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Abstract— This paper presents a simple approach for anti- AW design which circumvents the use of LMIs add -type
windup synthesis for double integrator systems. The param- performance indices. The stability analysis we use origima
eters of the anti-windup compensator can be chosen using fom the results presented in [1] which provides a Popov-

simple linear-based guidelines which, nevertheless, also provide . g L . "
nonlinear stability guarantees. The results are constructed on 1K€ sufficient condition for global asymptotic stabilitypsed

the basis of a Popov-like sufficient condition presented in UpOn a Lure-Postnikov Lyapunov function.

[1]. The advantage of the method is that design and re- . -
design of the anti-windup compensator is exceptionally siple, It transpires that, for the double integrator AW problems we

requires no optimisation and yet offers the engineer greatesign ~ consider here, the analysis of [1] provides a very large et o
transparency. stabilising AW compensators. Instead of choosing amongst
these compensators usinly -type performance measures,
I. INTRODUCTION we propose using standard linear system time domain perfor-
mance criteria based on the compensator’s natural fregquenc
Anti-windup (AW) compensators are designed to work wittand damping ratio. This leads to simple, transparent foaul
existing controllers to prevent performance degradatinah a for choosing the AW parameters and there is clear cor-
maintain stability in systems during periods of saturatiorrelation between these and the corresponding time-domain
An important feature of an anti-windup compensator is thaterformance. Once stability has been guaranteed, substeque
it only becomes active whenever saturation occurs and tié@signs and redesigns of the AW compensator only require
original control loop remains unchanged as long as saturati the selection of suitable parameters based on the speed and
does not occur. In recent years, the study of anti-windugamping criteria sought.

techniques has grown steadily and this has led to majqfe paper is structured as follows. Section Il briefly déxesi
developments in approaches that provide favourable &fabil ihe AW framework considered and some limitations. Sec-
and performance results for systems with input saturatioflon || presents the direct synthesis conditions for debl
Examples of relevant papers are [2], [3], [4], [3], [6], [?]'integrator plants and the tuning guidelines. Examples are

Fﬁll&g]e H% [[ﬁ% [[ﬁ]] [[ﬁ]] and recent books on the topic yseq in Section IV to illustrate the approach.

Many modern approaches to anti-windup design are foA. Notation

mulated and solved using linear matrix inequalities (LMIS%H ) o )

to ensure that the anti-windup compensator bestows somi€ saturation function is defined ast(.) : R™ —— R™
sort of stability and performance guarantees on the systef@f v = [u1,...,u] andu; > 0, i € I[1,m] such that
under consideration [18]. However, the use of LMIs may at(w) = lsat " /

seem excessive in some situations, especially in the design sat(u) = [Sé (u1), o » 5 (.Um)]
of compensators for relatively simple systems. In addjtion sat(u;) = min{|u;|, u; } x sign(u;)

the £, induced-norm used to measure performance in mamy, o qeadzone functioBz(.) : R™ s R™ is simply
LMI approaches is also a rather nebulous quantity and is no
always a reliable indication of a nonlinear system’s pradti Dz(u) = [Dz(uy),. .., Dz(um)] (1)
performance. Finally, although LMI-based approaches make Dz(u) = u — sat(u) )
anti-windup design systematic and tractable, typicallg on

“optimal” solution is returned. This may not necessarily bé-or brevity, we denote; = Dz(u). The notationHe{A} =
the only solution yielding a “good” anti-windup compen-A+A’. P™ is the set ofn x m symmetric positive-definite
sator, but rather there may exist a family of AW compenmatrices.N™ is the set ofm x m Symmetric non-negative
sators for which the designer can choose anyone of themdefinite matrices an® is the set of diagonal matrices.

