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On Remote Estimation with Multiple Communication Channels

Xiaobin Gao, Emrah Akyol, and Tamer Başar

Abstract— This paper considers a sequential estimation and
sensor scheduling problem in the presence of multiple commu-
nication channels. As opposed to the classical remote estimation
problem that involves one perfect (noiseless) channel and one
extremely noisy channel (which corresponds to not transmitting
the observed state), a more realistic additive noise channel
with fixed power constraint along with a more costly perfect
channel is considered. It is shown, via a counter-example, that
the common folklore of applying symmetric threshold policy,
which is well known to be optimal (for unimodal state densities)
in the classical two-channel remote estimation problem, can be
suboptimal for the setting considered. Next, in order to make
the problem tractable, a side channel which signals the signof
the underlying state is considered. It is shown that, under some
technical assumptions, threshold-in-threshold communication
scheduling is optimal for this setting. The impact of the presence
of a noisy channel is analyzed numerically based on dynamic
programming. This numerical analysis uncovers some rather
surprising results inheriting known properties from the noisy
and noiseless settings.

I. I NTRODUCTION

This paper extends the joint sensor scheduling and remote
state estimation problems, see e.g., [1]–[4], to a more re-
alistic setting that involves multiple, noisy communication
channels.

In [1], which initiated this line of research, a special case
of the problem was considered: Estimate a one-dimensional
discrete-time stochastic process distributed independently
and identically (i.i.d.) over a decision horizon of lengthT
using onlyN ≤ T measurements. Over the decision horizon
of length T , the sensor had exactlyN opportunities to
transmit its observation to the estimator. The main difference
from the work here is that these transmissions were assumed
to be error and noise free. The transmission decisions that
minimize the average estimation error between the process
and its estimate were sought in the class of threshold based
strategies and the optimal decision sequence was obtained via
dynamic programming. Later, using majorization and related
techniques, such threshold based strategies were shown to be
optimal for this problem [2].

In a recent prior work [5], the problem with perfect
(noiseless) communication was extended to the noisy channel
scenario, i.e., the perfect channel was replaced with a noisy
one. Inclusion of noise in the channel poses a significant
research challenge, since the sensor now has to encode
its message before transmission, and the estimator has to
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consider this encoding mapping in its estimation mapping.
This problem was solved in [5] using the recent results on
zero-delay communication [6]. The adversarial zero-delay
communication was studied in [7], where it was shown
that the optimal strategy for an adversarial agent with fixed
jamming power is to render the effective channel noise
distribution to match that of the source, so that the optimal
encoding/decoding mappings are linear. Due to the minimax
optimality property of such linear (or affine) mappings [7],
we pose the problem in an adversarial setting where the noise
is generated by a jammer, and we take these communication
mappings as affine.

In this paper, we merge the perfect channel setting, studied
in [1], [2] with the recently studied noisy setting [4], [5].
An intuitive scheduling policy here is to use threshold-in-
threshold structure since symmetric thresholding has been
shown to be optimal, for any unimodal state density, for the
noiseless settings [2] (under some mild technical conditions).
However, when combined with a noisy channel, we show
here that such a policy is no longer optimal and optimal
strategy is rather hard to obtain. To facilitate the analysis,
we next assume a (perfect) side channel between the encoder
and the estimator, over which the sign of the observed state is
transmitted. In this setting, in conjunction with some assump-
tions on the sensing policy and affine encoding-estimating
policies, we show optimality of the threshold-in-threshold
sensing policy. Armed with this result, we numerically obtain
the optimal decision sequence, i.e., the evolution of threshold
values in time, via dynamic programming. This numerical
analysis demonstrates some rather surprising results inher-
iting the known properties from the noisy and noiseless
settings. For example, the transmitter uses all communication
opportunities for the perfect channel, while there might be
such opportunities left at the end of the time horizon for
communication over the noisy channel.

II. PROBLEM FORMULATION

A. System Model

Fig. 1: System model
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Consider a discrete time communication scheduling and
remote estimation problem over a finite time horizon, i.e.,t =
1, 2, . . . , T . A one-dimensional source process{Xt} is an
independent identically distributed (i.i.d.) stochasticprocess
with probability density functionpX . At time t, the sensor
observes the state of the sourceXt. Then, it decides whether
and how to transmit its observation to the remote estimator
(which is also called “decoder”). LetUt ∈ {0, 1, 2} be the
sensor’s decision at timet. Ut = 0 means that the sensor
chooses not to transmit its observation to the decoder, hence
it sends a free symbolǫ to the decoder representing nothing is
transmitted.Ut = 1 means that the sensor chooses to transmit
its observation to the decoder over an additive noise channel.
Therefore, the sensor sendsXt to an encoder, which then
sends an encoded message, call itYt, to the communication
channel.Yt is corrupted by an additive channel noiseVt. {Vt}
is a one-dimensional i.i.d. stochastic process with density
pV , which is independent of{Xt}. The encoder has average
power constraint, that is,

E[Y 2] ≤ PT

wherePT is known and constant for allt. WhenUt = 2,
sensor chooses to transmit its observation over a perfect
channel. Then, the decoder will receiveXt. Let Ỹt be the
message received by decoder at timet, we have

Ỹt =















ǫ, if Ut = 0

Yt + Vt, if Ut = 1

Xt, if Ut = 2

After receivingỸt, the decoder generates an estimate onXt,
denoted byX̂t. The decoder is charged for squared distortion
(Xt − X̂t)

2.

