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On Remote Estimation with Multiple Communication Channels

Xiaobin Gao, Emrah Akyol, and Tamer Basar

Abstract— This paper considers a sequential estimation and
sensor scheduling problem in the presence of multiple commu
nication channels. As opposed to the classical remote estition
problem that involves one perfect (noiseless) channel andne
extremely noisy channel (which corresponds to not transmiing
the observed state), a more realistic additive noise chanhe
with fixed power constraint along with a more costly perfect
channel is considered. It is shown, via a counter-examplehat
the common folklore of applying symmetric threshold policy
which is well known to be optimal (for unimodal state densites)
in the classical two-channel remote estimation problem, cabe
suboptimal for the setting considered. Next, in order to malke
the problem tractable, a side channel which signals the sigof
the underlying state is considered. It is shown that, under@me
technical assumptions, threshold-in-threshold communiation
scheduling is optimal for this setting. The impact of the presence
of a noisy channel is analyzed numerically based on dynamic
programming. This numerical analysis uncovers some rather
surprising results inheriting known properties from the noisy
and noiseless settings.

I. INTRODUCTION

consider this encoding mapping in its estimation mapping.
This problem was solved in [5] using the recent results on
zero-delay communication [6]. The adversarial zero-delay
communication was studied in [7], where it was shown
that the optimal strategy for an adversarial agent with fixed
jamming power is to render the effective channel noise
distribution to match that of the source, so that the optimal
encoding/decoding mappings are linear. Due to the minimax
optimality property of such linear (or affine) mappings [7],
we pose the problem in an adversarial setting where the noise
is generated by a jammer, and we take these communication
mappings as affine.

In this paper, we merge the perfect channel setting, studied
in [1], [2] with the recently studied noisy setting [4], [5].
An intuitive scheduling policy here is to use threshold-in-
threshold structure since symmetric thresholding has been
shown to be optimal, for any unimodal state density, for the
noiseless settings [2] (under some mild technical conuiiio
However, when combined with a noisy channel, we show

This pqper_extends the joint sensor scheduling and remi€e that such a policy is no longer optimal and optimal
state estimation problems, see e.g., [1]{4], to a more r%’[rategy is rather hard to obtain. To facilitate the analysi

alistic setting that involves multiple, noisy communicati
channels.

In [1], which initiated this line of research, a special casg,
of the problem was considered: Estimate a one-dimensioq
discrete-time stochastic process distributed indepehden

and identically (i.i.d.) over a decision horizon of length

we next assume a (perfect) side channel between the encoder
and the estimator, over which the sign of the observed sate i
nsmitted. In this setting, in conjunction with some aspt

ns on the sensing policy and affine encoding-estimating
policies, we show optimality of the threshold-in-threghol
sensing policy. Armed with this result, we numerically obta

using onlyN < T measurements. Over the decision horizoqhe optimal decision sequence, i.e., the evolution of trotes

of length T', the sensor had exactliv opportunities to
transmit its observation to the estimator. The main diffiese

values in time, via dynamic programming. This numerical
analysis demonstrates some rather surprising results-inhe

from the work here is that these transmissions were assun*ﬁﬂg the known properties from the noisy and noiseless

to be error and noise freeThe transmission decisions that

settings. For example, the transmitter uses all commuaitat

minimize the average est|mat!on error between the proce&fﬁportunities for the perfect channel, while there might be
and its estimate were sought in the class of threshold basgﬁich opportunities left at the end of the time horizon for

strategies and the optimal decision sequence was obtaiaed

dommunication over the noisy channel.

dynamic programming. Later, using majorization and relate

techniques, such threshold based strategies were shoven to b

optimal for this problem [2].

