchronous updates

case.

Our results suggest that randomization is critical in resilient

consensus. We would like to mention an interesting connection

to computer science; for more details, see [8]. There, random-

ization is used as an important component for many algorithms

to enhance efficiency [28]. This has in fact been well explored

in the context of binary-valued consensus problems when

adversaries are present [26]. For example, under asynchronous

deterministic updates, even one agent halting its operation

can make it impossible for the system to reach consensus

[15]; however, the use of probabilistic techniques can relax

the situation [3]. Another example is the so-called Byzantine

general problem, where randomization is necessary to obtain

algorithms scalable in convergence times with respect to the

size of the networks [28], [31]. We note that our results can

be applied to the binary state case by simply restricting the

initial values to 0 and 1.

Regarding the interaction among agents, we consider two

cases where the communications are immediate and also those

which experience non-uniform and time-varying delays. In

both cases, we characterize the network structures in terms

of robustness and provide sufficient conditions and necessary

conditions, which sometimes coincide. It however becomes

clear that time delays bring further vulnerabilities into the

agent system. As a result, we find that additional connectivity

is necessary to achieve resilient consensus for both determin-

istic and probabilistic updating schemes. We show through a

numerical example how a malicious agent can exploit the de-

lays in such a way that the normal agents become divided into

groups. However, without delays in communication, this type

of vulnerability can be prevented by means of randomization

as discussed above.

Furthermore, as a side result, we show that when no

malicious agent is present in the network (i.e., with f = 0),

the necessary and sufficient conditions in our main results

coincide, establishing the topological condition of having a

spanning tree in the network for quantized consensus. Though

this condition is well known in the literature of consensus, in

the particular problem setting of quantized states and directed

networks, the result is new to the best of our knowledge.

The paper is organized as follows: In Section II, we present

preliminary material and introduce the problem setting. Sec-

tion III is devoted to the quantized consensus problem in

the presence of malicious agents when the update schemes

for the normal agents are synchronous. Then, in Section IV,

the asynchronous counterpart without any delay is analyzed,

where randomization in update times is proven to be useful.

In Section V, the problem is solved in the presence of delays

in communication among the agents. Further, Section VI

provides numerical examples to illustrate the effectiveness of

the proposed algorithms. Finally, in Section VII, we discuss

concluding remarks and future directions. This paper is an

expanded version of the conference papers [11], [12] and

contains the full proofs of the theoretical results with extended

discussions on the role of randomizations, the relations to the

literature in computer science, and the simulation results.

II. PRELIMINARIES AND PROBLEM SETUP

In this section, we first provide preliminary material on

graphs and then introduce the basic problem setting for the

resilient consensus problems studied in this paper.

A. Graph Theory Notions

In this section, we recall some concepts on graphs [27].

A weighted directed graph with n agents is defined as a

triple G = (V , E , A) with the set of nodes V = {1, . . . , n},

the set of edges E ⊆ V × V , and the adjacency matrix A ∈
R

n×n. The edge (j, i) ∈ E means that node i has access to

the information of node j. We do not allow self-loops, that

is, (i, i) /∈ E . If each node has an edge to all other nodes, the

corresponding graph is said to be complete. For node i, the

set of its neighbors consists of all nodes which have directed

edges toward i, and it is denoted by Ni = {j : (j, i) ∈ E}. The

degree of node i is the number of its neighbors and is denoted

by di = |Ni|. If the edge (j, i) exists, the associated entry aij
in the adjacency matrix A is in (α, 1), and otherwise aij is

zero, where 0 < α < 1. We assume that
∑n

j=1,j 6=i aij < 1.

Let L = [lij ] be the Laplacian matrix of G whose entries are



defined as lii =
∑n

j=1,j 6=i aij and lij = −aij for i 6= j. It is

clear that the sum of the elements of each row of the Laplacian

matrix is zero.

A path from node i1 to ip is a sequence of distinct nodes

(i1, i2, . . . , ip), where (im, im+1) ∈ E for m = 1, . . . , p − 1.

If for all distinct nodes i and j, there is a path from i to j, the

graph is called strongly connected. A directed graph is said to

have a directed spanning tree if there is a node having a path

to every other node in the graph.

For the algorithms proposed in this paper, we characterize

topological properties of networks in terms of graph robust-

ness. It measures the connectivity in a graph by showing

how well groups within the network are connected over

different paths. It was first introduced by [24] for analysis

of resilient consensus of real-valued first-order multi-agent

systems. Related works include [9] which studied the case

with delays in communication and [10], [13] for the case

of agents with real-valued second-order dynamics. We use

the more general notion of (r, s)-robust graphs, which plays

an important role to obtain a tight necessary and sufficient

condition.

Definition 2.1: The graph G = (V , E , A) is (r, s)-robust

(r, s < n) if for every pair of nonempty disjoint subsets

V1,V2 ⊂ V , at least one of the following conditions holds:

1) X r
V1

= V1,

2) X r
V2

= V2,

3) |X r
V1
|+ |X r

V2
| ≥ s,

where X r
Vℓ

is the set of nodes in Vℓ having at least r incoming

edges from outside Vℓ. As the special case with s = 1, graphs

which are (r, 1)-robust are called r-robust.

The following lemma provides a better understanding of

robust graphs [23]. Here, ⌈y⌉ denotes the ceiling function and

gives the smallest integer value greater than or equal to y.

Lemma 2.2: For an (r, s)-robust graph G, the following hold:

(i) G is (r′, s′)-robust, where 0 ≤ r′ ≤ r and 1 ≤ s′ ≤ s,

and in particular, it is r-robust.

(ii) G is (r − 1, s+ 1)-robust.

(iii) G has a directed spanning tree. Moreover a graph is 1-

robust if and only if it has a directed spanning tree.

(iv) r ≤ ⌈n/2⌉. Further, if r = ⌈n/2⌉, G is a complete graph.

Moreover, a graph G is (r, s)-robust if it is (r+ s− 1)-robust.

It is clear that (r, s)-robustness is stronger than r-robustness.

The graph with seven nodes in Fig. 1 can be shown to

be (2, 2)-robust, but not 3-robust. In general, to determine

whether a given graph possesses a robustness property is

computationally difficult because the problem involves com-

binatorial issues. It is known that certain random networks are

robust when they are sufficiently connected [34], [40], [41].

B. Consensus among Integer-Valued Agents

In the remaining of this section, we give the problem

formulation of resilient consensus for the case without time

delays in the interactions among the agents.

Consider a network of agents cooperating over the directed

graph G = (V , E , A). Each agent applies a control rule

consisting of its neighbors’ state values to make updates by

xi[k + 1] = xi[k] + ui[k], (1)
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Fig. 1. A (2, 2)-robust graph with seven nodes.

where xi[k] and ui[k] represent the state and the control input

of agent i at time k.

To achieve consensus means that the agents converge to a

globally common value. In typical consensus problems, the

agents are real-valued (i.e., xi[k] ∈ R), and they approach

consensus asymptotically. A well-known approach for updat-

ing is to apply the weighted average of the relative state values

of the agent and its neighbors as

ui[k] =
∑

j∈Ni

aij [k](xj [k]− xi[k]), (2)

where aij [k] is the (i, j)th entry of the adjacency matrix A[k]
of the graph G[k] at time k.

Here, we consider the situation where limited communica-

tion and memory of the agents enforce them to take integer

values. Hence, the states and the inputs are constrained as

xi[k] ∈ Z and ui[k] ∈ Z for i ∈ V .