B. Communication Constraints

We consider the optimization problem under two kinds of
communication constraints, separately. In the first scenario,
at each timet, the sensor is charged for its decision, i.e., there
is a cost function associated withUt, denoted byc(Ut), such
that

c(Ut) =















0, if Ut = 0

c1, if Ut = 1

c2, if Ut = 2

wherec1, c2 ≥ 0. c(Ut) is also called communication cost
at time t. Such kind of communication constraint is called
soft constraint. In the second scenario, the sensor is not
charged for transmitting its observations. However, the sensor
is restricted to use the noisy channel and the perfect channel
for no more thanN1 andN2 times, respectively, i.e.,

T
∑

t=1

1{Ut=1} ≤ N1,

T
∑

t=1

1{Ut=2} ≤ N2

where1{·} is the indicator function, andN1, N2 are positive
integers. Such kind of communication constraint is called
hard constraint.

C. Decision Strategies

Assume that at timet, the sensor has memory of all its
measurements byt, denoted byX1:t, and all the decisions
it has made byt− 1, denoted byU1:t−1. The sensor makes
decisionUt based on its current information(X1:t, U1:t−1),
that is,

Ut = ft(X1:t, U1:t−1)

whereft is the sensor scheduling policy at timet and f =
{f1, f2, . . . , fT } is the sensor scheduling strategy.

Assume that at timet, no matter whether and how the
sensor decides to transmit the source output, it always
transmits its decisionUt to the encoder. LetX̃t be the
message received by the encoder at timet; then,

X̃t =

{

(Xt, Ut), if Ut = 1

Ut, otherwise

Denote byX̃1:t the messages received by the encoder up to
time t. Similar to the above, we assume that the encoder has
memory onX̃1:t, and all the encoded messages it has sent
to the communication channel byt− 1, denoted byY1:t−1.
The encoder generates the encoded messageYt based on its
current information(X̃1:t, Y1:t−1), that is,

Yt = gt(X̃1:t, Y1:t−1),

where gt is the encoding policy at timet and g =
{g1, g2, . . . , gT} is the encoding strategy.

Assume that the decoder can deduceUt from Ỹt. Further-
more, it is assumed that at timet, the decoder has memory
on all the messages received from communication channels
by t, denoted bỹY1:t. The decoder produces the estimateX̂t

based on its current informatioñY1:t, namely,

X̂t = ht(Ỹ1:t),

where ht is the decoding policy at timet and h =
{h1, h2, . . . , hT } is the decoding strategy.

Remark 1:Although we do not assume that the decoder
has memory onX̂1:t−1, yet it can deduce them from̃Y1:t−1

and{h1, h2, . . . , ht−1}.

D. Optimization Problems

Consider the setting described above, with the time hori-
zonT , the probability density functionspX andpV , and the
power constraintPT as given.

Optimization problem withsoft constraint: Given the
communication cost functionc(·), determine(f, g, h) that
minimize

J(f, g, h) = E

{

T
∑

t=1

c(Ut) + (Xt − X̂t)
2

}

.

Optimization problem withhard constraint: Given the
number of transmission opportunitiesN1 andN2, determine
(f, g, h) that minimize

J(f, g, h) = E

{

T
∑

t=1

(Xt − X̂t)
2

}

.



III. PRELIMINARIES

A. Problem with Perfect Channel

The communication scheduling and remote estimation
problems with one perfect communication channel and
soft/hard constraints have been studied in [1]–[3]. In this
prior work, both i.i.d. source and Markov source were
considered. In the case of i.i.d. source, it was assumed that
the source density is symmetric and unimodal around0,
namely,

pX(x) = pX(−x), ∀ x ∈ R

pX(a) ≥ pX(b), if |a| ≤ |b|
One of the distortion metrics considered was the squared
error. With the above assumptions, it was shown that the
optimal communication scheduling policy at timet is sym-
metric threshold-based, and the optimal estimation policyis
also symmetric, that is,

ft(Xt) =

{

2, if |Xt| > βt

0, if |Xt| ≤ βt

, ht(Ỹt) =

{

Ỹt, if Ut = 2

0, if Ut = 0

whereβt is the threshold at timet. In the problem with soft
constraint,βt depends only on communication cost, which
is independent of time. In the problem with hard constraint,
βt depends on timet and the number of communication
opportunities left at timet, denoted byEt, where

Et = N2 −
t−1
∑

i=1

1{Ui=2}

Furthermore,βt can be computed via dynamic programming
(see [1] for details).