In a recent prior work [5], the problem with perfec

Il. PROBLEM FORMULATION

tA. System Model

(noiseless) communication was extended to the noisy cthanne

scenario, i.e., the perfect channel was replaced with aynois o No Transmision

one. Inclusion of noise in the channel poses a significar %

research challenge, since the sensor now has to enca th
5

Additve Noise
Channel

Perfect Channel

its message before transmission, and the estimator has X, - Y,
Sensor [—O 0 Encoder
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Fig. 1: System model
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Consider a discrete time communication scheduling an@d. Decision Strategies
remote estimation problem over a finite time horizon, t.e, Assume that at time, the sensor has memory of all its

1,2,...,T. A one-dimensional source proce$;} is an  measurements bg, denoted byX,., and all the decisions
independent identically distributed (i.i.d.) stochagifocess i has made by — 1, denoted byU;.,_1. The sensor makes

with probability density functiorpx. At time ¢, the Sensor gecisiont/, based on its current informatidX 1.4, U1.¢—1),
observes the state of the soutke Then, it decides whether 5¢ is,

and how to transmit its observation to the remote estimator Uy = (X1, Urip1)

(which is also called “decoder”). Ldt; € {0,1,2} be the

sensor’s decision at time U, = 0 means that the sensor Where f; is the sensor scheduling policy at timeand f =
chooses not to transmit its observation to the decoderehentf1, f2, - - -, fr} is the sensor scheduling strategy.

it sends a free symbelto the decoder representing nothingis Assume that at time, no matter whether and how the
transmittedl/; = 1 means that the sensor chooses to transm#€nsor decides to transmit the source output, it always
its observation to the decoder over an additive noise channansmits its decisiorl/; to the encoder. LetX; be the
Therefore, the sensor send§ to an encoder, which then message received by the encoder at timtnen,

sends an encoded message, call;jtto the communication 3 (X,,U,) it U, =1

channelY; is corrupted by an additive channel nolge {V; } . = { ’

is a one-dimensional i.i.d. stochastic process with dgnsit

pv, which is independent of X;}. The encoder has average
power constraint, that is,

U, otherwise

Denote byX;., the messages received by the encoder up to
time ¢. Similar to the above, we assume that the encoder has
E[Y? < Pr memory onX.,, and all the encoded messages it has sent
to the communication channel y— 1, denoted byY;.; ;.

where Pr is known and constant for all. WhenU; = 2, The encoder generates the encoded messagased on its
sensor chooses to transmit its observation over a perfeGlrent mformauor(Xlt Yi._1), that is,

channel. Then, the decoder will receivg. Let Y; be the
message received by decoder at titheve have Y, = gt(Xl;t, Yii-1),

€, if U, =0 where ¢g; is the encoding policy at timeg and g =
~ ) {91,92,...,97} is the encoding strategy. 3
Vi=qYe+ Vi, ifU=1 Assume that the decoder can deddggrom Y;. Further-
X, if Uy =2 more, it is assumed that at timtethe decoder has memory
on all the messages received from communication channels

After recelvngt, the decoder generates an estimateXon  py ¢ denoted byY;.;. The decoder produces the estimate
denoted byX,. The decoder is charged for squared distortiopased on its current informatidri .., namely,

(X — Xy)2.
. . . Xt = ht(}/l:t),
B. Communication Constraints ) ) )
¥vhere h; is the decoding policy at timg and h =

{hi,he,..., hy} is the decoding strategy.
Remark 1.Although we do not assume that the decoder
fias memory onXy.;_1, yet it can deduce them froi.,

We consider the optimization problem under two kinds o
communication constraints, separately. In the first séenar
at each time, the sensor is charged for its decision, i.e., ther

Iti:t cost function associated with, denoted by:(U;), such and {1, ha, h1).
0, if Uy, =0 D. Optimization Problems
cUy)=Rec, ifU =1 Consider the setting described above, with the time hori-

zonT, the probability density functionsx andpy, and the
power constraint’y as given.

wherecy,c; > 0. ¢(Uy) is also called communication cost Optimization problem withsoft constraint Given the
at time t. Such kind of communication constraint is calledcommunication cost functiom(-), determine(f,g,h) that
soft constraint In the second scenario, the sensor is noninimize

Co, if Ut:2

charged for transmitting its observations. However, thesse T .

is restricted to use the noisy channel and the perfect cthanne J(f,g,h {Zc - Xy) } .

for no more thanV; and N, times, respectively, i.e., t=1
T T Optimization problem withhard constraint Given the
Z]l{Utzl} < Ny, Z]l{Utzz} < N, number of transmission opportunitig andN», determine
=1 =1 (f,g,h) that minimize

wherely., is the indicator function, and/;, N> are positive T

integers. Such kind of communication constraint is called J(f,g,h {Z }

hard constraint t=1



[1l. PRELIMINARIES Later in [7], a jamming problem was considered where the
A. Problem with Perfect Channel communication channel noise is generated by an adversary,