In the update rule, we employ the quantization function Q :
R → Z to transform the real-valued input in (2) to an integer-

valued one. This is done in a probabilistic manner as [1]

Q(y) =

{

⌊y⌋ with probability p(y),

⌈y⌉ with probability 1− p(y),
(3)

where p(y) = ⌈y⌉ − y, and the floor function ⌊y⌋ gives the

greatest integer less than or equal to y. Based on (2), the

quantized control input of agent i can be written as

ui[k] = Q

(

∑

j∈Ni

aij [k](xj [k]− xi[k])

)

. (4)

It is noteworthy that the probabilistic quantizer equipped on

each agent is independent and determines whether to choose

the floor or ceil function at each time. Thus, the control (4)

can be implemented in a distributed fashion. Probabilistic

quantizers have been studied in [1], [6], [7], [19] for aver-

age consensus of real-valued agent networks with quantized

communications. Moreover, it can be shown that probabilistic

quantization is equivalent to the well-known dithering [1],

which has a range of applications in digital signal processing.

In our problem setting, we also introduce asynchrony in the

updates. That is, at each time k, agent i may or may not make

an update by applying its control ui[k]. If an agent does not

update its value, it keeps its previous value, i.e., xi[k + 1] =
xi[k]. Denote by U [k] ⊂ V the set of agents that update their

values at time k. The agent system is said to be synchronous if

U [k] = V for all k, and otherwise it is asynchronous. It is noted



that the control in (4) already represents the asynchronous

case: If i /∈ U [k], then aij [k] = 0 for j ∈ Ni.

The objective of the agent network is to achieve global con-

sensus among all agents in a probabilistic sense by applying

the possibly asynchronous local control input (4). In this work,

the network is assumed to have some misbehaving agents that

do not follow the control in (4). In the next subsection, we

provide the required notions to study this case. Note that

networks without any malicious agents form a special case;

for such normal networks, we obtain consensus conditions as

a direct consequence of the results obtained in this paper.

C. Resiliency Notions and Algorithm

We introduce notions related to malicious agents and con-

sensus in the presence of such agents [9], [10], [24].

Definition 2.3: Agent i is called normal if it updates its state

based on the predefined control (4). Otherwise, it is called

malicious and may make arbitrary updates. The index set of

malicious agents is denoted by M ⊂ V .

The numbers of normal agents and malicious agents are

denoted by nN and nM , respectively. Also, the states for the

normal agents and malicious agents are given in vector forms

as xN [k] ∈ Z
nN and xM [k] ∈ Z

nM , respectively.

In the agent dynamics in (1), the control inputs for the

normal agents are given by (4) while the malicious agents can

choose their control arbitrarily, and hence ui[k] for i ∈ M are

left unspecified at this point. Thus, the update rules for the

agents can be written in the following form:

xi[k + 1] =







Q

(

∑

j∈Ni∪{i} wij [k]xj [k]

)

if i ∈ V \M,

xi[k] + ui[k] if i ∈ M.

(5)

Here, we have W [k] = (wij [k]) = I − L[k], where L[k] is

the Laplacian matrix associated with the graph G[k]. From the

definition of the Laplacian matrix, it follows that W [k] is row

stochastic, that is, all entries are nonnegative and each row

sum is equal to one; moreover, each positive entry of W [k]
is lower bounded by α. Thus, each normal agent makes an

update by a quantized convex combination of its neighbors’

state values.

With respect to the number of misbehaving agents in the

network, we assume that an upper bound denoted by f is

known to all agents. More precisely, we consider the two cases

defined below.

Definition 2.4: The network is said to be f -total malicious

if the number nM of faulty agents in the entire network is

at most f , i.e., nM ≤ f . On the other hand, the network is

called f -local malicious if for each normal agent i ∈ V \M,

the number nM of faulty agents in its neighborhood is at most

f , i.e., |M ∩Ni| ≤ f .

We now introduce the notion of resilient consensus for the

network of probabilistic quantized agents in the presence of

misbehaving agents.

Definition 2.5: If for any initial states, any malicious in-

puts, and any possible set of malicious agents, the following

conditions are met, then the network is said to reach resilient

quantized consensus:

1) Safety condition: For each set of initial values of the

normal agents, there exists a set S such that for all normal

agents i ∈ V \M, it holds that xi[k] ∈ S for k ∈ Z+.

2) Agreement condition: There exists a finite time ka ≥ 0
such that Prob

{

xN [ka] ∈ CnN
| x[0]

}

= 1, where the

consensus set CnN
is defined as

CnN
= {x ∈ Z

nN | x1 = · · · = xnN
}.

Next, we outline the algorithm employed for achieving con-

sensus in the presence of misbehaving agents. The algorithm

is the quantized version of the weighted mean subsequence

reduced (W-MSR) algorithm studied in [9], [24] and thus will

be referred to as the QW-MSR algorithm. Using similar ideas,

resilient consensus of second-order agent networks has been

studied as well [10], [13].

Algorithm 2.6 (QW-MSR Algorithm):

1) At each time step k, if the normal agent i makes an update

in its value, i.e., i ∈ U [k], then it receives the state values

of its neighbors j ∈ Ni and sorts them in a descending

order.

2) If there are less than f agents which have state values

strictly larger than xi[k], then the normal node i ignores

the incoming edges from those agents. Otherwise, it

ignores the incoming edges from f agents which have

the largest state values. Similarly, if there are less than f
agents which have state values strictly smaller than xi[k],
then node i ignores all incoming edges from these nodes.

Otherwise, it ignores the f incoming edges from those

which have the smallest values.

3) Apply the update rule (5) by substituting aij [k] = 0 for

all edges (j, i) which are neglected in step 2.

The main feature of this algorithm lies in its simplicity.

Each normal node ignores the information received from its

neighbors which may be misleading. The normal agents do not

make attempts to identify the malicious agents in the network.

In particular, it always ignores up to f edges from neighbors

whose values are large, and f edges from neighbors whose

values are small. As we will see, in applying the algorithm,

there is no need for information more than that of each agent’s

neighbors and the upper bound f for the number of malicious

agents. The underlying graph G[k] at time k is determined by

the edges not ignored by the agents. The adjacency matrix

A[k] and the Laplacian matrix L[k] at time k are determined

accordingly.

The assumption on the number f of malicious agents in

the network is standard in the problem setting of computer

science (e.g., [26]). It will become clear that, for the MSR

algorithm to function properly, the maximum f depends on

the size and the topology of the given network. There is a

history of results showing the maximum number of malicious

agents that can be tolerated in MSR-type algorithms when the

network is a complete graph; see, for example, [3], [26], [31].

Our main results are significant in that we obtain tight bounds

on f through the necessary and sufficient conditions expressed

in terms of robust graphs.

The first problem studied in this paper is formulated as

follows: Under the f -total malicious model, find a condition



on the network topology such that the normal agents reach

resilient quantized consensus almost surely using the QW-

MSR algorithm outlined above. We consider the case of

synchronous updates and asynchronous updates separately

in Sections III and IV. Then, in Section V, we study the

more realistic situation when time delays are present in the

communication among agents.

III. RESILIENT CONSENSUS FOR SYNCHRONOUS

NETWORKS

We provide the solution to the resilient consensus problem

for the synchronous update case. The result will be given in the

form of a necessary and sufficient condition on the underlying

network structure.

A. Characterization Based on Robust Graphs

We are ready to present the main result of this section.

The following theorem provides a necessary and sufficient

condition for resilient quantized consensus for synchronous

updating times. It shows that robustness in the network is a key

property to guarantee sufficient connectivity among the normal

agents to avoid being misguided by the malicious agents. Let

S be the interval given by

S =
[

min xN [0],maxxN [0]
]

, (6)

where the minimum and maximum are taken over all entries

of vectors. This set will be shown to be the safety interval.