B. Zero Delay Communication and Jamming

In [6], the following problem was considered: an encoder
wants to make a one-shot transmission sending an input
signal X to the decoder. The communication channel has
a zero mean additive channel noiseV , which is independent
of X . Since the channel is noisy, the encoder first encodes the
input signalX according to some encoding policyg, and then
sends the encoded messageY to the communication channel.
The encoder is assumed to have average encoding power
constraint. The decoder receives the noise-corrupted message
Y +V , denoted byỸ , and then generates an estimate ofX ,
denoted byX̂ , according to some decoding policyh. The
optimization problem is to design the encoding and decoding
policies (g, h) to minimize the mean squared estimation
error E[(X − X̂)2] subject to encoding power constraint
E[Y 2] ≤ PT . It has been shown that once the characteristic
functions ofX andV satisfy so-calledmatching conditions,
the optimal encoding and decoding policies are affine as
follows:

g(X) = α · (X − E[X ])

h(Ỹ ) = 1
α

γ
γ+1 Ỹ + E[X ]

where γ := PT

σ2

V

is the signal to noise ratio (SNR),α =
√

PT

Var(X) , Var(X) is the variance ofX . Furthermore, min-

imum mean squared error isVar(X)
1+γ

.

Later in [7], a jamming problem was considered where the
communication channel noise is generated by an adversary,
and it was shown that the affine encoding/decoding policies
are minimax.

C. Problem with Noisy Channel

In the work of [4], [5], similar problems with only
one additive noise channel with soft/hard constraints were
analyzed. It was shown that if the source and the channel
noise are i.i.d., and the communication cost function, the
distortion metric, and the encoding power are time invariant,
then the optimization problem over a finite time horizon with
soft constraint collapses to a one-stage problem [4, Theorem
2], and the optimization problem with hard constraint can
be converted to a one-stage optimization problem with soft
constraint [5, Theorems 2 and 3].

IV. T HE PROBLEM WITH SOFT CONSTRAINT

A. Conjecture and Corollary

By an argument similar to that in [4, Theorem 2], the
optimization problem with i.i.d. source and soft commu-
nication constraint collapses to a one-stage optimization
problem. Hence for simplicity, we henceforth suppress the
subscript for time. We make the following assumptions on
the optimization problem.

Assumption 1:The source densitypX is symmetric and
unimodal around zero.

Assumption 2:The communication channel noiseV has
zero mean, and fixed variance, denoted byσ2

V .
Assumption 3:The encoder and decoder are restricted to

apply affine policies, namely

g(X) = α · (X − E[X |U = 1])

h(Ỹ ) = 1
α

γ
γ+1 Ỹ + E[X |U = 1]

where γ := PT

σ2

V

is the signal to noise ratio,α =
√

PT

Var(X|U=1) . Var(X |U = 1) is the variance ofX condition
that the sensor transmits the source output over the noisy
channel.

The first assumption is standard. The second and third
assumptions are consequences of the jamming setting (that
is, with worst-case approach, see [7] for details). Since the
source is symmetric around zero, and the distortion metric
is the squared error, which is also symmetric around zero, it
is intuitive to conjecture that the communication scheduling
policy is symmetric around zero. Also note that the problem
with one perfect communication channel admits an optimal
scheduling policy which is symmetric around zero.

Conjecture 1:The optimal communication scheduling
policy satisfies

f(x) = f(−x) ∀ x ∈ R

The following corollary is a sequence of Conjecture 1.



Corollary 1: If Conjecture 1 holds, the optimal scheduling
policy is of the threshold-in-threshold type:

f(x) =















0, if |x| ≤ β1

1, if β1 < |x| ≤ β2

2, if |x| > β2

(1)

whereβ1 andβ2 are called thresholds, and0 ≤ β1 ≤ β2.
Proof: Let T f

0 , T f
1 , T f

2 be thenon-transmission region,
the noisy transmission region, and theperfect transmission
region, respectively, according to communication policyf ,
i.e.,

T f
i := {x ∈ R|f(x) = i}, i ∈ {0, 1, 2}

Then, the conjecture states thatT f
0 , T f

1 , T f
2 are symmetric

around zero.
Whenx ∈ T f

0 , the sensor does not send anything to the
decoder but the free symbolǫ. Then, the decoder knows that
X ∈ T f

0 . Hence,X̂ = E[X |X ∈ T f
0 ]. By Conjecture 1, we

haveX̂ = E[X |X ∈ T f
0 ] = 0.

Whenx ∈ T f
2 , the sensor chooses to transmit its observa-

tion over the perfect channel. Hence, the optimal decoder is
to report the received message, that is,X̂ = x.

