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Abstract— This paper considers a class of convex optimiza-
tion problems where both, the objective function and the
constraints, have a continuously varying dependence on time.
Our goal is to develop an algorithm to track the optimal solution
as it continuously changes over time inside or on the boundary
of the dynamic feasible set. We develop an interior point method
that asymptotically succeeds in tracking this optimal point
in nonstationary settings. The method utilizes a time varying
constraint slack and a prediction-correction structure that relies
on time derivatives of functions and constraints and Newton
steps in the spatial domain. Error free tracking is guaranteed
under customary assumptions on the optimization problems
and time differentiability of objective and constraints. The
effectiveness of the method is illustrated in a problem that
involves multiple agents tracking multiple targets.

I. INTRODUCTION

In a conventional optimization problem we are given a
fixed objective and a fixed constraint and are tasked with
finding the optimal argument that minimizes the objective
among all feasible variables. In a time varying problem the
objective and constraints change continuously in time and
we are tasked with tracking the optimal point as it varies
over time. These problems arise often in dynamical systems
and control because many practical situations involve an
objective function or a set of constraints that have depen-
dence on time [1], [5], [8], [12]. Particular examples include
estimation of the path of a stochastic process [9], signal
detection with adaptive filters [4], tracking moving targets
[20], and scheduling trajectories in an autonomous team of
robots. [18]

Methods to solve convex optimization problems — say,
gradient descent, Newton’s method, and interior point — are
iterative in nature [3], [6]. When applied to a time varying
nonstationary setting, each iteration moves the argument
closer to the optimum while the optimum drifts away because
of the changing nature of the objective and the constraints.
This process is likely to settle into a steady state optimality
gap that depends on the relative time constants of the
dynamical process and the optimization algorithm. That this
is indeed true has been observed and proven for gradient
descent in unconstrained optimization [13], as well as in
constrained optimization problems that arise in the specific
contexts of distributed robotics [19], sequential estimation [9]
and distributed optimization with a time varying alternating
direction method of multipliers [10].

Alternatively, one can draw inspiration from the
prediction-correction structure of Bayesian filters and utilize
knowledge of the system’s dynamics to predict the drift of
the optimal operating point and utilize the descent step of an

optimization algorithm to correct the prediction. Variations of
this idea have been developed in discrete [17] and continuous
[2] time. When used in discrete time, the addition of a
prediction step has been shown to reduce the tracking error
relative to verbatim use of a descent algorithm [16], [17].
When used in continuous time, the use of a prediction step
and a Newton correction results in perfect tracking of the
optimal argument of an unconstrained optimization problem
(2], [15].

This paper develops an interior point method to track
the optimal point of a convex time varying constrained
optimization problem (Section II). Important characteristics
of this method are: (i) The use of a time time varying
logarithmic barrier akin to the barrier used in static interior
point methods. (ii) The use of a time varying constraint
slack that is decreased over time and guarantees asymptotic
satisfaction of the constraints. (iii) The use of time derivatives
that play the role of a prediction step that tries to follow the
movement of the optimal argument. (iv) The use of spatial
Newton decrements that play the role of a correction step by
pushing towards the current optimum. The main contribution
of this paper is to show that this method converges to the
time varying optimum under mild assumptions (Section III).
These assumptions correspond to the customary requirements
to prove convergence of interior point methods and differen-
tiability of the objective and constraints with respect to time
variations (Theorem 1). It is important to emphasize that our
convergence result holds for nonstationary systems and, as
such, do not rely on a vanishing rate of change. This implies
that the proposed systems succeeds in tracking the optimum
without error after a transient phase. The effectiveness of
the method is illustrated in a problem that involves multiple
agents tracking multiple targets (Section IV).

Notation and Preliminaries. Given an n-tuple (xp,...,x,),
x € R" is the associated vector. We denote as I, the n-
dimensional identity matrix, as S" the space of symmetric
matrices and as S} | and S} the spaces of positive definite
and positive semidefinite matrices, respectively. For square
matrices A and B, we write A > B if and only if A—B
is positive semidefinite. The Euclidean norm of a vector
X is ||x||2. The gradient of the function f(x,7r) € R with
respect to x € R" is denoted by Vi f(x,7) € R". The partial
derivatives of Vyf(x,f)with respect to x and ¢ are denoted
by Vixf(x,t) € S" and Vi, f(x,t) € R", respectively.



