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Abstract— This paper investigates robust fault diagnosis of
multiple air data sensor faults in the presence of winds. The
trade-off between robustness to winds and sensitivity to faults
is challenging due to simultaneous influence of winds and
latent faults on monitored sensors. Different from conventional
residual generators that do not consider any constraints,
we propose a constrained residual generator using moving
horizon estimation. The main contribution is improved fault
sensitivity by exploiting known bounds on winds in residual
generation. By analyzing the Karush-Kuhn-Tucker conditions
of the formulated moving horizon estimation problem, it is
shown that this improvement is attributed to active inequality
constraints caused by faults. When the weighting matrices in
the moving horizon estimation problem are tuned to increase
robustness to winds, its fault sensitivity does not simply decrease
as one would expect in conventional unconstrained residual
generators. Instead, its fault sensitivity increases when the
fault is large enough to activate some inequality constraints.
This fault sensitivity improvement is not restricted to this
particular application, but can be achieved by any general
moving horizon estimation based residual generator. A high-
fidelity Airbus simulator is used to illustrate the advantage of
our proposed approach in terms of fault sensitivity.

I. INTRODUCTION

During aircraft operations, air data sensor measurements
are fed into the flight control computer to calculate the
flight control law, thus it is critical to identify any air data
sensor faults [7], [8]. The industrial state-of-the-art for sensor
fault detection and isolation (FDI) relies on triplex hardware
redundancy, and performs a majority voting scheme to select
the accurate measurements and discard any failed sources [6].
This scheme works well if only one sensor source becomes
faulty, but it would be inadequate to address simultaneous
multiple sensor faults within the triplex redundancy. As
currently investigated in the RECONFIGURE project [7],
[8], one possibility to extend guidance and control func-
tionalities for future aircraft could be the incorporation of
analytical redundancy to detect, isolate and estimate sensor
faults without adding new sensors.

In the analytical redundancy based FDI technique, an
important method is the residual-based approach using var-
ious types of linear and nonlinear observers or Bayesian
filters [4], [12]. A crucial issue with any FDI scheme
in aircraft applications is how to simultaneously maintain
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its robustness to wind disturbances and optimize its fault
sensitivity. In [15], a robust fault detection approach based
on eigenstructure assignment was proposed for faulty sensors
of jet engines. In [5], [9], an extended Kalman filter (EKF)
based FDI method was proposed based on the assumption
of constant winds. This simplified assumption limits their
applicability to situations without wind shear. Without any
limiting assumption about wind dynamics, the disturbance
decoupling method based on differential geometry was used
in [1], [2] to perfectly decouple wind effect in the generated
residual signal.

This paper focuses on fault diagnosis of air data sensors
in the presence of winds. It is challenging because wind
disturbances and latent sensor faults simultaneously affect
some air data measurements [7], [8]. In this case, the
disturbance decoupling method adopted in [1], [2] cannot
be applied, since decoupling the wind effect in the residual
signal would also decouple the corresponding air data sensor
faults to be detected. As an alternative to perfect disturbance
decoupling, we may increase robustness to disturbances at
the cost of reducing sensitivity to faults [4].

Motivated by the above challenge, we propose a con-
strained residual generator based on a system model aug-
mented with wind dynamics. The dynamic relations be-
tween wind speed and acceleration are described by a first-
order integrating model, and the information about bounds
on wind speed and acceleration [7], [8] is exploited in
a constrained moving horizon estimation (MHE) problem
formulation which is known for its capacity to handle con-
straints [17]. By analyzing the Karush-Kuhn-Tucker (KKT)
conditions of the formulated MHE problem, it is shown that
the main advantage of incorporating constraints in residual
generation is the improvement of fault sensitivity attributed
to the active constraints caused by faults. When tuning
the weighting matrices in the MHE problem to increase
disturbance robustness, its fault sensitivity would increase,
rather than decrease as one would expect in conventional
unconstrained residual generators, if the fault is large enough
to activate some constraints. It is worth noting that the fault
sensitivity improvement is not restricted to this particular
application, but can be achieved by any general MHE based
residual generator.

This paper is organized as follows. Section II describes
the system model. Then the proposed FDI scheme is given in
Section III. Section IV explains how active constraints caused
by faults contribute to improving fault sensitivity. Simulation
examples on the Airbus simulator are detailed in Section V.
Conclusions and future work are discussed in Section VI.
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II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

In order to enhance triplex monitoring which can address
only one single fault in the redundant sensors, we exploit
analytical redundancy to detect and isolate simultaneous mul-
tiple angle-of-attack (AOA) and calibrated airspeed (VCAS)
sensor faults in this paper.

Since only longitudinal dynamics is investigated in this
paper, the following model is adopted:

α̇(t) = f (α(t), Θ(t)) + uα(t)

y(t) = h (α(t),w(t), Θ(t))

ym(t) = y(t) + n(t)

(1)

with the definitions Θ =
[
Vg θ q nx nz z

]T
, w =[

Wx Wz

]T
, y =

[
α Vz Vc

]T
, n =

[
nα nvz nvc

]T
.