The communication scheduling and remote estimatio%nd it was shown that the affine encoding/decoding policies

. - re minimax.
problems with one perfect communication channel and
soft/hard constraints have been studied in [1]-[3]. In this
prior work, both i.i.d. source and Markov source weréC. Problem with Noisy Channel
considered. In the case of i.i.d. source, it was assumed thatIn the work of [4], [5], similar problems with only

the source density is symmetric and unimodal aroond one additive noise channel with soft/hard constraints were

namely, analyzed. It was shown that if the source and the channel
px(z) = px(—z), VzeR noise are i.i.d., and the communication cost function, the
px(a) > px(b), if la| < || distortion metric, and the encoding power are time invdrian

One of the distortion metrics considered was the Squarélaen the optimization problem over a finite time horizon with

. . . Soft constraint collapses to a one-stage problem [4, Theore
error. With the above assumptions, it was shown that t S . .
; o . . L , and the optimization problem with hard constraint can
optimal communication scheduling policy at times sym-

metric threshold-based, and the optimal estimation paficy be con\_/erted to a one-stage optimization problem with soft
. . constraint [5, Theorems 2 and 3].
also symmetric, that is,

2, if | Xy > B . Y, if U=2
£i(Xy) = {0 he(Y;) = IV. THE PROBLEM WITH SOFT CONSTRAINT

it X, <8 0, ifU,=0

whereg; is the threshold at timeé. In the problem with soft

constraint,3;, depends only on communication cost, which By an argument similar to that in [4, Theorem 2], the
is independent of time. In the problem with hard constraingptimization problem with i.i.d. source and soft commu-
B, depends on timg and the number of communication nication constraint collapses to a one-stage optimization

A. Conjecture and Corollary

opportunities left at time, denoted byE;, where problem. Hence for simplicity, we henceforth suppress the
-1 subscript for time. We make the following assumptions on
E, = Ny — Z Lip,—2) the optimization problem.
=1 Assumption 1:The source densitypx is symmetric and

Furthermore3, can be computed via dynamic programming/nimodal around zero.
(see [1] for detalls). Assumption 2:The communication channel noi$é has
zero mean, and fixed variance, denotedoy

B. Zero Delay Communication and Jamming . .
) ) Assumption 3:The encoder and decoder are restricted to
In [6], the following problem was considered: an encodeépmy affine policies, namely

wants to make a one-shot transmission sending an input
signal X to the decoder. The communication channel has g(X) =

a- (X —-E[X|U=1))
a zero mean additive channel noige which is independent R _
of X. Since the channelis noisy, the encoder first encodes the MY) = 3 1Y+ EX|U =1]
input signalX according to some encoding poligyand then Py . . . B
sends the encoded message the communication channel. where vy := é 's the signal to noise ratiop =

The encoder is assumed to have average encoding powf%.\far()fw = 1) is the variance o condition
constraint. The decoder receives the noise-corruptedagessthat the sensor transmits the source output over the noisy
Y +V, denoted byy’, and then generates an estimateXaf  channel.
denoted byX, according to some decoding polidy The The first assumption is standard. The second and third
optimization problem is to design the encoding and decodingssumptions are consequences of the jamming setting (that
policies (g, ~) to minimize the mean squared estimations ith worst-case approach, see [7] for details). Sinee th
error E[(X — X)?] subject to encoding power constraintsoyrce is symmetric around zero, and the distortion metric
E[Y?] < Pr. It has been shown that once the characteristig the squared error, which is also symmetric around zero, it
functions of X' and V" satisfy so-callednatching conditions s intuitive to conjecture that the communication scheuyli
the optimal encoding and decoding policies are affine gsplicy is symmetric around zero. Also note that the problem
follows: Xy — X _EIX with one perfect communication channel admits an optimal
9(X) = a- (X -E[X]) scheduling policy which is symmetric around zero.

_ 1 % . . L .
hY) = S5aY +EX] Conjecture 1:The optimal communication scheduling
wherey := ZZ is the signal to noise ratio (SNR)y = policy satisfies
\4
V%(TX), Var(X) is the variance ofX. Furthermore, min- f(z)=f(-z) VzeR

imum mean squared error &i(—f) The following corollary is a sequence of Conjectlie 1.