II. PROBLEM STATEMENT
Consider the following constrained convex optimization
problem
Jo(x) (D
s.t. filx) <0, ie{l,---,p}.

In order to solve (I, we can exploit interior point method
[6], [14] in which we relax the constraints and penalize their
violation by logarithmic functions of the form —log (— f;(x)).
More specifically, we solve the relaxed problem

x* :=arg min
xeR”

x*(c) :=arg I);Iélg d(x,c¢), (2)

where the so-called barrier function ®(x,¢) is defined as

o0 =hx) - Ylog(fx). @)
i=1

and 2 = {x e R"|f;(x) <0,i=1,---, p} is the interior of the
feasible domain. Furthermore, ¢ is a positive constant such
that x*(¢) — x* as ¢ — oo,

To implement the interior point method, the unconstrained
optimization problem (2)) is solved sequentially for a positive
growing sequence {c;}, each starting from the optimal
solution of the previous optimization problem. The resulting
sequence {x*(c)} converges to the optimal point as ¢ — co.
For each fixed ¢y, x*(cx) can be found, for instance, by
Newton’s method as follows

%X(t) = VI ®(x(1),cr) Vx@(x(1), ct). (4)

with initial condition x(0) = x*(cx_1). In order to decrease
the total convergence time to the optimal point x*(), it
is appealing to increase ¢ as a function of time, in lieu
of discontinuous updates. Is this case, problem (3) would
involve a time varying objective function.

In this paper, we consider a more general case in which
both the objective function and/or the constraints are time-
varying. More formally, we consider the following problem

fo(x,t) 5)
s.t. filx,0) <0, ie{l,---,p}.

for all 7 € [0,00). The ultimate goal is generate a (not
necessarily feasible) solution x(¢) such that x(r) — x*(¢) as
t — oo, which necessarily enforces asymptotic feasibility. The
corresponding tirne—varying barrier function of (3) becomes

*(t) = i
X"(r) :=arg min

D(x,1) = fo(x,1) — Zlog —fi(x,1)), x€2(t) (6)
where 2(t) = {x € R"|f,-(x,t) <0, i=1,---,p} is the
interior of the (time varying) feasible region, and c¢(¢) is a
positive valued function of time. For minimizing (@), we will
propose a time-varying Newton differential equation whose
solution x(f) converges to X*(¢) as t — oo.

For further analysis, we assume that the objective function
is strongly convex in x and that the constraints are convex
in x for all times ¢ € [0,e0). In addition, we assume that

fi(x,t) is continuously differentiable with respect to time for
all i € {0,1,---,p}. We formalize these assumptions next.

Assumption 1 The objective function fy(x,t) and the con-
straint functions f;(x,t) are twice continuously differentiable
with respect to x and continuously differentiable with respect
to time for all t > 0. Furthermore, fo(x,t) is uniformly
strongly convex in x, i.e., Vi fo(x,t) = ml for some m >0
and f(x,t) is convex with respect to x for all t > 0.

Assumption 2 Slater’s condition qualification holds for
prob]em @) for all t > 0, i.e., there exits x" € R" such that
filx",1) <0 for all t > 0.

The above assumptions make the convexity-related prop-
erties to be invariant over time. With Assumption [2] the
necessary and sufficient condition for optimality of problem
(@) at all times 7 > 0 read as

Vxfo(x +Z7L* Vi fi(x*(t),1) =0, ©)

i ( )fl( ( )’t) =0,i€ {17 717}
li*(t) 2 07 i€ {17 ap}
fix*(t),1) <0.

where A*(r) = [A{(r),---,A}]" € RP is the vector of optimal
dual variables. Finally, we make a further assumption about
the time variations of the optimal primal-dual pair.

Assumption 3 For any o > 0, the optimal dual variables
satisfy Af(t)exp(—out) — 0 as t — oo for all i€ {1,---,p}.

The above assumption excludes the possibility for the
optimal dual variables (and hence the optimal primal vari-
ables) to escape to infinity exponentially fast. Otherwise, the
optimality conditions would become ill-conditioned as t — oo
and its solution is not tractable in the implementation phase.
Equivalent assumtions to Assumption [3] are made in similar
settings. See e.g. [17].