Whenx ∈ T f
1 , the sensor chooses to transmit its observa-

tion over the noisy channel. By Conjecture 1, we have

E
[

X |U = 1
]

= E
[

X
∣

∣X ∈ T f
1 ] = 0

where the second equality is due to the fact thatpX andT f
1

are symmetric around zero. Hence, we have

g(X) = α ·X, h(Ỹ ) =
1

α

γ

γ + 1
Ỹ

whereγ = PT

σ2

V

is given, andα depends on the choices of
f andpX . We are done with the proof if we can show that
given anyα > 0, (1) is satisfied. Suppose the sensor observes
the realization ofX = x. Let J0(x), J1(x), andJ2(x) be
the total cost functions corresponding toU = 0, U = 1, and
U = 2, respectively. Then we have,

J0(x) = x2

J1(x) = c1 + E[(x − X̂)2]

= c1 + E
[

(x− 1
α

γ
γ+1 (αx+ V ))2

]

= c1 +
1

(γ+1)2E
[

(x− γ
α
V )2

]

= c1 +
1

(γ+1)2 · x2 + γ2

α2(γ+1)2 · σ2
V

J2(x) = c2

Then,
f(x) = argmin

i∈{0,1,2}

Ji(x)

J0(x), J1(x), andJ2(x) are symmetric around zero, hence
we only need to consider the case whenx ≥ 0. Since

1
(1+γ)2 < 1, it is easy to check that there existβ01 and
β02 such that

J0(x) ≤ J1(x), iff x ∈ [0, β01]

J0(x) ≤ J2(x), iff x ∈ [0, β02]

Defineβ1 := min{β01, β02} and we have

J0(x) ≤ min{J1(x), J2(x)}, iff x ∈ [0, β1]

⇒ f(x) = 0, iff x ∈ [0, β1]
(2)

Therefore, when computingf(x) for x ∈ (β1,∞), we only
need to compareJ1(x) with J2(x). ConsiderJ1(x) and
J2(x), sinceJ1(x) is a parabolic function ofx andJ2(x) is
constant inx, either of the following cases occurs:

Case I:c2 < c1 +
γ2

α2(γ+1)2 · σ2
V . Then

J1(x) > J2(x), ∀ x > 0 ⇒ f(x) = 2, ∀ x ∈ (β1,∞) (3)

Case II:c2 ≥ c1 +
γ2

α2(γ+1)2 · σ2
V . It can be checked that

there exists one threshold, call itβ2, such thatJ1(x) ≤ J2(x)
if and only if x ∈ [0, β2]. If β2 < β1,

J1(x) > J2(x), x ∈ (β1,∞) ⇒ f(x) = 2, x ∈ (β1,∞) (4)

If β2 ≥ β1,

J1(x) ≤ J2(x), x ∈ (β1, β2] ⇒ f(x) = 1, x ∈ (β1, β2]

J1(x) > J2(x), x ∈ (β2,∞) ⇒ f(x) = 2, x ∈ (β2,∞)
(5)

Combining (2) through (5), we conclude that the optimal
communication scheduling policyf(x) has the expression
of (1). Note that (2)-(3) and (2) and (4) are the special cases
of (1) whereβ2 = β1.

Although Conjecture 1 and Corollary 1 seem very intuitive
at first glance, the following counter example renders them
not valid from the point of global optimality.

Counter example: Consider

pX(x) =
1

2L
, x ∈ [−L,L]

which is symmetric and unimodal. Assumec1 < c2. By
Corollary 1, the optimal communication scheduling policy,
denoted byf∗, is of the threshold-in-threshold type, which is
described in (1) with thresholds0 < β∗

1 < β∗
2 . By the proof

of Corollary 1, β∗
2 is the separating point whereJ1(x) ≤

J2(x) if and only if x ∈ [0, β∗
2 ]. ConsiderJ1(x) − J2(x):

J1(x)− J2(x) = c1 − c2 +
1

(γ+1)2 · x2 + γ2

α2(γ+1)2 · σ2
V

≥ c1 − c2 +
1

(γ+1)2 · x2

> 0, if x >
√
c2 − c1 · (γ + 1)

which implies thatβ∗
2 <

√
c2 − c1 · (γ + 1). Hence, by

choosing
√
c2 − c1 · (γ + 1) ≪ L, we haveβ∗

2 ≪ L.
Denote byJ(f), the expected total cost if the sensor applies
communication scheduling policyf . Then, we have

J(f) = E
[

c(U) + (X − X̂)2
]

=
∑2

i=0 E
[

c(U) + (X − X̂)2
∣

∣X ∈ T f
i ] · P(X ∈ T f

i )

= E[(X − X̂)2|X ∈ T f
0 ] · P(X ∈ T f

0 ) + c1 · P(X ∈ T f
1 )

+ E[(X − X̂)2|X ∈ T f
1 ] · P(X ∈ T f

1 ) + c2 · P(X ∈ T f
2 )

Recall that whenX ∈ T f
0 , X̂ = E[X |X ∈ T f

0 ]. Hence,
E
[

(X − X̂)2
∣

∣X ∈ T f
0 ] = Var(X |X ∈ T f

0 ). Furthermore, by



the results from [6] discussed in section III,E[(X−X̂)2|X ∈
T f
1 ] = 1

γ+1Var(X |X ∈ T f
1 ). Hence,

J(f) = Var(X |X ∈ T f
0 ) · P(X ∈ T f

0 ) + c1P(X ∈ T f
1 )

+ 1
γ+1 · Var(X |X ∈ T f

1 ) · P(X ∈ T f
1 ) + c2P(X ∈ T f

2 )
(6)

Next, consider f∗; then T f∗

0 = [−β∗
1 , β

∗
1 ], T f∗

1 =

[−β∗
2 ,−β∗

1)
⋃

(β∗
1 , β

∗
2 ], andT f∗

2 = [−L,−β∗
2)
⋃

(β∗
2 , L].