Corollary 1: If Conjecturd holds, the optimal schedulingDefine 3; := min{5y1, 302} and we have
olicy is of the threshold-in-threshold type:
POty yP Jo(w) < min{Jy (@), Ja(2)}, iff @ € [0, 5]

0, if |z[ < p = f(z)=0,iff z €0, 5]

fla) =91, i B <le] < P @) Therefore, when computing(z) for z € (81, c0), we only
2, if |z| > B2 need to compare/;(z) with Jy(z). Consider.J;(z) and
Ja(z), sinceJ; (x) is a parabolic function of and Jz(x) is
constant inx, either of the following cases occurs:
Case licy < ¢1 + o?,. Then

)

whereS; and 3, are called thresholds, ard< 8; < ..

Proof: Let 7/, 7,7, T; be thenon-transmission regian 2
the noisy transmission regigrand theperfect transmission a?(y+1)?
region, respectively, according to communication polify Ji(z) > Jo(z), Vo> 0= f(z) =2, Yz € (B1,00) (3)
ie., ’ ’ ’

Tif ={zx e R|f(z) =i}, i€{0,1,2} Case ll:ico > 1 + Wil)g - 0% It can be checked that
. : . i <

Then, the conjecture states thg{, 7/, 7; are symmetric there exists one threshold, call3, such that/, (z) < J(x)
around zero. if and only if z € [0, B2]. If B2 < S,

Whenz € 75f, the sensor does not send anything to the j, (z) > Jy(z),2 € (81, 0) = f(z) =2,z € (B1,0) (4)
decoder but the free symbal Then, the decoder knows that
X e 7. Hence, X = E[X|X e Tf] By ConjecturddL, we If 32 > f1,

f

have X = E[X|jX eTi]l=0. Ji(z) < Jo(w), @ € (B1, B2] = f(x) = 1,2 € (B1, ]

Whenzx € 7T, the sensor chooses to transmit its observa-
tion over the perfect channel. Hence, the optimal decoder is Ji(x) > Jao(w),x € (B2,00) = f(2) = 2,z € (B2, OO)(S)
to report the received message, thatis= .

Whenz e T/, the sensor chooses to transmit its observa-Ornblnlng [2) throughl{5), we conclude that the optimal

. communication scheduling policy(z) has the expression
tion over the noisy channel. By Conjectlide 1, we have of (@). Note thatR)iB) and12) ankl(4) are the special cases

EX|U=1]=E[X|XeT{]=0 of (@) wheref; = 5. m
o ; Although Conjecturg]l and Corollaty 1 seem very intuitive
where the second equality is due to the fact thatand 7’  at first glance, the following counter example renders them

are symmetric around zero. Hence, we have not valid from the point of global optimality.
- 1 v 5 Counter exampteConsider
J(X)=a-X, hY)=-—
avy+1 L
pX(I)—E,ZCE[_ ) ]

wherey = f—; is given, anda depends on the choices of
S andpx. We are done with the proof if we can show thatwhich is symmetric and unimodal. Assumg < cy. By
given anya > 0, (D) is satisfied. Suppose the sensor observeorollary[d, the optimal communication scheduling policy,
the realization ofX = z. Let Jy(x), Ji(x), and Jo(z) be denoted byf*, is of the threshold-in-threshold type, which is
the total cost functions correspondinglo= 0, U = 1, and described in[{{l) with thresholds< §; < 35. By the proof

U = 2, respectively. Then we have, of Corollary[1, 35 is the separating point wheré (z) <
2 Jo(z) if and only if z € [0, 53]. ConsiderJ; (z) — J2(x):
Jo(z) = =
h(x) = o +E[x-X)?% (@) = Ja(x) = e1—cot (%1)2 2?4 oy o
= C + E[( — %%(ax + V))2] 2 —C + ( +1)2 . .1'2
= Cl+('y+1 [I——V)] > ,If:v>«/cz—cl-(7+1)
= a+ gyt a2("yy+1)2 Loy which implies that8; < \/cz — ¢ - (v + 1). Hence, by
Jo(z) = ¢ choosing/ca —¢1 - (v +1) < L, we havep; < L.