Prior to solving the general problem (5), we start off
with unconstrained dynamic convex optimization where the
optimization space is the domain of the objective function
(Section [ITI-A). In Section [[II-B] we take time varying linear
equality constraints into account and in Section we
deal with the case of generic dynamic convex constrained
optimization problems. In section [[V|two tracking problems
are studied that are posed as time varying optimization prob-
lems that can be solved through the techniques developed in
Section [

III. TIME-VARYING INTERIOR POINT METHOD

In this section, we develop a time-varying interior point
method that solves (3). We first introduce time-varying
Newton method for unconstrained dynamic optimization
problems. Next, we generalize the method to linear equality
constraints. Finally, we incorporate time-varying interior
point method for the case of inequality constraints.



A. Unconstrained Time-Varying Convex optimization

In unconstrained time-varying convex optimization the
goal is to track, continuously in time, the minimizer of
a time-varying convex function. Mathematically speaking,
given an objective function fp(x,7) : R" x R} — R, the goal
is estimate the trajectory x*(¢) where

x*(t):=argmin  fo(x,1). (8)
xeR"

The optimal trajectory x*(¢) is characterized by the points
where the gradient of fy(x,7) with respect to x is zero,
i.e. Vxfo(x*(z),r) =0 for all ¢ € [0,0). Using chain rule to
differentiate the latter identity with respect to time yields

%VXfO(X*(t)vt) :VxxfO(X*(t)at)%X*(t) + VleO(X*(t)J()é)

The left hand side of the above equation is identically zero
for t € [0,0). It follows that the optimal solution moves with
a velocity given by

(1) = =V oX"(1),0) Ve fo(X"(1),0). (10)

i
The above observation suggests that the tracking trajectory
should evolve with (approximately) the same velocity as the
minimizer trajectory, while taking a descent direction at the
same time in order to get closer to the optimal trajectory.
If Newton-method is chosen as the descent direction, the
resulting time-varying Newton method takes the form

X(t) = =Vl fo(x(2),0)[PVxfo(x(1),1) + Vi fo(x(2),1)],
(11

where P is a positive definite matrix. The next lemma shows
that the solution of the dynamical system (11)) converges ex-
ponentially to the solution to the unconstrained minimization

problem (8).

Lemma 1 Let x*(¢) be defined as in (8) and x(t) be the
solution of the differential equation (II) with P € S}
satisfying P = ol. Then, the following inequality holds

[lx(t) —x*(1)[|2 < C(xo,m)e™ ",

where xq is an arbitrary initial point and 0 < C(xy,m) < oo
Proof: The proof is found in Appendix subsection [A] |

The previous lemma confirms that the trajectory generated
by converges exponentially to the optimal trajectory
and therefore it is possible to solve the unconstrained time-
varying optimization problem (§) by discretization of the
dynamical system (II). Next, we show that the same dy-
namical system allows us to solve dynamic optimization
problems with equality constraints by augmenting the state
space with the Lagrange multipliers associated with the
equality constraints.

B. Equality-Constraint Time-Varying Convex Optimization

Consider the problem of tracking the minimizer of a
convex time-varying objective function subject to linear
constraints. More precisely, we seek to estimate x*(r) for
all 7 € [0,00) where

f()(X,t)
s.t. A(t)x =b(r),

x*(f) :=arg min (12)
xeR"

with A(t) € RP*" and rank(A(r)) = p < n for all t > 0. The
Lagrangian relaxation of is

ZL(x, A1) = fo(x,1) + 2T (A(t)x —b(2)). (13)

where A € R? is the vector of Lagrange multipliers. The
optimal trajectory (x*(¢),A*(r)) constitutes of points where
the gradient of the Lagrangian with respect to both x and A4
vanishes. Therefore, by extending the state space to be z:=
[xI AT]T € R**P, the optimal solution z*(¢) is characterized
by

V., L (2" (t),t1) =0, t > 0. (14)

Similar to the unconstrained case, the tracking trajectory
should compose of two directions: a velocity compensating
direction and a descent direction. The next lemma addresses
the algorithm for tracking x*(¢) in (12).

Lemma 2 Denote z(t) = [x(t)T A(t)T]T as the solution of
the following differential equation

“2l0) =~V L)1) PV (2(0).1) + Vo L al0).1)

5)

where £ is defined in and P € S"*P is a positive definite
matrix satisfying P = o1, . Then, the following inequality
holds

e (r) =x* (@) [13+ A (£) = A*(1)[13 < C(xo, Ao, m)e>".
(16)
where xo € R" and Ay € R? are arbitrary initial points and
0 < C(xp, Ao, m) < oo.