We now construct another communication scheduling policy
f ′ as follows

T f ′

0 = T f∗

0 , T f ′

1 = (β∗
1 , β

∗
2 ]
⋃

(β∗
2 , 2β

∗
2 − β∗

1 ]

T f ′

2 = [−L,−β∗
1)
⋃

(2β∗
2 − β∗

1 , L]

One can see that we shifted part of the noisy transmission
region to make it connected, as illustrated in Fig. 2. Since

Fig. 2: The counter example

the source has uniform distribution,P(X ∈ T f ′

1 ) = P(X ∈
T f∗

1 ), andP(X ∈ T f ′

2 ) = P(X ∈ T f∗

2 ). Furthermore, the
non-transmission region,T f∗

0 , is not changed. Hence,

J(f ′)− J(f∗)

=
P(X ∈ T f ′

1 )

γ + 1
·
(

Var(X |X ∈ T f ′

1 )−Var(X |X ∈ T f∗

1 )
)

Since pX is uniform, T f ′

1 and T f∗

1 have the same
Lebesgue measure, andT f ′

1 is connected, we conclude that
Var(X |X ∈ T f ′

1 ) < Var(X |X ∈ T f∗

1 ) and thus,J(f ′) <

J(f∗) which generates a contradiction. In the special case
where β∗

1 = β∗
2 , one can also come up with a counter

example by replacing part of perfect transmission regionT f∗

2

by noisy transmission regionT f ′

1 .
Remark 2:The counter example above shows that noisy

transmission region in the symmetric communication policy
may be disconnected. As discussed in section III, MMSE
of the zero delay communication problem is proportional to
Var(X |X ∈ T f

1 ). Splitted noisy transmission region results
in large Var(X |X ∈ T f

1 ), and thus does not take full
advantage of the noisy channel.

In order to have symmetric noisy transmission region to
render the problem tractable, we further assume the existence
of side channel.

B. Modified Problem

Assume that there exists a perfect side channel between
the encoder and the decoder. When transmitting the encoded
messageY , the encoder also sends the sign of the source,
denoted byS, to the decoder over the side channel. The
decoder generates the estimatêX based on the received
messages(Ỹ, S). Note that side-channel will not be used
if the sensor chooses not to transmit the source output or to
transmit it over the perfect channel. Hence, we have

S =

{

sgn(X), if U = 1

ǫ, otherwise

where ǫ stands for nothing being transmitted. Note that
the side channel enables using different encoding/decoding
policies for the positive and negative input signal. Hence,we
need to modify Assumption 3 (we keep Assumptions 1 and
2).

Assumption 4:The encoder and the decoder are restricted
to apply piecewise affine policies:

g(X,S) = S · α · (X − E [X |U = 1, S])

h(Ỹ, S) = S · 1
α

γ
γ+1 Ỹ + E [X |U = 1, S]

where γ := PT

σ2

V

is the signal to noise ratio,α =
√

PT

Var(X|U=1,S) . Var(X |U = 1, S) is the conditional vari-
ance.

Let T f
1+, T f

1− be thepositive noisy transmission region
and the negative noisy transmission region, respectively,
according to communication policyf , i.e.,

T f
1+ = {x > 0|f(x) = 1}, T f

1− = {x < 0|f(x) = 1}

Note that even under the assumption of symmetric com-
munication scheduling policy, we may still have connected
positive/negative noisy transmission regions, which would
result in small conditional variance. Therefore, we still have
Conjecture 1. Then we can show that Corollary 1 still holds
based on Conjecture 1.

Corollary 2: In the modified problem, if the sensor is
restricted to apply symmetric communication scheduling
policy described in Conjecture 1, then the optimal communi-
cation scheduling policy is of the threshold-in-thresholdtype
described by (1) in Corollary 1.

Proof: We use an argument similar to that in the proof
of Corollary 1. WhenX = x ∈ T f

0 , X̂ = 0. Furthermore,
by the symmetry off , we haveT f

1+ = −T f
1−. SincepX is

symmetric, we have

E [X |U = 1, S = +1] = E

[

X |X ∈ T f
1+

]

= −E [X |U = 1, S = −1] = −E

[

X |X ∈ T f
1−

]

Let b := E[X |U = 1, S = +1]. Then E[X |U = 1, S]=
Sb. γ is known, whileα and b depend on the choice off
and pX . For anyα, b > 0, any realization of source output
X = x, and the corresponding realization ofS, denoted by



S = s = sgn(x), we can compute the total cost functions
J0(x), J1(x) andJ2(x) as follows:

J0(x) = x2

J1(x) = c1 + E[(x − X̂)2]

= c1 + E
[

(x− 1
α

γ
γ+1 (αx− αsb + sV )− sb)2

]