Denote byJ(f), the expected total cost if the sensor applies

Then, communication scheduling policy. Then, we have

f(z) = argmin J;(z) R
i€(012) J(f) = E[e(U) + (X - X)?]
Jo(z), Ji(x), and Jo(x) are symmetric around zero, hence — z IE[ (U) + (X — X)2|X c 721"] P(X € 7;}")

we only need to consider the case when> 0. Since _ Y Y. Y.
2 < 1, it is easy to check that there exist; and = E[(X X) (X eTg ] PXeTg)+e-PXET])

1 ~
éog such that +E[(X - X)?X € T{] 'P(X eT!)+e P(XeT))

Jo(z) < Ji(x), iff z €0,

01] Recall that whenX ¢ 77 , E[XJJX e 7/]. Hence,
Jo(x) < Ja(x), iff x € [0,

B
Boz] E[(X - X)?|X € T{] = Var(X|X € 74 ). Furthermore, by



the results from [6] discussed in sectian M X -X)%X € B. Modified Problem

IR f . .
Til= v+1V&r(X|X €7;). Hence, Assume that there exists a perfect side channel between

p P P the encoder and the decoder. When transmitting the encoded
J(f) =Var(X|X €75 ) - P(X €Ty)+aP(X €T)  messager, the encoder also sends the sign of the source,
+ L vVarXIX eTH P(X e TN+ eoP(X e TS denoted byS, to the decoder over the side channel. The
vl (1 0B 1) + e 2 )(6) decoder generates the estimate based on the received

Next, consider f*: then 76.7‘* =[-8, 51, 71.7‘* — messages{ff, S). Note that side-channel will not be used
=85, —85) U (81, 83, andTQf* —[-L,—8) U (85, L. if the sensor chooses not to transmit the source output or to
We now construct another communication scheduling polic§@nsmit it over the perfect channel. Hence, we have
/" as follows . {sgn(X), if U =1

70 =TT = (51,85 U (85,285 — 1) i otherwise

7‘2f, =[-L,-87) U (285 — 51, L] where e stands for nothing being transmitted. Note that

) ) __the side channel enables using different encoding/degodin
One can see that we shifted part of the noisy transmissigpjicies for the positive and negative input signal. Hemee,
region to make it connected, as illustrated in fify. 2. SinCgee( to modify Assumption 3 (we keep Assumptions 1 and
2).
Assumption 4:The encoder and the decoder are restricted
to apply piecewise affine policies:

g(X,S) = S-a-(X-E[X|U=1,9])
h(Y,S) = S L5V +E[X|U=1,9]

where ~v = f—; is the signal to noise ratiopn =
\'s

' ,/m. Var(X|U = 1,5) is the conditional vari-

ance

Fig. 2: The counter example Let 7, 7‘17_ be the positive noisy tran§m|55|0n region
and the negative noisy transmission regiomespectively,
according to communication policy, i.e.,

the source has uniform distributio®( X < 7'1f/) =P(X e

*

T, andP(X € ) = P(X € T3"). Furthermore, the T ={z>0lf(x) =1}, T{_ = {2 <0|f(x) =1}

non-transmission regio’ , is not changed. Hence, . .
glof 9 Note that even under the assumption of symmetric com-

J(f') = J(F) mur_li_cation sc_heduli_ng policy, we may st_iII have qonnected
positive/negative noisy transmission regions, which oul
result in small conditional variance. Therefore, we stilva
Conjecturd L. Then we can show that Corollary 1 still holds
based on Conjectuig 1.

Since px is uniform, 7;-’“ and 7/ have the same Corollary 2: In the modified problem, if the sensor is
Lebesgue measure, aff§ is connected, we conclude thatrestricted to apply symmetric communication scheduling
Var(X|X 7-1f/) < Var(X|X € 7-1f*) and thus,J(f') < pol!cy descnbe_d in C(_)njgctu@ 1, then the o_pt|mal communi-
J(f*) which generates a contradiction. In the special casgtion scheduling policy is of the threshold-in-threstigioe
where 35 = B, one can also come up with a counterdescribed by[{1) in Corollary]1. o _

example by replacing part of perfect transmission regign Proof: We use an argumentfsmylar to that in the proof
by noisy transmission regio?\'lf/. of Corollary[d. WhenX = z € 7;/, X = 0. Furthermore,