Proof: See Appendix subsection [B] [ ]
Notice that the dynamical system (I3)) needs not to start
from a feasible point, i.e. it is not required that Agxg = byg.
However, feasibility is achieved exponentially fast by (I6).
In the sequel, we consider the most general case with time-
varying inequality constraints. Without loss of generally,
we omit linear equality constraints as each single affine
equality constraint can be expressed as two convex inequality
constraints.

C. Time-Varying Interior-point method

In this section, we return to the general optimization
problem (3)) with the associated barrier function (). We will
show that the same differential equation developed in Section
[II-A] — using the barrier function ®(x,7) defined in (6) in
lieu of fy(x,¢) in (II) — pushes the generated solution to



the optimal trajectory when the barrier parameter ¢(z) — oo.
Formally, the dynamical system of interest is

X(1) = VG @(x(r),1) (PVxP(x(r),1) + Ve @(x(1),1)),
7)

where P € S . Notice, however, that the Newton method
in this case needs to start from a strictly feasible point,
ie. Xg € Zp. This limitation is not desirable, as it is not
always straightforward to find such an initial condition. This
restriction can be overcome by expanding the feasible region
at + = 0 by a slack variable, denoted by s, and shrink it to
the real feasible set over time. More precisely, we perturb
problem (3)) at each time 7 € [0,00) by s(¢) : Ry — R4 as
follows

X*(r) :=argmin  fo(x,1) (18)
xeR"

s.t. filx,r) <s(r), ie{l,---,p}.

It can be observed that the feasible region is enlarged for
s(t) > 0. In particular, at time 7 = 0, any initial point xo € R”
can be made feasible by choosing the initial sy = s(0) large
enough. Another consequence of such perturbation is that,
the optimal value of the perturbed problem (I8) is no larger
than the optimal value at x*(¢). The next lemma formalizes
this observation.

Lemma 3 Let x*(t) be defined as in () and ¥*(t) as in (I8).
Then, the following inequality holds:

M‘w

0< folx™(t),1) = fo®"(1),1) < ) A7 (1)s(e)  (19)

1

where A} (t), i€ {l, -

fined in (7).
Proof: See Appendix subsection [C] |

,p} are optimal dual variables de-

The above lemma asserts that the sub-optimality of the per-
turbed solution X*(¢) is controlled by s(¢). More importantly,
as a result of Assumption [3] the sub-optimality can be pushed
to zero if s(¢) = spexp(—o) for any a > 0.

The barrier function associated with the problem (I8) is

; i

d(x,1) = fo(x,1) — 0 i og (s(t) — fi(x,1)), x € Z(¢)
) (20)
where Z(t) := {x € R" |fi(x,t) <s(t), i=1,---,p} is the

perturbed domain. For any initial point xg € R", 59 can be
chosen large enough such that xo € %y. More precisely, we
must have that

if max; fi(x0,0) <

. 0 (21
if max; fi(x0,0) >0

0
0= {maxl-f,-(xo,O) +€

for some € > 0. Denote by Z*(r) as the minimizer of the
perturbed barrier function (20), i.e.

7*(t) :=arg min ®(x,1)

1 (22)
xXeY(t)

For solving (22), we can now apply time-varying Newton
method to get the following differential equation

4(t) = — Vi D(E(1),1) (PVxD(Z(1),1) + Ve D(E(1) 1)) ,
(23)

By increasing the barrier parameter c¢(¢) over time the sub-
optimality is decreased as we show in the next lemma.

Lemma 4 With Z*(t) defined as in and %*(t) as in (18),
the following inequality holds for all t > 0

0= fole"(1),1) = fo¥*(1).1) < 5 (24)
Proof: The proof is provided in Appendix subsection
Dl ]

The bound quantifies the sub-optimality of Z*(z) with
respect to the perturbed optimal trajectory X*(z). More

specifically, as c(t) — oo, Z*(t) — X*(¢). The next lemma
established this convergence under the dynamics 23).