Theorem 3.1: Under the f -total malicious model, the net-

work of quantized agents with the QW-MSR algorithm reaches

resilient quantized consensus almost surely with respect to the

randomized quantization if and only if the underlying graph

is (f + 1, f + 1)-robust.

To establish quantized consensus in this probabilistic set-

ting, we follow the arguments introduced in [20]. In the

following, we restate Theorem 2 from this reference with

minor modifications to accommodate our problem setup.

Lemma 3.2: Consider the network of quantized agents

interacting over the graph G through the QW-MSR algorithm.

Suppose that the following three conditions are met for the

normal agents:

(C1) There exists a set S such that for each normal agent i,
xi[k] ∈ S for all k ∈ Z+ and all xN [0].

(C2) For each state x[k] = x0 at time k, there exists a finite

time kx such that Prob
{

xN [k + kx] ∈ CnN
|x[k] =

x0

}

> 0.

(C3) If x[k] ∈ CnN
, then x[k′] ∈ CnN

, ∀k′ > k.

Then, the network reaches quantized consensus almost surely.

Remark 3.3: The result in [20] holds for a general class of

algorithms, but there it is given for the case of quantized aver-

age consensus. In the lemma above, it is adapted to the regular

quantized consensus. In the proof of Theorem 3.1, we show

that the QW-MSR algorithm satisfies the conditions (C1)–(C3)

in the lemma when it is applied to robust graphs. Intuitively, if

the algorithm satisfies these conditions for normal agents, then

the scenarios for reaching consensus occur infinitely often with

high probability. This is because the probability for such an

event to occur is positive based on the condition (C2). Then,

as soon as normal agents reach consensus, they do not change

their values by (C3).

Proof of Theorem 3.1: (Necessity) If the graph is not (f +
1, f + 1)-robust, the set of its nodes includes two disjoint

and nonempty subsets V1 and V2 that do not meet any of the

three conditions in Definition 2.1. Thus, for i = 1, 2, the total

number of nodes in Vi that have at least f+1 incoming edges

from V\Vi is less than f+1. Here, we take all malicious nodes

to be in the sets X f+1
V1

and X f+1
V2

. It then follows that V1 \

X f+1
V1

and V2 \ X
f+1
V2

are two disjoint and nonempty subsets

of normal agents. Now, assign a, b and ⌊(a+ b)/2⌋ to the

nodes in V1, V2, and the rest of the nodes, respectively, where

a, b ∈ Z and a < b− 1. Suppose that the malicious agents do

not change their state values. Then, the normal agents in V1

and V2 will ignore all of their neighbors that have different

values from themselves and they will stay at their states. Thus,

the normal agents contained in V1 \ X f+1
V1

and V2 \ X f+1
V2

remain at the values a and b at all times. This implies that the

agreement condition cannot be met.

(Sufficiency) We must show that by applying QW-MSR to

the network of f -total model, the conditions (C1)–(C3) in

Lemma 3.2 hold. First, we prove (C1), which is the safety

condition. Denote the minimum and maximum values of the

normal agents at time k by

x[k] = minxN [k], x[k] = maxxN [k]. (7)

In the network, there are at most f malicious agents, and, at

each time step, each normal agent removes the values of at

most 2f neighbors, f from above and f from below. Hence,

those faulty agents with values outside the interval
[

x[k], x[k]
]

are all ignored at each time step. In other words, each normal

agent i is affected by only the values within
[

x[k], x[k]
]

. It

thus follows that the value of the normal agent i in the update

rule (5) is upper bounded by

xi[k + 1] ≤
⌈

∑

j∈Ni∪{i}

wij [k]xj [k]
⌉

≤
⌈

∑

j∈Ni∪{i}

wij [k]x[k]
⌉

=
⌈

x[k]
⌉

= x[k].

This implies that x[k+1] ≤ x[k], that is, x[k] is a monotoni-

cally nonincreasing function of time. Likewise, agent i’s value

can be bounded from below as

xi[k + 1] ≥
⌊

∑

j∈Ni∪{i}

wij [k]xj [k]
⌋

≥
⌊

∑

j∈Ni∪{i}

wij [k]x[k]
⌋

=
⌊

x[k]
⌋

= x[k].

Thus, we have x[k + 1] ≥ x[k], which shows that x[k] is a

monotonically nondecreasing function of time. Consequently,

we conclude that for the normal agent i, its state satisfies

xi[k] ∈
[

x[k], x[k]
]

⊂ S for all k with the interval S given in

(6). Thus, (C1) is established.

Next, we prove (C2) in Lemma 3.2. Since x[k] and x[k]
are contained in S and are monotone, there is a finite time kc
such that they both reach their final values with probability



1. Denote the final values of x[k] and x[k] by x∗ and x∗,

respectively. Now, to conduct a proof by contradiction, we

assume x∗ < x∗. Denote by X1[k] the set of all agents

including the malicious ones at time k ≥ kc with state values

equal to x∗ or larger. Likewise, denote by X2[k] the set of

agents whose states are equal to x∗ or smaller. That is,

X1[k] =
{

i ∈ V : xi[k] ≥ x∗
}

,

X2[k] =
{

i ∈ V : xi[k] ≤ x∗
}

.
(8)

We show that with positive probability, the normal agents in

X1[k] decrease their values, and the normal agents in X2[k]
increase their values at the next time step. These two sets

X1[k] and X2[k] are nonempty and disjoint by assumption.

Moreover, the underlying graph is (f +1, f +1)-robust. Thus,

one of the conditions in Definition 2.1 must be fulfilled. In

particular, there always exists a normal agent i either in X1[k]
or X2[k] with (f + 1) edges from V \ X1[k] or V \ X2[k],
respectively. Without loss of generality, we suppose that the

normal agent i in X1[k] has this property. Its value clearly

is xi[k] = x∗. In step 2 of QW-MSR, it neglects at most f
values from V\X1[k]. Hence, it makes an update using at least

one agent from its neighbors whose value is smaller than x∗.

In step 2 of QW-MSR, it also neglects all values larger than

x∗ since there are at most f such values coming from the

malicious agents. Thus, by the update rule (5), we write

xi[k + 1] ≤ Q
(

(1− α)x∗ + α(x∗ − 1)) = Q(x∗ − α). (9)

Here, by (3), the quantizer output takes the truncated value

as Q(x∗ − α) = x∗ − 1 with probability 1 − α. Thus, with

positive probability, we have

xi[k + 1] ≤ x∗ − 1.

This indicates that with positive probability, one of the normal

agents taking the maximum value x∗ decreases its value by

at least one. Similarly, if the normal agent i is in X2[k], then

with positive probability, it chooses the ceil quantization, in

which case its value will increase above x∗.

We must next show that with positive probability, none of

the normal agents in V \ X1[k] enters X1[k + 1] at the next

time step. If the normal agent i at time k is in V \ X1[k],
it is upper bounded by x∗ − 1. According to the update rule

(5), the inequality (9) holds in this case as well. Thus, with

probability 1− α, agent i does not come into X1[k + 1]. The

same steps show that any of the normal agents in V \ X2[k]
will not go into X2[k + 1] with positive probability.

From the above, we conclude that for any k ≥ kc+nN , the

number of normal agents in one of the sets X1[k] and X2[k] is

zero with positive probability because there are only nN such

agents. This is a contradiction and proves (C2).

In the last step, we have to show (C3) in Lemma 3.2,

i.e., when all normal agents reach agreement and go inside

CnN
, they stay there from that time on. Assume that the

normal agents have reached the common value x∗. Since the

maximum number of malicious agents is f , all such agents j
with values xj [k] 6= x∗ are ignored by the normal agents.