Jo_ 7 i i
Remark 2:The counter example above shows that nOiSQ))//ngrr]r?etsr)i/g]:/nvgtE/a\?g' we have7;, = —T7;_. Sincepx is

transmission region in the symmetric communication policy

_PXeT))

i (Var(x|X e 7") - Var(x|X e 7))

may be disconnected. As discussed in sedfioh Ill, MMSE '

of t)rl1e zero delay communication problem is proportional to EX[U=15=+1] = E [X|X € Tlﬂ
Var(X|X € 7;/). Splitted noisy transmission region results  — _ X|U=1,§=-1] = -E {X|X c 7-17‘_]

in large Var(X|X € 7'1-f), and thus does not take full

advantage of the noisy channel. Let b := E[X|U = 1,5 = +1]. ThenE[X|U = 1,5]=

In order to have symmetric noisy transmission region t&b. ~ is known, whilea and b depend on the choice of
render the problem tractable, we further assume the existerand px. For anya, b > 0, any realization of source output
of side channel. X = z, and the corresponding realization 8f denoted by



S = s = sgn(z), we can compute the total cost functionscommunication scheduling policy described by[{8) with

Jo(z), Ji(x) and Jz(z) as follows: thresholds?, 512, and312,.. Then,
Jo(x) = a? 7 =[5 B1,
Ji(z) = o +E[(z - X)? 7‘1]; = (Bras, Bizs), T = [=Bizr —Br21),
= a+E[(@- 370w —asb+sV) - sb)?] T = (=00, ~Bizy) U[~Bras,—B1)
= at (7#1)2E[ —sb— 2sV)? U (B1, Br2,] U (Biz,r, 0)
= 1+ (#1)2 (z — sb)? + 7(%1)2 .03 Similar to [8), the total expected cost by applyifigcan be
2 computed as
= ot grne (el =0’ + pmme oy f 7 )
J(z) = ¢ J(f):Var(X|XeT)-]P(XETO)Jrcl]P)(XeTH)
2 - 2 ) )
M+ Var(XIX eTh) P(X e T +aP(X e T)

where the second last equality is due to the factthats|x| ;
ands? = 1. SinceJy(z), Ji (), and.Jo (z) are even functions  + 577 - Var(X|X € TL) PX e T ) +eP(X € T)

of 2, we only need to consider the case where 0. It is )
easy to see that there existg, such that Based onf, constructf’ as follows:
. o
Jo(l') < JQ(.T), iff z € [O,ﬁog] 76 - [_ﬁlaﬂl]a

o / o /
Jo(z) and J; (z) are quadratic functionsy(0) — J;(0) < 0. Ty = Bufa), T =1[= =5,

Furthermore, T = (o0, —B4) U (8, 0)
d 2v2 + 4y 20 where g} is selected such that
J J = + >0,Vz>0
1o (Jo@) = (@) = Tt gy > 0 Ve 5 s
Hence, there exist§y; such that /1 px(@)de = /m px(@)de

Jo(z) < Ji(x), iff z € [0, Boi] One can see that we have shifted the positiong;of and
Tlf_, but kept the probabilities over the regions the same, as

Therefore, . .
illustrated in Fig[B. HenceP(X € 7?;) =P(X € 7’1’;),

Jo(z) < min{Jy(x), Jo(x)},iff © € [0, 5]
= f(z) =0,iff z €0, 1]
where 8; = min{So1, fo2}. Hence when considering €
(B1,00), we only need to comparé (z) with Jy(x). J1(z)
is a porabolic opening upward, add(z) is constant. There-

fore whenx € (81, 00) there are three possibilities. Case I:,,
Ji(z) and J(z) do not intersect, which implies

Ji(x) > Ja(x),z € (B1,00) = f(x) = 2,2 € (f1,00)
Case lI: Ji(x) and Jz(z) intersect once aps,, which

implies Fig. 3: Counter example illustrating is no worse thary

J < J = - 1, S 5 r ’ ’
ngi;ng;:*;Ei;—2 ieggl ﬂlio]) P(X e T) = P(X eTf) andP(X € ) = P(X €
- e 7). Furthermore TlJr and 77" are closer to the origin
Case IlI: J1(z) and Jz(z) intersect twice a2, and 12, than 7/, and 7", respectively, anghx is symmetric and

f . T
Ti- 7 2l 7t

which implies unimodal; hence it can be shown that
Ji(x) > Jo(x) = f(z) = 2,2 € (b1, Pr2,] Var(X|X € T{) < Var(X|X € T7,)
( )SJ(.I')=>f($)=1,x€(5127“51274 (8) Var(X|XET1]i)§Var(X|X6T1’:)