= c1 +
1

(γ+1)2E
[

(x− sb− γ
α
sV )2

]

= c1 +
1

(γ+1)2 · (x− sb)2 + γ2

α2(γ+1)2 · σ2
V

= c1 +
1

(γ+1)2 · (|x| − b)2 + γ2

α2(γ+1)2 · σ2
V

J2(x) = c2
(7)

where the second last equality is due to the fact thatx = s|x|
ands2 = 1. SinceJ0(x), J1(x), andJ2(x) are even functions
of x, we only need to consider the case wherex ≥ 0. It is
easy to see that there existsβ02 such that

J0(x) ≤ J2(x), iff x ∈ [0, β02]

J0(x) andJ1(x) are quadratic functions,J0(0)−J1(0) < 0.
Furthermore,

d

dx

(

J0(x)−J1(x)
)

=
2γ2 + 4γ

(γ + 1)2
x+

2b

(γ + 1)2
> 0, ∀ x > 0

Hence, there existsβ01 such that

J0(x) ≤ J1(x), iff x ∈ [0, β01]

Therefore,

J0(x) ≤ min{J1(x), J2(x)}, iff x ∈ [0, β1]

⇒ f(x) = 0, iff x ∈ [0, β1]

whereβ1 = min{β01, β02}. Hence when consideringx ∈
(β1,∞), we only need to compareJ1(x) with J2(x). J1(x)
is a porabolic opening upward, andJ2(x) is constant. There-
fore whenx ∈ (β1,∞) there are three possibilities. Case I:
J1(x) andJ2(x) do not intersect, which implies

J1(x) > J2(x), x ∈ (β1,∞) ⇒ f(x) = 2, x ∈ (β1,∞)

Case II: J1(x) and J2(x) intersect once atβ12,r, which
implies

J1(x) ≤ J2(x) ⇒ f(x) = 1, x ∈ (β1, β12,r]

J1(x) > J2(x) ⇒ f(x) = 2, x ∈ (β12,r,∞)

Case III:J1(x) andJ2(x) intersect twice atβ12,l andβ12,r,
which implies

J1(x) ≥ J2(x) ⇒ f(x) = 2, x ∈ (β1, β12,l]

J1(x) ≤ J2(x) ⇒ f(x) = 1, x ∈ (β12,l, β12,r]

J1(x) > J2(x) ⇒ f(x) = 2, x ∈ (β12,r,∞)

(8)

In cases I and II, the optimal communication scheduling
policies are of the threshold-in-threshold type, while that
conclusion does not hold for case III. We now show that
for any symmetric communication scheduling policyf in
the form of (8), we can come up with a threshold-in-
threshold type policy achieving no higher cost. Consider a

communication scheduling policyf described by (8) with
thresholdsβ1, β12,l, andβ12,r. Then,

T f
0 = [−β1, β1],

T f
1+ = (β12,l, β12,r], T f

1− = [−β12,r,−β12,l),

T f
2 = (−∞,−β12,r)

⋃

[−β12,l,−β1)
⋃

(β1, β12,l]
⋃

(β12,r,∞)

Similar to (6), the total expected cost by applyingf can be
computed as

J(f) = Var(X |X ∈ T f
0 ) · P(X ∈ T f

0 ) + c1P(X ∈ T f
1+)

+ 1
γ+1 · Var(X |X ∈ T f

1+) · P(X ∈ T f
1+) + c1P(X ∈ T f

1−)

+ 1
γ+1 · Var(X |X ∈ T f

1−) · P(X ∈ T f
1−) + c2P(X ∈ T f

2 )
(9)

Based onf , constructf ′ as follows:

T f ′

0 = [−β1, β1],

T f ′

1+ = (β1, β
′
2], T f ′

1− = [−β′
2,−β1),

T f ′

2 = (−∞,−β′
2)
⋃

(β′
2,∞)

whereβ′
2 is selected such that

∫ β′

2

β1

pX(x)dx =

∫ β12,r

β12,l

pX(x)dx

One can see that we have shifted the positions ofT f
1+ and

T f
1−, but kept the probabilities over the regions the same, as

illustrated in Fig. 3. Hence,P(X ∈ T f ′

1+) = P(X ∈ T f
1+),

Fig. 3: Counter example illustratingf ′ is no worse thanf

P(X ∈ T f ′

1−) = P(X ∈ T f
1−), andP(X ∈ T f ′

2 ) = P(X ∈
T f
2 ). Furthermore,T f ′

1+ and T f ′

1− are closer to the origin
than T f

1+ and T f
1−, respectively, andpX is symmetric and

unimodal; hence it can be shown that

Var(X |X ∈ T f ′

1+) ≤ Var(X |X ∈ T f
1+)

Var(X |X ∈ T f ′

1−) ≤ Var(X |X ∈ T f
1−)

Therefore,J(f ′) ≤ J(f), which completes the proof.
With Corollary 2, we reduce the optimization problem

over a function space to the optimization problem over a two-
dimensional space. We now compute the optimal thresholds:
let J(β1, β2) be the expected total cost corresponding to
a threshold-in-threshold based communication scheduling
policy f with thresholdsβ1 andβ2. Then (9) can be further
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Fig. 4: Numerical analysis.