Thus, in the third step of QW-MSR, when they apply the

update rule (5), xi[k + 1] = x∗, ∀i ∈ V \ M. We have thus

shown (C3), and this concludes the proof. �

The (f + 1, f + 1)-robustness as a necessary and sufficient

condition is consistent with the resilient consensus problems

in [24] and [13] for the real-valued agent cases with first-

order and second-order dynamics, respectively. However, these

works consider consensus in real-valued agent networks and

establish convergence in an asymptotic fashion; moreover, the

updating rules there are without any randomization. This paper

studies agents taking quantized values and the convergence is

in finite time in a probabilistic sense.

It is noted that our approach can be applied to the binary-

valued consensus case [3], [15], [26], [31]. As long as the

initial states of all agents are restricted to 0 and 1, the safety

interval in (6) indicates that the normal agents’ values will

remain binary and come to agreement eventually. This fact

remains true for all results presented in this paper.

Remark 3.4: Analysis on the convergence rate for quantized

consensus problems has recently gained attention, where upper

bounds on the worst-case convergence times are derived with

respect to the number n of agents. In [20], some common

classes of agent networks are considered while further studies

on static and time-varying networks can be found in [14], [42].

It is however noted that these works deal with the problem of

average consensus where the underlying graph is undirected.

The paper [5] carries out an analysis for average quantized

consensus over directed graphs based on a specific algorithm

employing additional dynamics in each agent. In contrast to

these works, in our resilient consensus problem, the algorithm

is synchronous, but the network is directed and moreover

switches according to the MSR mechanism. Hence, for the

convergence time analysis of the algorithm, it seems difficult to

apply existing results. This problem is left for future research.

We now consider the special case when no malicious agent

is present in the network (i.e., with f = 0). Then, the QW-

MSR algorithm reduces to the update rule in (5) with a

static matrix W . The following corollary of Theorem 3.1

demonstrates that in this case, to achieve quantized consensus,

it is necessary and sufficient that a spanning tree exists in the

network, which is the well-known topological condition for

multi-agent consensus when the states take real values [27].

Corollary 3.5: When no malicious agent is present, the

network of quantized agents based on the update rule (5)

reaches quantized consensus almost surely with respect to the

randomized quantization if and only if the underlying graph

has a directed spanning tree.

Proof : With f = 0, by Theorem 3.1, the necessary and

sufficient condition for reaching consensus in normal networks

is (1, 1)-robustness. Then, by Lemma 2.2 (iii), a graph is

(1, 1)-robust, or 1-robust, if and only if it has a directed

spanning tree. �

In the literature of quantized consensus, to the best of our

knowledge, the above necessary and sufficient condition has

not been reported elsewhere. Related works include [29] which

established strong connectivity as a sufficient condition, and

[20], [22] which deal with undirected communications. In

contrast, we have studied the more general directed graphs.

The same condition appears in [5], but is for a specific class

of gossip-based time-varying networks. In Section V, we will

present further generalization for the case with delays in
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Fig. 2. A line graph with no malicious agent fails to reach consensus with
ceil quantizers when the initial value for node i is taken to be its index i.

1 3

45

2

Fig. 3. A (2, 2)-robust graph which fails to reach consensus by using ceiling
quantization or floor quantization.

communication.

B. Role of Probabilistic Quantization

Quantization is necessary in the update scheme (5) of

the agents for keeping their states to take integer values

from the weighted average of the neighbors’ states. In this

subsection, we show that randomization in the quantizers

plays an important role in the consensus problem. Similar

discussions can be found in, e.g., [1], [6], [7], [19], [20],

but are focused on average consensus over undirected graphs

without any malicious agents.

First, to show the limitation of deterministic quantization

even when no malicious agent is present in the network (i.e.,

f = 0), we use the line graph example in Fig. 2. Suppose

that in the update rules, the ceil quantizers Q(y) = ⌈y⌉ are

used instead of the probabilistic ones. Let agent i take an

initial value of xi[0] = i for all i. Then, we easily conclude

that the agents stay at their initial states for all times and

thus consensus is impossible. A similar argument holds for the

floor quantizer Q(y) = ⌊y⌋ by changing the initial values to

xi[0] = n− i. Note however that line graphs contain spanning

trees. It is clear that neither ceil nor floor is sufficient in such

examples and we need a combination of both with a suitable

switching mechanism. This can be achieved by means of the

probabilistic quantizers in (3).

Next, we provide an example with a malicious agent. The

network in Fig. 3 with five nodes is (2, 2)-robust. We set f = 1
and take agent 5 to be malicious. This agent keeps its value

unchanged from the initial time. The values of the agents are

initialized as x[0] = [2 2 2 3 5]T . Using ceil quantizers in

QW-MSR forces each normal agent to stay at its initial value,

and hence no consensus is reached. In this case, the malicious

agent 5 is ignored at all times since it is set to be the largest

value. It is interesting to notice that removal of node 5 from

the graph in Fig. 3 results in a graph with a spanning tree.

We can reach similar conclusions with floor quantization by

initializing the values as x[0] = [4 4 4 3 1]T .

At a more general level, we can explain the importance

of the probabilistic quantization in the proof of Theorem 3.1

as follows. There, two disjoint and nonempty subsets X1[k]

and X2[k] have been introduced. It is shown that one of them

loses all normal agents in finite time steps almost surely. In

one of these sets, there is a normal agent i that has at least

f + 1 edges from nodes outside the set it belongs to. Now, if

agent i is in the set X1[k] and if the quantization is always

based on ceiling, there is no guarantee that it goes out of

X1[k + 1]. Likewise, if agent i is contained in X2[k] and if

floor quantization is employed at all times, then this agent will

remain in X2[k + 1].

IV. ASYNCHRONOUS NETWORKS: ENHANCING

RESILIENCE VIA PROBABILISTIC UPDATES

In this section, we consider asynchronous update schemes.

We will highlight that asynchrony in the updates can create

weaknesses in the algorithm that can be exploited by the

malicious agents. However, we show that this problem can

be overcome by employing a probabilistic updating scheme.

A. Deterministic Update Scheme

Recall that the QW-MSR algorithm in Algorithm 2.6 is

applicable to the case of asynchronous update rules. The set of

normal agents updating at time k is represented by U [k]. When

no update is made, the control input simply becomes ui[k] = 0
and thus the state remains unchanged as xi[k + 1] = xi[k].

In the deterministic setting, we assume that each normal

agent i makes an update at least once in k̄ time steps, that is,

k+k−1
⋃

ℓ=k

U [ℓ] = V \M for k ∈ Z+. (10)

On the other hand, the malicious agents need not follow these

schemes and may even be aware of the updates of the whole

network.

Now, we state a sufficient condition for deterministic asyn-

chronous networks in terms of graph robustness, but with a

more restrictive requirement than that in Theorem 3.1.

Theorem 4.1: Under the f -total malicious model, the net-

work of asynchronous quantized agents with the QW-MSR

algorithm satisfying (10) reaches resilient quantized consensus

almost surely with respect to the randomized quantization if

the underlying graph is (2f + 1)-robust.

The proof of Theorem 4.1 is skipped for now. In the next

section, we present a more general result for deterministic

asynchronous networks, from which the theorem above fol-

lows (see Theorem 5.1 and Remark 5.2).

It is noted that a (2f+1)-robust graph is also (f+1, f+1)-
robust by Lemma 2.2 (ii). This indicates that there is a gap

between Theorem 3.1 and Theorem 4.1 for the synchronous

scheme and the asynchronous scheme, respectively. This gap

originates from the fact that asynchrony in the updating times

creates more ways for malicious agents to deceive the normal

agents. This point is demonstrated through an example in the

next subsection.
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Fig. 4. A complete graph which is (3, 3)-robust, but fails to reach consensus
under asynchronous updates when agents 1 and 2 are malicious.