In this paper, we examine saturation in systems containing
double integrators within the anti-windup framework pre-
sented in [8], [19]. Double integrators describe, or approx
imately describe, many systems, including Euler-Lagrange 7“*»
systems [20], aircraft systems, and especially the siagie-
dynamics of quadrotors which inspired the work presented
here. The novelty here is that we providdieect approach to

II. ANTI-WINDUP FRAMEWORK
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R™ is the plant input(s) is the plant,K (s) is the controller then FF = LQ~! can be used to construct the anti-windup
and ©(s) is the anti-windup compensator. The state-spacsompensator (5). In this case, it is assumed that the standar

realization of the plan&(s) is given as, deadzone no longer occupies the S€6tdi, but is restricted
A B to some narrower sector, Sedtbie/] where0 < ¢ < 1, so

G(s) ~ [TP’TP] A, € R™X" (3) stability is only guaranteed locally. Note however that, as

P P e approaches one, stability is closer to being administered

The approach in [8], [21] interprets the anti-windup desig@lobally. This approach, or variants thereof, has been suc-

problem as s search for a transfer function matrixs) such ~ cessfully used in a number of applications, e.g. [22], [23].

that the anti-windup compensatéx(s) has the structure: ~ Other approaches for handling systems with imaginary axis
eigenvalues can be found, for example, in [24], [25].

o— M(s)—1 4 ]

= |G(s)M(s) 4 In general, these LMI approaches are flexible and able to
. . ) o rovide local stability for plants7(s) ¢ RH... However,

M(s) is chosen as part of a right coprime factorisation OFhey are not able to providglobal stability without further

the plant;Gi(s) = N(s)M~!(s). If the order of the coprime development and the performance it provides is focused

factorisation is the same as that of the plant, a state spagg an £, measure of this. For plants with simple and/or

realization of the anti-windup compensato(s) is apparent structures, one would naturally expect a simpier a

A +B.F | B more transparent approach to be obtained. The next section
o(s) = [M(s) - I] 7P 13 L 0” (5) describes such an approach for double integrator plants.
N(s) Cp+ D,F | D,

. . . i I11. AW SYNTHESIS FORDOUBLE INTEGRATOR
where F' is chosen such that, + B, F' is Hurwitz. With SYSTEMS

this formulation, Figure 1 can be redrawn as Figure 2 which

makes the analysis of the system with saturation and anfk Sability Analysis

windup more convenient because it decouples the system ) ) )
into three distinct subsystems. From Figure 2, observe thg@nsider a saturated linear system described by the faitpwi
the mappindT, : w;» — ya determines the deviation of the State-space equations

nonlinear system from the nominal linear system. Assuming i(t) = Az(t) + Bsat(u(t)) (8)
the nominal plant-controller interconnection is asymiptot
cally stable, stability and performance of the saturatestesy ult) = Kz(t) ©)
may be assessed by considering the stability of the nomlineafter appropriate similarity transformations, the stapece
loop represented by the mappifg: matrices are assumed to be structured as
&t = (Ap+ BpF)x + BpDz(win — uq) | A, 0 | B.
7;~{Ud = Fu (6) A=l 0 a | B=| B (10)
ya = (Cp+ DpF)x+ DpDz(uiin — ua)

. . . where 4, € R™"=*"= and has eigenvalues on the imaginar
If the plant G(s) € RHo (A, is Hurwitz), a matrix /' 5yis andA, € R™*" s Hurvx?itz. B, € Rr=xm Bsge y

guaranteeing global exponential stability, and fintegain = pn.xm gndy, = n, + 1.

of the map7, : w;, — yq, always exists. Furthermore, such o - -

an F can be computed by solving a simple set of LMI'sSufficient conditions for global stability of the above syst
[21]. However, if the plant contains a double integratoerth Were given in [1] using a Popov-like Lyapunov function.
G(s) € RHM, which makes the LMI's in [21] infeasible. The Lyapunov function is novel since it comprises a positive
To overcome this, a small adjustment to these LMI’s Caﬁemi-definite quadratic term and an additional integral term.

be made: if there exist matricég € P", U € DP™ and  Theorem 1: If there exist matrices®, € N™, R, € N,

L € R™*™ such that the following LMI is satisfied R, € DN™ N € DN™, P € N(™=+7%) sych that
A,Q+B,L B,U 0 0 R. 0

He *SL *OU fI% 8 <0 (7) = [ 0 RJ 1)

C,Q+D,L D,U 0 -3 and the following matrix equations and inequalities are
satisfied:

‘ 0=ATP+PA+R (12)

T M =170 oisturbance fiter 0=BT"P+NKA+ R K (13)

et W 0< 2Ry — (NKB+ BTKTN) (14)

0<P+K'NK (15)

! then the origin of the system (8)-(9) is globally asymptoti-
——————————————— - cally stable if, either (iY A, K) is observable or (iif4, K) is