Lemma 5 Consider problem with the corresponding
time-varying barrier function (20). Let Z(t) be the solution of
the differential equation 23) wzth P S, satisfying P = o],

and initial condition xy € R". Finally, let sy be chosen as in
(21). Then, the following inequality holds

[2(r) =2"(1)l|2 < C(x0,c0,50,m)e ™"

where 0 < C(xg,co,S0,m) < .
Proof: The proof is provided in Appendix subsection
|

(25)

Few comments are in order: First, Lemma [5] shows that
the solution Z(¢) of the dynamical system (23) converges
exponentially to the sub-optimal solution Z*(¢) in (22)). Sec-
ond, Lemma guarantees that Z*(r) converges to the optimal
perturbed solution X*(¢) in (I8) if ¢(r) — . Finally, Lemma
I 3| confirms that the perturbed solution ~*(t) converges to
x*(t) of the original problem (3) if s(¢) — 0. Therefore,
convergence of the dynamical system @I) to the desired
optimal solution x*(¢) is guaranteed if lim; . c(f) = o and
s(t) = 0 as t — oo. The next theorem summarizes these
observations as the main result of this section.

Theorem 1 Consider problem (@) with optimal trajectory
x*(t) and the corresponding barrier function 20). Let %(t) be
the solution of with arbitrary initial condition xy € R".
Finally, let c(t) — oo and s(t) = soexp(—at) for some a >0
and sy chosen according to 21). Then, Z(t) — x*(t) as t — oo.

Proof: The proof follows from inequalities (T9), @I)
and (23).

We close this section by two remarks.

Remark 1 The logarithmic barrier coefficient c(t) is re-
quired to be positive, monotonic increasing, asymptotically
converging to infinity, and be bounded in finite time. A
convenient choice could be c(t) = coexp(at) for o > 0.
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Fig. 1: Trajectory of the agent —in red— and the targets. The
agent starts off with the first target and then switches to the
second one. The gain matrix is set to be P = 10.
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Fig. 2: Tracking error ||x(¢) —x*(¢)|| as a function of time for
the unconstrained problem. The optimal solution x*(¢) has
been computed in discrete times of Euler integration using
CVX [7].

Notice that the term Vyu®(%(t),t) in 23) compensates for
continuous-time variation of both c¢(t) and s(t).

Remark 2 If the Newton differential equation 23) starts
Sfrom a strictly feasible initial point, i.e. Xy € Dy, then s(t) is
chosen to be identically zero. From inequality (19), %(¢) =
x(t) for t > 0. Therefore, according to inequalities 24) and
(23), exponential convergence of the tracking trajectory %(t)
to the optimal trajectory x*(t) is guaranteed if the barrier
parameter c(t) grows exponentially.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the time
varying interior point method developed in the previous
section by two numerical examples. In Section we

numerically solve an unconstrained dynamic convex problem
and in Section we study a constrained dynamic con-
vex problem. In implementations, we use Euler integration
scheme with variable step size to solve the differential
equations that generate the solution.

A. Unconstrained optimization

Consider an agent charged with the task of tracking two
targets sequentially. That is, the agent is required to track the
first target on the time interval [fo,f;,] and track the other
target on the time interval [f;y,?¢]. If we denote the position
of the ith target by y;(¢), the objective function takes the
form

fo(x,1) = SO)|x =y, (O] + (1 =S©) [x ~y,()*,  (26)

where S(¢) is a weighting function that determines which tar-
get must be tracked. We consider the following differentiable

switch 1

S@)=1- 1+ e Y—tim)’

27
where ¥ > 0 controls the speed with which S(¢) transitions
from one to zero.

We use a time parametric representation of the trajectories
of the targets. Specifically, let p;(z) be elements of a poly-
nomial basis, the kth component of the trajectory of target
ith is given by

nj—1
yie(t) =Y yiejpi(t), (28)
Jj=0
where n; is the total number of polynomials that parametrize
the path traversed by target i and y; ; represent the corre-
sponding n; coefficients. To determine the coefficients y ;
we draw at random a total of L random points per target
{#}£_, independently and uniformly in the unit box [0, 1]2.
Target i is required to pass trough the points §, at times
lty/(L+1). Paths y;(f) are then chosen such that the path
integral of the acceleration squared is minimized subject to
the constraints of each individual path, i.e;

T
i =argmin [ 5(0)|dr,

st yiltp/(L+1)) =5, forall £=0,1...L+1.

(29)

This problem can be solved by a quadratic program [11].
In subsequent numerical experiment, we set the number
of targets to m = 2, the time interval to [0,1], and the
intermediate switching time #;,, = 1/2. We use the standard
polynomial basis p;(t) =t/ in (28) and the degree of the
polynomials is set to be n =30 for i =1,--- ,m. To generate
the target paths, we consider a total of L =5 random chosen
intermediate points. We further set the parameter controlling
the switching speed to y = 20. For this data, we solve by
Euler integration with variable step size of maximum length
0.01s.