Ni(@) > Da(x) = f(2) = 2,2 € (Przr, ) Therefore,J(f') < J(f), which completes the proof. m
In cases | and Il, the optimal communication scheduling With Corollary[2, we reduce the optimization problem
policies are of the threshold-in-threshold type, whiletthaover a function space to the optimization problem over a two-
conclusion does not hold for case Ill. We now show thatlimensional space. We now compute the optimal thresholds:
for any symmetric communication scheduling poligyin  let J(51,32) be the expected total cost corresponding to
the form of [8), we can come up with a threshold-in-a threshold-in-threshold based communication scheduling
threshold type policy achieving no higher cost. Consider policy f with thresholdss; and3.. Then [9) can be further
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Fig. 4: Numerical analysis.

computed by plugging in the expression pfand applying problem with one perfect channel. By the results from [2],
the symmetry property gbx, the optimal thresholds arg, = 3; = ,/cz. Hence, we only
s By need to compare the performances of the inner extrema with
J(Br, B2) = 2fo 7 px (z)dr + 2¢1 fgl px (z)dz + w+1 that of 5, = 32 = \/c2.
Var(X|X € (617&))]‘52 px (z)dz + 22 f;o px (x)dzx The existence and uniqueness of solution[ofl (10) is not
! ? guaranteed for general parameters and densities. On the one
Taking the first derivative of/ (31, 52) with respect tof1, hand, if ¢; > ¢, (I0) does not admits a solution (see

we have the second equation). On the other hand, SiBE&E|X €
dJ(B1,B2) _ 942 px(B1) = 2¢1 - px(B1) (81, 2)] depends on the source density, it is hard to
b ! analyze the existence and uniqueness of the solution. For
+33 a (Var(XlX € (51,[32))f§12 px(:c)d:c) the first issue, when; > ¢y, there is no side-effect by

choosing perfect channel rather than noisy channel. Then
optimization problem collapses to the optimization prable
with one perfect channel. For the second case, we specify

where

(Var(X|X € (51,[32)) 4 * px (z)dx )

dp, the source to have Laplace density with paramei@rs—1),
. Iy
d Bs (JB2 sz(m)dz) namely,
= — dp — 28 72T 1y ,—Az
dB, ( B1 z? bx ( ) X J-Bz px (x)dz px(x) _ 2/\ e , x>0
23 (B )f zpx (x)dx- (z)dx %A eAI’ r <0
_ —B%px (ﬁl) 1PX 1 PX PX
(fﬁl ) Thenpx is symmetric and unimodal. Furthermore, condi-
(f opx w)dm) px(B1) tioning on X > 0, PX|x>0 ha_s exponential distribution with
(J£2 px(@)dz)” parameter\. Plugging forpx into (I0), and by memoryless
Pl ) property of exponential distribution, we have
= —px(f1) - (ﬁl -EX|X € (617ﬁ2)]) AB- M8
—as 1 — 5 T Vie—a)lt+y)

Similarly, we can compute th%%J(ﬁl,ﬁg). By the first

order optimality condition, the locally optimal threshsld 5, — \/Cl + 1 (Aﬁ N/ PG +7))2
(1, B2) should satisfy 1+~

(11)

o 1 B 2 where Aﬁ = B2 — B1, AB > 0. It can be verified that
Bt - (B - EX|X e (51,252)]) a =0 Affﬁ - is an increasing function oS and %

1 (B2 —E[X[X € (B1,52)])" +c1 —c2 =0 (10) (%,oo). Hence, whenc, > ¢, the first equation has
E[X|X € (61, 62)] = fﬁz epx (a)de unique solution, which uniquely determingsin the second

equation, andBy = AS + 54.