B. Discussion on Synchronous versus Asynchronous

Now, we discuss why the sufficient condition for the case of

asynchronous normal agents is more restrictive than the case

of synchronous agents in the previous section.

Consider the 6-node complete graph depicted in Fig. 4. This

graph is (3, 3)-robust due to Lemma 2.2 (iv). In this graph,

agents 1 and 2 are taken to be malicious. They switch their

values according to xi[2m] = i and xi[2m + 1] = i + 6
for m ∈ Z+. For each agent i, let’s assign xi[0] = i. Also,

assume that agents 3 and 4 make updates only at even time

steps (k = 2m) and agents 5 and 6 make updates only at

odd time steps (k = 2m + 1). By applying the QW-MSR

algorithm, we observe that with probability 1, agents 3 and

4 reach agreement among themselves (at either 3 or 4), and

agents 5 and 6 agree upon a different value (at either 5 or 6).

Here, although the underlying graph is complete, the agents

cannot reach consensus because the graph is not sufficiently

robust to have two malicious agents.

Using Lemma 2.2 (iv) and the above results, we note that,

with less than 4f + 1 nodes in the network, it is impossible

to reach consensus in f -total malicious models under asyn-

chronous updates even when the graph is complete; there will

be some scenarios of updates and adversaries’ behaviors that

prevent it. However, when the normal agents make updates

synchronously, having a complete graph with 2f +1 nodes is

sufficient to reach consensus.

We would like to tighten the topological condition for

asynchronous updates. As seen in the above example, since

the normal agents 3 and 4 make updates at time steps when the

normal agents 5 and 6 are in idle mode, the malicious agents

take advantage of this asynchrony and appear at different states

at the times of their updates. For instance, at the time of

updates, agents 3 and 4 receive values x1[k] = 1 and x2[k] = 2
from the malicious agents 1 and 2. Then, the values from

agents 1, 2, 5, and 6 are ignored.

Such an undesirable situation can be avoided, for example,

if there are chances that all normal agents simultaneously make

updates, even if they occur very seldom. This type of feature

in fact will allow us to obtain (f + 1, f + 1)-robustness as a

necessary and sufficient condition for resilient consensus. To

this aim, we make use of randomized update times.

C. Probabilistic Update Scheme

In the probabilistic setting, we assume that each normal

agent i makes an update at time k ≥ 0 with probability pi ∈

(0, 1] in an i.i.d. fashion. That is, for agent i, at each time k,

Prob
{

i ∈ U [k]
}

= pi, Prob
{

i /∈ U [k]
}

= 1− pi. (11)

Note that with such updates, the algorithm remains fully

distributed. Even the probabilities pi need not be identical.

An advantage of introducing randomization for the normal

agents is that the malicious agents cannot predict the update

times in advance. In this respect, randomization in update

times is utilized as a defensive means against potential conspir-

acy of the malicious agents. Moreover, there is always nonzero

probability that any normal agents in the system update their

states. This feature enables us to establish a stronger result

than that for the deterministic case.

The following theorem is the main result of this section.

It shows that for the probabilistic updating scheme, the re-

quirement on graph robustness is the same as that for the

synchronous case in Theorem 3.1.

Theorem 4.2: Under the f -total malicious model, the net-

work of randomly asynchronous quantized agents with the

QW-MSR algorithm satisfying (11) reaches resilient quantized

consensus almost surely with respect to the randomized quan-

tization and updates if and only if the underlying graph is

(f + 1, f + 1)-robust.

Proof : (Necessity) This part follows from the necessity part

of Theorem 3.1 since the synchronous updating scheme is a

special case of asynchronous updating schemes.

(Sufficiency) We must show that the three conditions (C1)–

(C3) in Lemma 3.2 hold. This can be done as in the proof

of Theorem 3.1, and thus we provide only an outline for the

probabilistic asynchronous case considered here.

For (C1), it is enough to notice that the values x[k] and x[k]
as defined in (7) are bounded in the interval S in (6) and are

monotone. Furthermore, these facts imply that x[k] and x[k]
arrive at their final values x∗ and x∗ in some finite time kc
almost surely.

We show (C2) by contradiction and assume x∗ < x∗. Take

the sets X1[k] and X2[k] as in (8). By assumption, these sets

are disjoint and nonempty. We have two claims at this point.

The first is that, at each k ≥ kc, a normal agent in at least

one of these sets goes out from the corresponding set at the

next time step with positive probability. This can be shown

because by (f + 1, f + 1)-robustness, there is a normal agent

i in either X1[k] or X2[k] which has at least f + 1 incoming

links from outside the set X1[k] or X2[k], respectively. In

the probabilistic asynchronous updating case, for this normal

agent i, the probability to update at this time k is positive.

The second claim is that with positive probability, none of the

normal agents outside Xj [k] enters Xj [k + 1] for j = 1, 2.

This can be proved similarly as in the first one. By these two

claims, we conclude that for any k ≥ kc+nN , one of the two

sets, X1[k] or X2[k], contains no normal agent with positive

probability, which is clearly a contradiction.

The condition (C3) holds as well since once all of the

normal agents arrive at consensus, whether a normal agent

makes an update or not, it will keep its state unchanged at the

consensus value. �



V. RESILIENCE UNDER DELAYED COMMUNICATIONS

Thus far, we assumed that the interactions among the

agents do not experience any time delay and the neighbors’

information can be transferred immediately. In this section,

we consider the more realistic situation where agents have

access to only delayed information of the neighbors’ states. We

demonstrate that the malicious agents can exploit the delays to

prevent consensus among the normal agents when the graph

is not sufficiently robust.

A. Problem Formulation and Algorithm

In the case with delayed information, the control input of

the normal agent i in (4) is given by

ui[k] = Q

(

∑

j∈Ni

aij [k](xj [k − τij [k]]− xi[k])

)

, (12)

where the delays τij [k] are present in each communication

channel. They are assumed to be time varying, non-uniform,

and bounded, i.e., 0 ≤ τij [k] ≤ τ for some nonnegative

constant τ . Note that this bound τ need not be known to any

of the normal agents. As before, non-updating agents apply no

input, i.e., ui[k] = 0 with aij [k] = 0 for j ∈ Ni if i /∈ U [k].
For the malicious agent, in contrast, we assume that the

control input ui[k] can be arbitrary and may be based on the

current (non-delayed) state information of any agent in the

network.

To ease the problem formulation, we introduce the following

notations. Let D[k] be a diagonal matrix whose ith entry is

given by

di[k] =

n
∑

j=1

aij [k]. (13)

Then, let the matrices Aℓ[k] ∈ R
n×n for 0 ≤ ℓ ≤ τ , and

Lτ [k] ∈ R
n×(τ+1)n, respectively, be given by

Aℓ[k] =

{

aij [k] if i 6= j and τij [k] = ℓ,

0 otherwise,
(14)

and

Lτ [k] =
[

D[k]−A0[k] −A1[k] · · · −Aτ [k]
]

.

Furthermore, let

Wτ [k] =
[

In 0 · · · 0
]

− Lτ [k].

Similarly to the usual Laplacian matrices, Lτ [k] has the

property that the sum of elements of each row is zero. Thus,

each row sum of Wτ [k] is one, and each non-zero entry of

Wτ [k] is lower bounded by some β ∈ (0, 1).
Finally, denote by z[k] ∈ Z

(τ+1)n the extended state vector

containing the past states given by

z[k] =
[

xT [k] xT [k − 1] · · · xT [k − τ ]
]T

.