The resulting trajectories are illustrated in Figure |I| when
we select the gain matrix in to be P = 10I,. A qualitative
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Fig. 3: Trajectory of the agent —in red— and the targets to
track. It can be observed that the agents succeed in following
both targets while keeping the distance between them as
small as possible. The gain matrix is set to be P = 50L,.

examination of this behavior shows that the agent —in red —
succeeds in tracking the first target up to time ¢ = 0.5s and
switching to the second agent after + = 0.5s. The objective
function considered in (26) agrees with Assumption [I] and
therefore, the hypothesis of Lemma [I] is satisfied. Conse-
quently, exponential convergence to the optimal solution is
guaranteed as it can be observed in Figure 2] Also, this
convergence gets faster as the gain matrix P is increased.

B. Constrained optimization

We consider two agents charged with the task of staying
withing certain distance of two moving targets, while keeping
their Euclidean distance as small as possible. Since the posi-
tion of both agents are optimization variables, the objective
function in this problem is not time varying. However, the
constraints are. Denote by x;(#) the position vector of agent i
and denote by y;(¢) as the position vector of target j. Then,
the agents aim to solve the following problem

min |
XIERZ,XzeRZ
stx; —y;(O)|*=r} <0 for i=1,2.

x| — x|
(30)

The trajectories for the targets were computed by the same
procedure as in Section [V-A] The maximum allowable
distance to the targets is set to be r; = 0.05m. The barrier
parameter is chosen as c(z) = e” and the slack parameter as
s(t) = e ™ with y=6 and o = 10. For this data, we solve
the differential equation (23) by Euler integration scheme
with variable step of maximum length 0.01s.

In Figure [3 the resulting trajectories are depicted. Both
agents succeed in following the corresponding target, while
keeping their distance small. Figure [ illustrates the time
evolution of the constraint functions. The value of both
constraints converges to zero asymptotically as expected ac-
cording to Theorem [T It is also expected that the solution of

I
w

OO -7
— Il — y20I = 73]

o

N

a1
T

=]
o [ o
[ a )
T
I I I

=3

=}

a
L

Constraint violation (m?)

-0.05 1 1 1 1 1 1 1 1 1
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(a) Time evolution of constraint functions ||x;(¢) —
i=1,2.
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(b) Time evolution of ||[x;(z) —x}(x),x2(t) —x5(t)]||, where x}(z)
and x3(¢) are the optimal trajectories.

Fig. 4: Evolution of the constraint functions and the tracking
error as a function of time. Both the constraint violation and
the tracking error converges asymptotically to zero as per
Theorem [T}

the dynamical system (23)) converges to the optimal solution
asymptotically. This convergence is depicted in Figure b}

V. CONCLUSIONS

In this paper, we developed an interior point framework
for solving convex optimization problems with time varying
objective function and/or time varying constraints. We used
barrier penalty functions to relax the constraints and devel-
oped a prediction-correction Newton method for solving the
corresponding time varying unconstrained problem. Under
reasonable assumptions, asymptotic convergence to the op-
timal solution of the original problem was guaranteed. All
time dependences were assumed to be continuous. Numerical
examples regarding target tracking applications were consid-
ered to illustrate the performance of the developed methods.
The numerical results were in accordance with the theoretical



findings.

APPENDIX
A. Proof of Lemma [I]
1

By Assumption strong convexity), Vxxfo(x(7),t)”" is
defined for all + > 0. The time variation of the gradient at
x(r) can be written as

d

vafO(X(t)vt) = VxxfO(X(t)at)X(t) +thf0(X(l),t). 31
Substituting x(¢) in (TI), it follows that
LV fo(x(0).0) = PVifo(x()0). (D)

dt

This is a first order linear differential equation on
Vxfo(x(2),t). Therefore, the solution of (32) is

Vifo(x(t),t) = e "'V fo(x0,0).

The norm of Vyfy(x(¢),#) can be upper bounded using
Cauchy-Schwartz inequality

IVxfo(x(r),1) 12 < e~ [|2]| Vxfo(%0,0) 2.