computed by plugging in the expression off and applying
the symmetry property ofpX ,

J(β1, β2) = 2
∫ β1

0
x2pX(x)dx + 2c1

∫ β2

β1
pX(x)dx + 2

γ+1

·Var(X |X ∈ (β1, β2))
∫ β2

β1
pX(x)dx + 2c2

∫∞

β2
pX(x)dx

Taking the first derivative ofJ(β1, β2) with respect toβ1,
we have

dJ(β1,β2)
dβ1

= 2β2
1 · pX(β1)− 2c1 · pX(β1)

+ 2
γ+1 · d

dβ1

(

Var(X |X ∈ (β1, β2))
∫ β2

β1
pX(x)dx

)

where

d

dβ1

(

Var(X |X ∈ (β1, β2))
∫ β2

β1
pX(x)dx

)

=
d

dβ1

(

∫ β2

β1
x2pX(x)dx −

( ∫ β2

β1
xpX(x)dx

)

2

∫ β2

β1
pX (x)dx

)

= −β2
1pX(β1) +

2β1pX (β1)
∫ β2

β1
xpX(x)dx·

∫ β2

β1
pX (x)dx

( ∫ β2

β1
pX (x)dx

)

2

−
( ∫ β2

β1
xpX(x)dx

)

2

·pX(β1)
( ∫ β2

β1
pX(x)dx

)

2

= −pX(β1) ·
(

β1 − E[X |X ∈ (β1, β2)]
)2

Similarly, we can compute thed
dβ2

J(β1, β2). By the first
order optimality condition, the locally optimal thresholds
(β1, β2) should satisfy

β2
1 − 1

γ+1

(

β1 − E[X |X ∈ (β1, β2)]
)2 − c1 = 0

1
γ+1

(

β2 − E[X |X ∈ (β1, β2)]
)2

+ c1 − c2 = 0

E[X |X ∈ (β1, β2)] =
∫ β2

β1
xpX(x)dx

(10)

where 0 ≤ β1 ≤ β2. Once we obtain solution(s) of (10),
which are extrema ofJ , we need to compareJ evaluated at
the inner extrema withJ evaluated at the boundaries, i.e. (i)
0 = β1 < β2, (ii) 0 < β1 < β2 = ∞, (iii) 0 ≤ β1 = β2 <

∞. The one achieving the lowest cost is the global optimal
solution. Since0 ≤ c1, c2 < ∞ andX has supportR, it is
easy to verify that the first two boundaries are not optimal by
analyzing (7). Consider the third boundary0 ≤ β1 = β2 <

∞, the optimization problem collapses to the optimization

problem with one perfect channel. By the results from [2],
the optimal thresholds areβ1 = β2 =

√
c2. Hence, we only

need to compare the performances of the inner extrema with
that of β1 = β2 =

√
c2.

The existence and uniqueness of solution of (10) is not
guaranteed for general parameters and densities. On the one
hand, if c1 > c2, (10) does not admits a solution (see
the second equation). On the other hand, sinceE[X |X ∈
(β1, β2)] depends on the source densitypX , it is hard to
analyze the existence and uniqueness of the solution. For
the first issue, whenc1 ≥ c2, there is no side-effect by
choosing perfect channel rather than noisy channel. Then
optimization problem collapses to the optimization problem
with one perfect channel. For the second case, we specify
the source to have Laplace density with parameters(0, λ−1),
namely,

pX(x) =

{

1
2λ e−λx, x ≥ 0

1
2λ eλx, x < 0

Then pX is symmetric and unimodal. Furthermore, condi-
tioning onX > 0, pX|X>0 has exponential distribution with
parameterλ. Plugging forpX into (10), and by memoryless
property of exponential distribution, we have

∆β · eλ∆β

eλ∆β − 1
=

1

λ
+
√

(c2 − c1)(1 + γ)

β1 =

√

c1 +
1

1 + γ

(

∆β −
√

(c2 − c1)(1 + γ)
)2

(11)

where∆β := β2 − β1, ∆β > 0. It can be verified that
∆β·eλ∆β

eλ∆β−1
is an increasing function of∆β and ∆β·eλ∆β

eλ∆β−1
∈

( 1
λ
,∞). Hence, whenc2 > c1, the first equation has

unique solution, which uniquely determinesβ1 in the second
equation, andβ2 = ∆β + β1.