The update rule for each agent i is based on the control

(12) for a normal agent. Meanwhile, the malicious agents can

choose their control arbitrarily and thus for them, we leave

ui[k] unspecified at the current stage. Consequently, the update

schemes for the agents can be written as

xi[k + 1] =

{

Q(eTi Wτ [k]z[k]) if i ∈ V \M,

xi[k] + ui[k] if i ∈ M,
(15)

where ei ∈ R
(τ+1)n is the unit vector whose ith entry is 1

and the rest are zero. Thus, each agent makes an update by

a quantized convex combination of its neighbors’ state values

which may be delayed.

The objective of the agent network is to reach resilient

consensus among all agents by applying the local control rule

(12) with the probabilistic quantizers under the deterministic

update scheme (10). To this end, we again employ the QW-

MSR algorithm in Algorithm 2.6, but this time, we interpret

the neighbors’ states to be the delayed information available

at each update time k.

From the viewpoint of multi-agent systems in control, the

delay model in the input (12) is reasonable and commonly

adopted [33]. It uses the most recent information of the

neighbors available at the time of updates. In contrast, the

works [2], [38] from the computer science literature employ a

delay model based on the so-called rounds. An agent transmits

its value along with its current round, i.e., the number of

transmissions that it made so far. Updates are made at an

agent only after it receives the neighbors’ data with the

same round. This indicates that if there is one agent whose

transmission takes time, all of its neighbors would have to wait

before making the next update, which clearly slows down the

convergence of the overall system.

B. Robust Graph Conditions: Deterministic Updates

We are now in the position to state the main result of this

section. The theorem below establishes a sufficient condition

for resilient quantized consensus in the asynchronous setting

with delays and deterministic updating times. The randomized

counterpart will be given later.

Let Sτ be the interval given by

Sτ =
[

min zN [0],max zN [0]
]

, (16)

where the minimum and maximum are taken over all entries of

the vector zN [0] containing the initial values of normal agents.

This set will be shown to be the safety interval.

Theorem 5.1: Under the f -total malicious model, the net-

work of quantized agents with delayed information and deter-

ministic asynchronous update times in the asynchronous QW-

MSR algorithm reaches resilient quantized consensus almost

surely with respect to the randomized quantization if the

underlying graph is (2f + 1)-robust. Moreover, the safety

interval is determined by Sτ in (16).

The proof of this theorem is presented in the Appendix.

Remark 5.2: Theorem 5.1 is a generalized version of The-

orem 4.1 where no delay is assumed with τ = 0. The proof

of Theorem 5.1 may appear similar to that of Theorem 3.1

for the synchronous problem. However, there are considerable

differences between them. One technical difference lies be-

tween the definitions of the two sets X1τ [k] and X2τ [k] and

those of X1[k] and X2[k] in Section III. As a consequence,



further discussions are required for showing that X1τ [k] and

X2τ [k] are nonempty for k ≥ kc, which is not the case in the

proof of Theorem 3.1. Notice that the sets X1τ [k] and X2τ [k]
do not include the malicious agents, while the sets X1[k] and

X2[k] there involve both normal and malicious agents. This

difference originates from the definitions of (2f + 1)- and

(f +1, f +1)-robust graphs. In fact, in the f -total model, we

see that the second term f + 1 in (f + 1, f + 1) guarantees

that at least one of the agents in X1[k] or X2[k] is normal and

has a sufficient number of incoming links for convergence.

However, (2f + 1)-robustness is a more local notion. Since

the worst-case behavior of the malicious agents happens in

the neighborhood of each normal agent, the sets X1τ [k] and

X2τ [k] are defined in this way.

Note that the networks with asynchrony and delays are

the generalized case of the synchronous networks without

time delays. Thus, for the necessary condition on the network

structure, the result of Theorem 3.1 is valid here. This fact is

stated as a proposition in the following.

Proposition 5.3: Under the f -total malicious models, if

the network of quantized agents with delayed information in

the QW-MSR algorithm reaches resilient quantized consensus

almost surely with respect to the randomized quantization, then

the underlying graph is (f + 1, f + 1)-robust.

C. Effect of Non-uniform Delays and Probabilistic Updates

Similarly to the discussion in Section IV-B, for networks

with delays, there is also a gap between the sufficient condition

in Theorem 5.1 and the necessary condition in Proposition 5.3.

We have seen in Section IV-C that using randomization can be

effective to obtain tighter results. In particular, randomization

enables the normal agents to have a chance to make updates at

the same time. This has facilitated us to obtain (f +1, f +1)-
robustness as a necessary and sufficient condition for resilient

consensus of asynchronous networks without delay.

However, when there are delays in the network, it seems

difficult to gain similar benefits through randomization. By

exploiting non-uniform delays, a malicious agent can appear

as having different states at the same time by different normal

agents. This is possible if the agent changes its value, but sends

its state with different delays. This means that randomization

in update times may not be enough in such cases to relax the

topological condition. We will examine this type of malicious

behavior in the numerical examples in the next section.

The following proposition gives a sufficient condition with

the same condition in terms of graph robustness as in the

deterministic case in Theorem 5.1.

Proposition 5.4: Under the f -total malicious model, the

network of randomly asynchronous quantized agents with

time-varying delayed information satisfying (11) in the QW-

MSR algorithm reaches resilient quantized consensus almost

surely with respect to the randomized quantization and updates

if the underlying graph is (2f+1)-robust. Moreover, the safety

interval is determined by Sτ in (16).

Proof : We must show that the three conditions (C1)–(C3)

in Lemma 3.2 hold. This can be done as in the proof of

Theorem 5.1. For the randomized updates considered here,

the only difference is in showing (C2). In the deterministic

scheme, each normal agent makes updates at least once in

each k̄ whereas in the probabilistic scheme the agents make

updates at each time step with probability pi > 0. This fact

reflects on the minimum k̄ · nN and nN steps for X1τ [kc]
and X2τ [kc] to become empty with positive probability in the

deterministic and probabilistic schemes, respectively. �

The (2f + 1)-robustness as a sufficient condition is con-

sistent with the resilient consensus problems in [9] and [13]

for the real-valued agent cases with first-order and second-

order dynamics, respectively. However, these works consider

consensus without any randomization in their updates. This

paper studies agents taking only quantized values and the

convergence is in finite time in a probabilistic sense.

D. Further Results

In what follows, we discuss a few extensions of our results

concerning agent systems with communication delays.

1) Normal Networks: We consider the special case when

no malicious agent is present in the network with f = 0.

Then, the QW-MSR algorithm reduces to the update rule

in (15) with a static matrix Wτ . The following corollary of

Theorem 5.1 demonstrates that to achieve quantized consensus

in this setting with delays and asynchrony, it is necessary and

sufficient that a spanning tree exists in the network. This is the

well-known topological condition for multi-agent consensus

when the states take real values [27].

Corollary 5.5: When no malicious agent is present, the

network of quantized agents based on the update rule (15)

with delayed information reaches quantized consensus almost

surely with respect to the randomized quantization if and only

if the underlying graph has a directed spanning tree.

Proof: With f = 0, the conditions in Theorem 5.1 and

Proposition 5.3 coincide. Consequently, we obtain a necessary

and sufficient condition for reaching quantized consensus in

normal networks to be (1, 1)-robust. By Lemma 2.2 (iii), this

condition is equivalent to having a directed spanning tree. �

The above corollary is an extension of Corollary 3.5 where

there is no information delay in the network. The system

model in this section with delays also generalizes the models

studied for quantized consensus in [1], [4], [6], [7], [16], [17],

[25].

2) f -Local Malicious Models: The following corollary

states that the same condition fulfills the sufficiency of f -

local malicious models instead of the f -total models studied

so far. This is because in the proofs of Theorem 5.1 and

Proposition 5.4, the presence of at most f malicious agents in

the neighborhood of each normal agent is the only assumption.