where0 < 3; < 3. Once we obtain solution(s) of (1L0),
which are extrema of/, we need to comparg evaluated at

the inner extrema witly evaluated at the boundaries, i.e. (i) Consider the modified problem with hard constraint. Let
0=01 <P (i) 0< B < B2 =00 (i) 0< 8, =02 < EandE? be the communication opportunities left at time

oco. The one achieving the lowest cost is the global optimalfor the noisy channel and the perfect channel, respectively
solution. Sinced < ¢1,¢2 < oo and X has supporRR, itis  Then,

easy to verify that the first two boundaries are not optimal by i1 i1

analyzing [¥). Consider the third bounddns 3, = 32 < n _ _ P _

oo, the optimization problem collapses to the optimization B =M ;]l{UFl}’ By =1 ;]l{UFQ}

V. THE PROBLEM WITH HARD CONSTRAINT



Furthermore, let/ (¢, E}*, E¥) be the optimal cost to go when  Fig.[4B illustrates the performances of decision stragegie
the problem is initialized at timewith E;* andE” number of when N; is fixed asN; = 0,10,20, and N, varies over
communication opportunities for noisy channel and perfed, 1,...,100}. When N; = 0, there is no noisy channel,
channel, respectively. By an argument similar to that in [Sthe problem collapses to the problem with perfect channel,
Theorems 2 and 3], the optimal decision policy at titeas and the plot recovers the result in [1]. As shown in [1], the
the form of U; = fi(Xy, EY, EY), Y: = g:(X4, St, EP', EY),  optimal estimation costs over the time horizon decreases to
and X; = ht(fft, Sy, B, EY). Furthermore, the optimal cost 0 as the number of communication opportunities for perfect
to goJ(t, E!*, EY) can be computed by solving the dynamicchannel increases td00, which is the length of the time
programming (DP) equation: horizon. This trend remains for the case when there is noisy
J*(t, El, EP) channel. Moreover, the more communication opportunities
M . . .
. - . . . sensor has for the noisy channel, the lower is the optimal
= ftlgg}“{]E[(Xt = X)* | +E[J*(t+ 1, Efy 1, BV )IY 100-stage estimation error.

, . , Fig. [4d depicts a sample path illustrating the evolution
with bOL_md_ary conditions’™ (T’ + 1, -, -) = 0. Dependm% ON of the numbers of communication opportunities over time
the reallzaptlon Offt’ B, may beEy orEf_—l, andEtH_ horizon. When generating the plot, we chose the initial
may be £y or Ef’ — 1. Hence the dynamic programming ,,mpers of communication opportunities for noisy channel
equation can be written as Ni = 40, and that of perfect channelj, = 40. One can see
that by the end of time horizon, the sensor used up all the
communication opportunities for the perfect channel, lmit n

» . . » all the communication opportunities for the noisy channel.
EY) - /Tft px(z)de +J°(t + 1, B — 1, EY) This surprising result is due to the fact that the thresimgjdi

0 information, that is, whether the source realization bgta
pX(a?)da?} certain interval or not, can be more informative than a noisy
output from the communication channel. More discussions
— J*(t+1,EP, EP) +,»}2§}H{]E[(Xt — X)? + eu(EP gr;én;ﬁ(rp?’r]e'tatlons of a similar result can be found in [5,

) [ (e (BB [ pxtoyic) V. ConcLusions
Tt T In this paper, we have analyzed the impact of an ad-
where cy (EP, EP) = J*(t + 1,EP — 1,EP) — J*(t + ditional no_isy _communication channel over the cla_ssical
1, B, EP) andey, (B, BP) = J*(t+1, EP, EP—1)— J*(t-+ _rem_o_te estlmz_;\tlon problems. We have s_hown that while the
1, P, EP). Then the problem insidein{-} is a one stage intuitive solution of applying threshold-in-thresholdatrs-

problem with soft constraint, and communication costs ar@ission policy may be suboptimal for the original problem,
ci(EP, EP) and eo (E, EP) for using the noisy channel it will be optimal, under some assumptions, for the setting

and the perfect channel, respectively. with a side channel. We have determined optimal policies

We assume the source process has Laplace density WﬂHmericaIIy for both hard and soft constrained problem Th

parameter(0, \~!). Furthermore, we restrict sensor to ap_numerlcal solutions exhibit several interesting progsrthat

ply symmetric communication scheduling strategy and erfire inherited from the noisy and noiseless settings.

coder/decoder to apply affine encoding/decoding stragegie REFERENCES
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