. u detectable andi4, R) is observable. Furthermore a Lyapunov
i function proving global asymptotic stability is given by
r Nominal Linear Loop T m =Kz
V(z) =o' Px+2 Z/ N;sat; (u;)du;
Fig. 2. Equivalent representation of structure i=170



The proof of this theorem and the process of realizing thesghus for this inequality to hold, we must havgn(F)

conditions follows that in [1]. Theorem 1 can be used either-sign(3). Finally, noting thatP, = P,,. = 0 then,

to guarantee global stability of a given saturated coreralk
to construct a stabilizing controller for the system in (8)-

B. Application to anti-windup design

inequality (24) can be written as

0 0 F, [ F2 FF
o<l nl+[RB]m mi-[dh A
(29)

In this work we are interested in examining stability oftherefore, for this inequality to hold we must strengthen
the nonlinear loop in Figure 2 when the plant is a doublg,; conclusion tosign(F,) = —sign(B); it cannot be zero

integrator, that is when the state-space matrices are:

Ap{g (1)} B[g} C,=[1 0] D,=0 (16)

or only positive semi-definiteness would be proven. Hence
in this case, the conditions of Theorem 1 are fulfilled and
the system will be globally asymptotically stable. O

where # 0 is an indefinite scalar. The unforced dynamicsC. Determination of suitable F for better performance

of the nonlinear loop7,) are given by

&= (A, + B,F)x + B,Dz(—uq)
uqg = Fx

(17)
(18)

Corollary 1 implies that, for a double integrator plaanty
state-feedback matri¥’ with elements having the opposite
sign to 5 will provide an anti-windup compensator ensur-
ing global asymptotic stability. Typically, however, ondy

where F' is the state-feedback matrix which determinegypset of this range will provide acceptable performance.
the anti-windup compensator. The following result can bg, this section we propose choices &f based on simple

established as a corollary of Theorem 1.

approximations of the anti-windup compensator dynamics.

Corollary 1: Assume ' = [F, Fy] is chosen such that The dynamics of the anti-windup compensator are governed

sign(F,) = sign(F,) = —sign(5). Then the origin of the
system (17)-(18) is globally asymptotically stable.

by the equations (17)-(18), or, equivalently (19)-(20).té&\o
that the saturation function can be replaced by a time-ugryi

Proof: The proof uses the identity (2) and a simple appli9ain, which form = 1 takes the form

cation of Theorem 1; it closely follows Example 4.4 in [1].
First note that the dynamics (17)-(18) can be re-written as

& = A,z + Bpsat(uq)
ug = Fx

(19)
(20)

The system is now in the form of (8)-(9) and, because thand the time-varying A-matrix has the explicit form

system is simply a double integrater, = A,, B. = B,
and K = F, withn, = 2, n, = 0 andm = 1. Therefore
equations (12)-(15) become

0=A'P+PA,+R (21)
0=B,"P+ NFA, + RyF (22)
0< 2Ry, — (NFB, + B,"FTN) (23)
0<P+F'NF (24)

Theorem 1 allows the choicd? = 0, R, = 0 and N = 1.
In this case, equation (21) becomes
Py 101
Py |0 0

00l o 1]'[P, Pye] [ P
0 0| |0 0| |Pye Pu Pyje
(25)
o o0 o o]
| P Pb/c + P, Pb/c
ThereforeP, = P,/ = 0. Equation (22) then becomes

[0 0] =[BPyc BPa+ Fd (27)

HenceP; = —F, /5 and because&;; must be positive semi-
definite, it is necessary and sufficient to choege(F,) =
—sign(B) or P; = 0 and F, = 0. Next, note that inequality
(23) becomes

(26)

0<—[F. F [2} +o A [?ﬂ

—2F,8  (28)

sat(u) = o(u)u o(.): R—1[0,1] (30)
Using this in equations (19)-(20) yields
&= (Ap + Bpo(u)F)x =: Ay (31)
0 1
Aou) = {Ba(u)Fa Ba(u)Fb] (32)

Note that anyF' satisfying Corollary 1 will ensure global
stability, but it is possible to use simple linear analysis
to estimate the performance of the AW compensator. In
particular, replacings(u) by a constant, € [0,1] means
that
0 1

Aso = [500Fa BUOFb] (33)
The eigenvalues of the nonlinear loop dynamics are thezefor
given by the roots of the characteristic equation

52 — BogFys — BogFy =0 (34)