In other words, the total number of malicious agents is not

used in the proof. Note that the necessary condition stated in

Proposition 5.3 is valid for f -local case as well.

Corollary 5.6: Under the f -local malicious models, the

network of deterministic/randomized asynchronous quantized

agents with/without information delays in the asynchronous

QW-MSR algorithm reaches resilient quantized consensus

almost surely with respect to the randomized quantization and

updates if the underlying graph is (2f +1)-robust and only if

the graph is (f + 1, f + 1)-robust.
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Fig. 5. Networks with seven agents

Finally, we mention that in the results of Theorem 5.1,

Proposition 5.4, and Corollary 5.6, the minimum number of

nodes in the underlying graph to reach resilient quantized

consensus with asynchronous QW-MSR algorithms over f -

total/f -local malicious models is 4f + 1 (with complete

graphs). This minimum originates from Lemma 2.2 (iv). It

is noteworthy that for real-valued first-order asynchronous

settings, the sufficient condition (3f +1)-robustness proposed

in [23] has been improved in this paper and in [9]. For a

thorough comparison with the problem setting in [23], the

reader can refer to [8], [9].

VI. NUMERICAL EXAMPLE

In this section, we illustrate the effectiveness of the proposed

resilient consensus algorithms through a numerical example.

Consider the network with seven nodes in Fig. 5(a), which

is the same as the one in Fig. 1. As discussed in Sec-

tion II-A, this graph is (2,2)-robust. Throughout the example,

it is assumed that the agents start from the initial values

x[0] = [1 10 1 10 1 10 1]T . To misguide the normal agents,

agent 1 is chosen to be malicious, and it alternates between two

values as x1[2m] = 1 and x1[2m+1] = 10 for m ∈ Z+, which

are the values in xN [0]. In the plots, the malicious agent’s

behavior is not shown as it tends to move very frequently in

the different scenarios. The line colors used in the plots for

the normal agents 2, 3, . . . , 7 are shown in Fig. 6.

1) Synchronous Networks: First, we conducted simulations

on the graph in Fig. 5(b), which is constructed by removing the

edges (1, 7), (3, 2), (5, 6), (6, 3), and (6, 7) from the original

graph G in Fig. 5(a). The obtained graph is no longer (2,2)-

robust, but is strongly connected. After applying the QW-MSR

algorithm on the network, the normal agents are deceived by

agent 1 and do not reach agreement. Fig. 7 illustrates how

the normal agents make updates under this configuration. As

it is seen, while agents 2, 4, and 6 stay at 10 and agents 3

and 7 stay at 1, agent 5 fluctuates between these two values.
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Fig. 6. Line colors of the normal agents in the plots.
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Fig. 7. Synchronous QW-MSR algorithm over a nonrobust graph.
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Fig. 8. Synchronous QW-MSR algorithm over a (2, 2)-robust graph

This shows that for resilient consensus, strong connectivity

may not be sufficient. It is noteworthy that by removing

the malicious node 1, the network of normal agents has a

spanning tree. Hence, although the normal agents form a graph

satisfying the well-known necessary and sufficient condition

for reaching consensus, the adversarial effect of the malicious

agent prevents agreement among them.

Next, we made simulations for the original (2, 2)-robust

graph G in Fig. 5(a). As shown in Fig. 8, the normal agents

after 17 steps meet at x∗ = 8. This confirms the result of

Theorem 3.1 for the case of synchronous interactions.

2) Asynchronous Networks without Delay: Then, we car-

ried out simulations for the case where normal agents make

asynchronous updates. First, we examined a deterministic rule

by assigning different updating times for agents 3, 5, and 7,

whose initial values are 1, and agents 2, 4, and 6, whose initial

values are 10, as follows:

U [k] =

{

{3, 5, 7} if k = 2m,

{2, 4, 6} if k = 2m+ 1
(17)

for m ∈ Z+. After applying the QW-MSR algorithm on the

original G in Fig. 5(a), the normal agents do not change their

state values at all as shown in Fig. 9. Note that the underlying

graph satisfies the necessary condition, but not the sufficient

condition.

In the next simulation, we examined the sufficient condition

stated in Theorem 4.1 by modifying G to become 3-robust. We

added the edges (3, 6), (4, 3), (5, 4), (6, 5), and (7, 6) to G to

this aim and obtained the graph in Fig. 5(c). The result is seen

in Fig. 10 where the normal agents agree upon x∗ = 4 after

20 time steps.
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Fig. 9. Asynchronous QW-MSR algorithm over a (2, 2)-robust graph with
deterministic update times.
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Fig. 10. Asynchronous QW-MSR algorithm over a 3-robust graph with
deterministic update times.
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Fig. 11. Asynchronous QW-MSR algorithm over a (2, 2)-robust graph with
probabilistic update times.

As the last step, we employed the probabilistic update rule

over the (2, 2)-robust graph in Fig. 5(a), where each normal

agent makes updates with probability p = 0.5. The result is

shown in Fig. 11. We observe that the normal agents reach

x∗ = 7 after 28 time steps. This verifies that randomization

in the update times is capable to relax the required robustness

of the network. However, compared to Fig. 10, it takes longer

to reach its final value, which may be because of the sparser

network structure.

3) Asynchronous and Delayed Networks with Deterministic

Updates: Here, we performed simulations considering delays

in the original network G in Fig. 5(a). The updates follow the

same deterministic rule in (17). The communication delays are

present in the edges from agent 1 to its neighbors and are set

as below:

(τi1[2m], τi1[2m+ 1]) =

{

(7, 8) if i = 2,

(8, 7) if i = 3, 5, 7
(18)

for m ∈ Z+. Although the underlying graph meets the

necessary condition stated in Proposition 5.3, none of the

normal agents changes its value and their responses look the

Time
0 10 20 30 40

St
at

e 
Va

lue
se

0

2

4

6

8

10

Fig. 12. Asynchronous QW-MSR algorithm over a 3-robust graph under
delays and deterministic updates (f = 1).
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Fig. 13. Asynchronous QW-MSR algorithm over a 3-robust graph under
delays and randomized updates (f = 1).

same as those in Fig. 9. Thus, again, they form two clusters

at 1 and 10 and fail to reach consensus.

Next, we examined Theorem 5.1 by using the 3-robust graph

in Fig. 5(c). This graph was obtained by adding the edges

(3, 6), (4, 3), (5, 4), (6, 5), and (7, 6) to G. In the network,

the updating times (17) and the time delays (18) remain the

same as in the previous simulations. The time responses are

given in Fig. 12, where the normal agents agree upon x∗ = 5
after 19 time steps. Thus, we have verified Theorem 5.1.

4) Asynchronous and Delayed Networks with Randomized

Updates: As the last simulation study, we checked if the

randomization is helpful in the delayed information case. We

set each normal agent i to be updating (i.e., i ∈ U [k]) with

probability pi = 0.4. The delays are defined with the rule (18).

After applying the asynchronous QW-MSR algorithm on the 3-

robust graph constructed in the previous example, we observe

in Fig. 13 that the normal agents meet at x∗ = 4 but with

a lower speed at k = 32. This corresponds to the result of

Proposition 5.4.

Finally, we employed the randomized update rules over the

original G. We could see that the normal agents form two

groups at 1 and 10 exactly as in Fig. 9, which again verifies

that the sufficient condition in Theorem 5.1 cannot be relaxed

even if the update times are randomized.

As a result of these examples, we see that the malicious

agent tries to hide its jumps (from 1 to 10 and vice versa)

by imposing specific delays in the links to the normal agents.