V. THE PROBLEM WITH HARD CONSTRAINT

Consider the modified problem with hard constraint. Let
En

t andEp
t be the communication opportunities left at time

t for the noisy channel and the perfect channel, respectively.
Then,

En
t = N1 −

t−1
∑

i=1

1{Ui=1}, E
p
t = N2 −

t−1
∑

i=1

1{Ui=2}



Furthermore, letJ(t, En
t , E

p
t ) be the optimal cost to go when

the problem is initialized at timet with En
t andEp

t number of
communication opportunities for noisy channel and perfect
channel, respectively. By an argument similar to that in [5,
Theorems 2 and 3], the optimal decision policy at timet has
the form ofUt = ft(Xt, E

n
t , E

p
t ), Yt = gt(Xt, St, E

n
t , E

p
t ),

andX̂t = ht(Ỹt, St, E
n
t , E

p
t ). Furthermore, the optimal cost

to goJ(t, En
t , E

p
t ) can be computed by solving the dynamic

programming (DP) equation:

J∗(t, En
t , E

p
t )

= min
ft,gt,ht

{E[(Xt − X̂t)
2] + E[J∗(t+ 1, En

t+1, E
p
t+1)]}

with boundary conditionsJ∗(T + 1, ·, ·) = 0. Depending on
the realization ofXt, En

t+1 may beEn
t or En

t −1, andEp
t+1

may beEp
t or E

p
t − 1. Hence the dynamic programming

equation can be written as

J∗(t, En
t , E

p
t ) = min

ft,gt,ht

{

E[(Xt − X̂t)
2] + J∗(t+ 1, En

t ,

E
p
t ) ·

∫

T
ft
0

pX(x)dx + J∗(t+ 1, En
t − 1, Ep

t )

·
∫

T
ft
1

pX(x)dx + J∗(t+ 1, En
t , E

p
t − 1) ·

∫

T
ft
2

pX(x)dx

}

= J∗(t+ 1, En
t , E

p
t ) + min

ft,gt,ht

{

E[(Xt − X̂t)
2] + c1t(E

n
t

, E
p
t ) ·

∫

T
ft
1

pX(x)dx + c2t(E
n
t , E

p
t ) ·

∫

T
ft
2

pX(x)dx

}

where c1t(E
n
t , E

p
t ) = J∗(t + 1, En

t − 1, Ep
t ) − J∗(t +

1, En
t , E

p
t ) andc2t(En

t , E
p
t ) = J∗(t+1, En

t , E
p
t −1)−J∗(t+

1, En
t , E

p
t ). Then the problem insidemin{·} is a one stage

problem with soft constraint, and communication costs are
c1t(E

n
t , E

p
t ) and c2t(E

n
t , E

p
t ) for using the noisy channel

and the perfect channel, respectively.
We assume the source process has Laplace density with

parameter(0, λ−1). Furthermore, we restrict sensor to ap-
ply symmetric communication scheduling strategy and en-
coder/decoder to apply affine encoding/decoding strategies
described in Assumption 4. Then the optimal communication
scheduling policy at timet is threshold-in-threshold based
with thresholds(β1, β2) solved from (11) or thresholds
(β′

1, β
′
2) on the boundary, i.e.,β′

1 = β′
2. In order to inves-

tigate the performances of the decision policies, we solved
the DP equation numerically withλ = 1 and SNRγ = 1.

In Fig. 4a, we fix the number of communication opportu-
nities for perfect channel, asN2 = 0, 10, 20, and we plot the
optimal 100-stage estimation error versusN1. WhenN2 = 0,
there is no perfect channel, the problem collapses to the
one in [5]. As discussed in [5], there exists an opportunity
threshold such that the optimal 100-stage estimation erroris
decreasing when the number of communication opportunities
is below the threshold, and staying constant above the
threshold. The existence of opportunity threshold remains
in the case when there is perfect channel. Furthermore, the
higherN2 is, the lower is the optimal 100-stage estimation
error.

Fig. 4b illustrates the performances of decision strategies
when N1 is fixed asN1 = 0, 10, 20, and N2 varies over
{0, 1, . . . , 100}. WhenN1 = 0, there is no noisy channel,
the problem collapses to the problem with perfect channel,
and the plot recovers the result in [1]. As shown in [1], the
optimal estimation costs over the time horizon decreases to
0 as the number of communication opportunities for perfect
channel increases to100, which is the length of the time
horizon. This trend remains for the case when there is noisy
channel. Moreover, the more communication opportunities
sensor has for the noisy channel, the lower is the optimal
100-stage estimation error.

Fig. 4c depicts a sample path illustrating the evolution
of the numbers of communication opportunities over time
horizon. When generating the plot, we chose the initial
numbers of communication opportunities for noisy channel
N1 = 40, and that of perfect channel,N2 = 40. One can see
that by the end of time horizon, the sensor used up all the
communication opportunities for the perfect channel, but not
all the communication opportunities for the noisy channel.
This surprising result is due to the fact that the thresholding
information, that is, whether the source realization belongs a
certain interval or not, can be more informative than a noisy
output from the communication channel. More discussions
on interpretations of a similar result can be found in [5,
Remark 3].

VI. CONCLUSIONS

In this paper, we have analyzed the impact of an ad-
ditional noisy communication channel over the classical
remote estimation problems. We have shown that while the
intuitive solution of applying threshold-in-threshold trans-
mission policy may be suboptimal for the original problem,
it will be optimal, under some assumptions, for the setting
with a side channel. We have determined optimal policies
numerically for both hard and soft constrained problems. The
numerical solutions exhibit several interesting properties that
are inherited from the noisy and noiseless settings.
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