This can be compared to a standard second order character-
istic equation
2+ 2€wps +w2 =0 (35)

wherew,, is the undamped natural frequency afds the
damping ratio. Comparing coefficients yields

wn =V Bols (=2 B

This implies that the speed of the nonlinear loop dynamics
(wn), for a fixed saturation value is purely a function of
F,, whereas the damping ratio is a function of béthand

(36)



S S

Output response
Output response
° -

°

0sF

desired response 7

——nominal response 0

desired response

——saturated response { o

Output response

=
-
—
-

at ¢ =100

» o2 4 s 5 1 1
Time(scconds)

o 2 4 e 8 10 1 1 1 1
Time(seconds)

16 18 20 o 2 4 6 8

10

12 14 16 18 20

Time(seconds)

Control response

Contro’

—nominal control

——desired control

—saturated control

Control response

b

—Saturated 1
—at (=1
——at ¢ =0.1
——at (=10.5 |
—at¢=5

s 10 12
Time(scconds)

(b)

) 2 4 3 8 10 12 14 16 18 20 ) 2 4 6

Time(seconds)
(a)
Fig. 3.

16 18 20 o 2 4 6 8

10

12 14 16 18 20

Time(seconds)

()

Output and control response plots for textbook exan{a) Nominal; (b) Saturation, no AW{c) Saturation, with AW at different

Fy,. ThereforeF, is used to setv,, and thenF; to provides Several AW compensators were constructed using the dif-

an appropriate damping ratio, thus:

ferent values ofF listed in Table I. Using equation (37),

the elements ofF’ were chosen so thaf, corresponds

F,=—w2/Boy Fy= —%U—éj@ (37)

However, note that in reality, is not constant, but varies
within an interval[0, 1]. One therefore might expect that AW
designs corresponding to compensators which are suffigient
well-damped and sufficiently fast for adt, within a sub-
interval of [0,1] to yield better responses for small enough
saturation violations. Note that settimg = 1 provides the
compensator dynamics when no control signal saturation
occurs so one might expect that,,—y = A, + B,F
should be at least critically damped to enable a return to
linear behaviour with no unwanted oscillations. However, a
damping ratio greater than this would be required to ensure
good damping whesaturation occurs (i.e. whenoy < 1).

to undamped natural frequencies ©f = 10rad/s when
o9 = 1. F, corresponds to different damping ratios, again

whenoy = 1.
|| Damping Rat|o| F, F, | Remark ||
¢(=0.1 -1 002 (<<1
(=05 -1 -0.1 (<1
=1 -1 -0.2 (=1
(=5 -1 -1 C>1
¢ =100 -1 20 [ ¢>>1
TABLE |

ANTI-WINDUP GAINS AND APPROXIMATE NONLINEAR LOOP

CHARACTERISTICS

Figure 3 shows the output response and the corresponding

control response for a step demand. Figure 3a shows the

IV. EXAMPLE

un-saturated response and Figure 3b shows the response

degraded by saturation. Figure 3c shows the system response

A. Textbook Example

with AW, synthesized using different’ values, engaged.

When F' is selected such thaf = 1 and { = 2, the

~

Consider the double integrator plant,(s)
(Ap, Bp, Cp, D,) described by the state space matrices:

=l ] m=[8] o[ 2-[]

A linear PD controllerK (s) with proportional gaink, =
0.001 and derivative gaink; = 0.014 was designed for the
plantG,(s).

¢

The saturation limits are fixed at0.01 and according to B. Quadrotor example

Corollary 1, the elements oF' must be negative since

response of the system is significantly improved. WHen
corresponding t@ = 0.1 and¢ = 0.5 is used, the response
has large oscillations with a very slow decay rate; when
= 100, there are no oscillations but a slow decay rate.
Hence, a range of values &f can be used to stability but a
smaller range provides acceptable performance. As exghecte
a slightly over damped AW compensator provides the most
appealing time-response.