By this strategy, it successfully deceives the normal agents to

stay at their values. This is independent of update times and

even randomization in update times is not helpful. Thus, the

network must be more robust in order to reach consensus.



VII. CONCLUSION

In this paper, the problem of quantized consensus in the

presence of malicious agents has been considered. We have

studied several classes of resilient distributed algorithms that

perform under different conditions such as synchronous and

asynchronous schemes with deterministic and probabilistic

updating times, and delayed information. Necessary conditions

and sufficient conditions for reaching consensus among non-

faulty agents have been derived based on the notion of graph

robustness.

In particular, we have made use of randomization in quan-

tization as well as in the update times, which turn out to

be critical in obtaining tight topological conditions on the

underlying graph. On the other hand, in the asynchronous

and/or delayed case, we have observed how malicious agents

can take advantage of the properties in communication to

prevent normal agents from reaching consensus.

In future research, we intend to study convergence rates

of the resilient algorithms (see Remark 3.4 for discussions)

as well as the application of MSR-type algorithms to other

multi-agent problems with malicious information.
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APPENDIX: PROOF OF THEOREM 5.1

We must show that by applying the asynchronous QW-MSR

to an f -total network, the conditions (C1)–(C3) in Lemma 3.2

hold. First, we prove (C1), which is the safety condition.

Define the minimum and maximum values of the normal

agents at time k and the previous τ time steps by

z[k] = min(xN [k], xN [k − 1], . . . , xN [k − τ ]),

z[k] = max(xN [k], xN [k − 1], . . . , xN [k − τ ]). (19)

In the network, there are at most f malicious agents, and,

at each time step, each normal agent removes the values

of at most f neighbors from the above and below. Hence,

those faulty agents with unsafe values outside the inter-

val
[

z[k], z[k]
]

are all ignored at each time step. In other

words, each normal agent i is affected only by values within
[

z[k], z[k]
]

. It thus follows that the value of the normal agent

i in the update rule (15) is upper bounded by

xi[k + 1] ≤
⌈

∑

j∈Ni∪{i}

wτ,ij [k]xj [k − τij [k]]
⌉

≤
⌈

∑

j∈Ni∪{i}

wτ,ij [k]z[k]
⌉

=
⌈

z[k]
⌉

= z[k] (20)

with τii = 0 for i. Also, it is clear that

xi[k] ≤ z[k], xi[k − 1] ≤ z[k], . . . ,

xi[k − (τ − 1)] = xi[k + 1− τ ] ≤ z[k]

for i ∈ V \M. Hence, with (20), we have

z[k + 1] = max
(

xN [k + 1], · · · , xN [k + 1− τ ]
)

≤ z[k].

This implies that z[k + 1] ≤ z[k], that is, z[k] is a mono-

tonically non-increasing function of time. Likewise, agent i’s
value can be bounded from below as

xi[k + 1] ≥
⌊

∑

j∈Ni∪{i}

wτ,ij [k]xj [k − τij [k]]
⌋

≥
⌊

∑

j∈Ni∪{i}

wτ,ij [k]z[k]
⌋

=
⌊

z[k]
⌋

= z[k].

Thus, by similar arguments, we have z[k + 1] ≥ z[k], which

shows that z[k] is a monotonically non-decreasing function of

time. Consequently, we conclude that for the normal agent i,
its state satisfies xi[k] ∈

[

z[k], z[k]
]

⊂ Sτ for all k with the

interval Sτ given in (16). Thus, (C1) is established.

Next, we prove (C2) in Lemma 3.2. Since z[k] and z[k] are

contained in Sτ and are monotone, there is a finite time kc
such that they both reach their final values with probability

1. Denote the final values of z[k] and z[k] by z∗ and z∗,

respectively. Now, to conduct a proof by contradiction, we

assume z∗ < z∗. Then, denote by X1τ [k] the set of all

normal agents at time k ≥ kc with state values equal to z∗.

Likewise, denote by X2τ [k] the set of normal agents that have

the minimum state values z∗. That is,

X1τ [k] =
{

i ∈ V \M : xi[k] = z∗
}

,

X2τ [k] =
{

i ∈ V \M : xi[k] = z∗
}

.
(21)

From the convergence of z[k] to z∗, we know that the sequence

of X1τ [kc+ ℓ], ℓ = 0, . . . , τ , must collectively contain at least

one normal agent that has the value z∗, i.e.,

kc+τ
⋃

k=kc

X1τ [k] 6= ∅ (22)

with probability 1. The same holds for z[k]. We claim that

in fact X1τ [kc] is nonempty. This is proven by showing that

if X1τ [kc] is empty, then ∪kc+τ
k=kc

X1τ [k] = ∅ with non-zero

probability, which is in contradiction with (22). To this end,

it is enough to show that if X1τ [kc + ℓ] is empty, then the

probability of X1τ [kc + ℓ+ 1] to be empty is non-zero.

First, we show that none of the normal agents in V \X1τ [k]
enters X1τ [k+1] at the next time step with positive probability.

Assume that the normal agent i makes an update at time kc+ℓ.
Note that if there is not such an updating agent at time kc+ ℓ,
none of them can enter X1τ [kc + ℓ + 1]. However, we know

that each normal agent makes an update at least once in τ̄
time steps. We also know by the assumption on emptiness of

X1τ [kc + ℓ] that agent i is upper bounded by z∗ − 1. Thus,

xi[kc+ℓ+1] ≤ Q((1−β)z∗+β(z∗−1)) = Q(z∗−β), (23)

where Q(z∗ − β) = z∗ − 1 with probability 1− β. The same

arguments can be employed to prove that X2τ [kc] is nonempty.

Then, we show that with positive probability, at the next

time step, the agents in X1τ [k] decrease their values, and the

agents in X2τ [k] increase their values. The sets X1τ [kc] and

X2τ [kc] are disjoint and nonempty; therefore, we can make use

of (2f + 1)-robustness of the underlying graph G[k]. At least

one of these two sets includes a node with (2f +1) incoming

links from outside. We show this for the case the normal agent



i is in X1τ [k]; the other case with X2τ [k] can be established

similarly. The value of this agent clearly is xi[k] = z∗.

In step 2 of the asynchronous QW-MSR, agent i makes

an update using at least one agent from its neighbors whose

values are smaller than z∗. It also neglects all values larger

than z∗ since there are at most f such values. Thus, by the

update rule (15), we write

xi[k + 1] ≤ Q
(

(1 − β)z∗ + β(z∗ − 1)) = Q(z∗ − β). (24)

Here, by (3), the quantizer output takes the truncated value as

Q(z∗ − β) = z∗ − 1 with probability 1 − β. This indicates

that with positive probability, one of the normal agents taking

the maximum value z∗ decreases its value by at least one.

Similarly, if the normal agent i is in X2τ [k], then with positive

probability, it chooses the ceil quantization, in which case its

value will increase above z∗.

From the above discussion, we conclude that at each time

step, some agents in X1τ [k] or X2τ [k] make updates and they

decrease or increase, respectively, their values with positive

probability. Hence, for any k ≥ kc + k̄ · nN , the number of

normal agents in one of the sets X1τ [k] and X2τ [k] is zero with

positive probability because there are only nN such agents and

each makes updates at least once in k̄ time steps. This is a

contradiction and proves (C2).

Finally, we must show (C3) in Lemma 3.2. For this step,

we can follow along similar lines as this part in the proof of

Theorem 3.1. After all normal agents reach consensus at the

value x∗, when they make updates at time k, other agents j
taking values xj [k] 6= x∗ are ignored. Thus, the third step of

asynchronous QW-MSR with the update rule in (15) results

in xi[k + 1] = x∗ for i ∈ V \ M. Having shown (C3), we

conclude the proof. �
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