Using the fact that oI, < P, we have that |le |, = =,
and therefore

IVxfo(x(£),0)l|2 < e[| Vx fo(%0,0) -

On the other hand, ||x(f) —x*(¢)||2 is bounded above by
2||Vefo(x(2),1)|l2/m due to strong convexity. Hence, it fol-
lows that

(33)
(34)

(35)

2
Ix() =X (O]l < = [Vaf(x0,0) 2™ 36)

The above inequality completes the proof of the lemma. No-
tice that in fact C(xo,m) = 2||Vxfo(x0,0)||2/m is a bounded
nonnegative constant for all initial condition xg.
B. Proof of Lemma 2]

The Hessian of the Lagrangian (T3)) with respect to z =
[xT, AT]T is given by
A’
Opxp

VxxfO(X(t)at)

Vul(2(t),t) = A()

(37)
Strong convexity of fy(x,?) is sufficient for V,,.Z(z,t) to be
invertible. The rest of the proof follows the same steps as the
proof of Lemma (1| by substitutions Vyfy(z,7) « V,-Z(z,1)
for the objective function and x < z for the optimization
variables.

C. Proof of Lemma

The proof is taken from [3]. Recall that the dual function
associated with problem (@) is given by

g(A(0).1) = ggﬁxt+;x fi(x,0),

(38)
which is concave in A = [4;,---,4,]T € R At the optimal
point (x*(¢),A*(z)), it follows by strong duality that

Jo(x*(1),1) = g(A7(2),1) (39)

On the other hand, for any feasible point x of the perturbed
problem, i.e. x € 2, = {x € R"| fi(x,t) <s(z)}, it must be
true that

S (0,1) < folxt) + Y AF (1) f(x,0)
i=1

P
< folx,t)+ Y A (1)s(0)
i=1
Substituting (39) back in @0) and setting x = X*(1) € %,
yields

(40)

Jox*(1),1) < fo(X* Z/l*
It remains to prove that fo(X*(¢),7) < fo(x*(¢),t). This
follows from the fact that for 0 < s, the feasible set is
enlarged, causing reduction in the optimal value. The proof
is complete.

(41)

D. Proof of Lemma

The optimal trajectory Z*(¢) solution to the problem ([22)
is characterized by Vx®(Z*(¢),r) = 0 for all t € [0,00), or

equivalently
1 & -
Vi fo(Z" (1)1 @; Wvﬁ(z (t),1) =0,
(42)
Define the following functions
=L i, @)
c(t) s(1) = fi(@(1),1)
Notice that A*(r) > 0 for all £ >0 and i € {1,...p} since
the optimal point is always in the domain, i.e. f;(Z*(¢),1) <

s(t), i€ {l,...,p}. On the other hand, the dual function of
the perturbed problem (I8) is given by

gA(1),1) = min fo(x,1) +ZA (44)

i=1

)(fi(x,1) = s(1)),

It follows from (@2) that the pair (z*(r),A* (1)) satisfies the
identity [@4). Therefore, we have that

gAr (1)) =
(45)

On the other hand, the dual function provides a lower bound
for the optimal solution (see e.g. [3])

A1) < fo(X*(1),1), YA €RE, Vt > 0. (46)

In particular, the above inequality holds for 1*(1‘). Substitut-

ing @3) in (@0) results in

fol@ (1)) — % < fo(®*(1),1), @7)

which is the desired bound (24).



E. Proof of Lemma 3]
The Hessian of ®(x,t) can be written as
3 VifiVafi' | Vi
(s—fi*  s—fi
Since fy(x,t) is strongly convex, and c¢(¢) is strictly positive,

it follows that Vi ® is m-strongly convex for all ¢ € [0, o).
The dynamics of V4@ at point (%(t),¢) can be written as

o 1
VXXCD = VxxfO + ; (48)

i=1

%chi)(i(t),t) = Vux®(Z(1),1)Z(t) + Ve ®(Z(2),1).  (49)
Substituting the dynamics (23) into the last result admits
%de)(i(t),t) — PV (#(1),1), (50)
This implies in turn that
[Vx®(2(1),1) ]2 < e[ VxP(%0,0)[|2 (1)
where
. 1 & Vi fi(%0,0)
[Vx®(x0,0)[|, = [ Vxfo(x0,0) + ?o; mHZ <o
(52)

On the other hand, at each time ¢, CTJ(X,Z) is m-strongly
convex. Therefore, it follows that

- < 2o &0
I2(r) =% (0)ll2 < —[[VxP(2(t),1)ll2, (53)
Substituting (31) in (33) gives the desired inequality
o 2 B
[2(1) =% (1) l|2 < | VxP(x0,0)[2¢™". (54)

The proof is complete.
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