B = 100. This will ensure that global stability of the AW Consider the quadrotor system taken from [26], [13] and

compensator for this plant system is guaranteed.

depicted in Figure 4. This is a multivariable system, but one



However, it transpires, via analysis similar to that givan i
[13], that stability of the above system can be guaranteed by
implementing an AW compensator of the form

_ [Mp(s) -1
O(s) = { Np(s) } X (41)
where Gp(s) = Np(s)X(Mp(s)X)~! is a right coprime
—r, factorisation with
iz, w Tr
Np(s) = blockdiag (N1(s), ..., Nm(s)) (42)
Fig. 4. Force, Torque and States definition of a Quadrotor MD(S) = blockdiag (M (5)7 sy My, (5)) (43)

This means that the dynamics of tkith nonlinear loop are

) ) given by the equations ([13])
which has much structure. A linear model of the quadrotor _ B
at hover is given by & = (Ai + BiFi)w; — BiXi(u)

wherey(u) = u — x(u). Equation (44) is in the form of the
system in Corollary 1 and it transpires (full analysis oedit
that selecting each element &f to be negative for alf
{1,2,...,m} guarantees global asymptotic stability of the
closed-loop.

andJ,, J,,J. are moments of inertia in the, y, = axes and To illustrate AW design we examine the roll channel of the
m is the quadrotor’'s mass. The relationship between the bodyadrotor; the state space dynamics are described by

forces () and torquesr,, 79, 74) generated by the motors 0
and the motor speed squared is given by the makrix A; = [8 (1)] B; = [ 1 } C; = {(1) ﬂ D; = {8]
T

G(S) = GD (S)X
where
1 1 1

Jps?" Jys?’ J,s% ms?

Gp(s) = diag(

F k k k k 0 . - . .

- 01 _ 1l<: 01 kl: 5f Using the analysis in Section 1lI-C, setting = 1, F' was

(o3 - aR1 QR T . .

70| = lak 0 ak; 0 5 (38) chosen to have the various damping and undamped natural

T ke ke ke ko 5, frequency characteristics shown in Table II.

——
X u Damping Ratio| Natural Frequency| Fy Fy Remark
=01 wWn, = 115.47 -1I00 01732 ¢ <1
wherek; > 0 and k; > 0 are constants that need to be c=1 Wy, = 115.47 2100 -1.7321| (=1
determined experimentallyy is the distance between the (=5 wn, = 115.47 -100  -8.6603| ¢>1
motor and centre of mass; andl is the motor angular CC: 011 Wn :gg.g% _18 _8'(5)2‘713 g<%
H H H H H = wn = . - -0. —
velocity. BecauseX is invertible , a nominal controller can i=s or Z 3681 10 27386| ¢>1
be designed on a loop-by-loop basis and has the structure
TABLE I

K(S) = XﬁlKD(S) (39) ANTI-WINDUP GAINS AND DAMPING/SPEED PROPERTIES

where Kp(s) is a block diagonal transfer function matrix,

with each element consisting of a PD controller, which has

been tuned for good nominal performance - see [13]. Figure 6 shows the roll attitude response for a pulse de-
L . mand of0.4rad; Figure 7 shows the corresponding control
Saturation is present on each of the motor velocities, rgjgna| response. Figure 6a shows the nominal (un-satjrated
sulting in the scenario depicted in Figure 5. Notice thafagponse and Figure 6b shows the response with saturation:
because the saturation element destroys the decoupling ffitormance degradation can be observed. Figure 6¢ shows
the system, hence the system may exhibit traditional windyge aw response using corresponding tas, = 36.51 and

effects as well as directionality issues [27]. The nonliitga \5ious damping ratios. Notice that the response improses a
x(-) : R™ — R™in Figure 5 is not a pure saturation function jncreases from 0.1 to 5 with the best response at 5.

as in equations (19)-(20) but instead has the form Figure 6d shows the AW response usiAgcorresponding

to w, = 115.47 and various damping ratios. For this
higher undamped natural frequency, improved responses are
obtained for all damping ratios, compared to the response
G for w, = 36.51. Again, the best response is for the slightly
overdamped case, = 5.

x(u) := Xsat(X ~'u) (40)

K

"] Ko X o X oy

V. CONCLUSION

This paper has proposed a simple method for synthesizing
AW compensators for systems containing double integrators
based on a Popov-like sufficient condition presented in [1]

Fig. 5. Plant structure
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and an approximate linear analysis of the AW compensatgz3]
The main appeal of the approach is that global stability is

guaranteed for a large range éf and thenF is selected
based on the AW compensator’s desired speed and damping
characteristics. Due to the approach’s direct natétesan

be chosen based on the designer’s need, and in real ti

without repeating the stability analysis.
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