The system outputs y(t) include AOA α, vertical speed Vz ,
and VCAS Vc. The output measurements ym(t) are cor-
rupted with measurement noises n(t). Wx and Wz represent
horizontal and vertical wind speeds, respectively. The model
parameter Θ consists of ground speed Vg , pitch angle θ, pitch
rate q, horizontal load factor nx, vertical load factor nz , and
altitude z, which are all measurable. uα is the input noise
accounting for the model mismatch. The output equations in
(1) for Vz and Vc are

Vz = hvz(α,w, Θ) and Vc = hvc(α,w, Θ), (2)

respectively. For each redundant AOA sensor measurement
α
(i)
m or VCAS sensor measurement V (i)

m,c, i = 1, 2, 3, the
latent sensor faults f (i)α and f (i)vc are additive, i.e.,

α(i)
m = α+ f (i)α + n(i)α , V (i)

c,m = Vc + f (i)vc + n(i)vc . (3)

The system model (1) is adopted due to several consid-
erations: a) it avoids other air data measurements which
are considered as unreliable in the presence of AOA/VCAS
sensor faults [8], and involves only inertial sensors; b) it
includes no aerodynamic parameters, avoiding the issue of
robustness to uncertain aerodynamic parameters; c) its low
state dimensions are attractive for real-time computation.
More details about the model (1) are given in Appendix I.

Besides the approximately zero-mean measurement noises
n(t) and input noise uα(t), the main source of uncertainty
is the wind disturbance w(t) which should be distinguished
from sensor faults in the considered FDI problem. Note that
there is no direct wind effect on the AOA measurements
in the model (1), thus we can easily generate a residual
for AOA FDI by decoupling the wind effect from verticle
speed Vz and VCAS. In contrast, the task of VCAS FDI is
more challenging, because VCAS measurements are simulta-
neously affected by winds and latent sensor faults, as shown
in (2) and (3). In this case, perfect disturbance decoupling
would lead to complete loss of sensitivity to fault. A remedy
could be to introduce a larger detection threshold at the
cost of reduced fault sensitivity. In order to address this
above challenge, the basic idea of our proposed solution is
to augment the model (1) with wind dynamics and to adopt

constrained residual generation by exploiting known bounds
on wind speed and acceleration.

III. FAULT-TOLERANT MOVING HORIZON
ESTIMATION SCHEME

A. FDI Scheme

State and wind estimation 
based on augmented model

Healthy AOA/VCAS sensors

Residual generation, 
evaluation, and FDI logic

Measurements at 
time instant k

Fig. 1. Fault detection and isolation scheme

As depicted in Figure 1, our FDI scheme consists of two
consecutive steps: a) isolating faulty AOA/VCAS sensors
based on generated residual signals; b) estimating states and
winds after removing faulty sensors. The residual signals for
FDI are generated as the difference between the AOA/VCAS
measurements and their one-step-ahead predictions, i.e.,

r
(i)
α,k = α

(i)
m,k − α̂k|k−1,

r
(i)
vc,k = V

(i)
c,m,k − V̂c,k|k−1, i = 1, 2, 3.

(4)

Here, the index k denotes the samples at time instant tk. The
one-step ahead predictions α̂k|k−1 and V̂c,k|k−1 are com-
puted from the filtered estimates α̂k−1|k−1 and ŵk−1|k−1
based on the model (1) and the assumed wind dynamics
given latter. The residual signals are evaluated by their root
mean square (RMS) values over a sliding window [4]:

J
(i)
?,k =

√√√√ 1

Neval

k∑
j=k−Neval+1

(r
(i)
?,j)

2

where ? represents “α” or “vc”, Neval is the length of residual
evaluation window. The adopted fault detection logic is{

J
(i)
?,k > J?,th ⇒ ith AOA or VCAS sensor is faulty
J
(i)
?,k ≤ J?,th ⇒ ith AOA or VCAS sensor is fault-free.

(5)
The threshold can be obtained by hypothesis test based on
the approximated distribution of the fault-free residual signal,
or empirical Monte Carlo simulations based on normal
historical measurement data, to avoid false alarms [4], [9].

State and wind estimation in Figure 1 incorporates the
following first-order integrating model to represent wind
dynamics:

ẋd = ud with xd =
[
Wx Wz

]T
, ud =

[
ud,x ud,z

]T
,

(6)



ud,x and ud,z represent horizontal and vertical wind acceler-
ation. This assumed wind dynamics was proposed for aircraft
control in wind shear [13]. It is exploited in our paper,
however, for the purpose of FDI and estimation.

B. Overview of MHE

The MHE approach is adopted for state and wind esti-
mation in our FDI scheme. Besides addressing nonlinearity
and robustness to initial errors [16], the employment of
MHE enables enhancement of fault sensitivity by exploiting
known bounds on wind speeds and accelerations, which will
be explained in Section IV. A brief overview of the MHE
technique is first given below.

The MHE framework builds on the discrete-time approx-
imation of the continuous-time model (1) and the assumed
wind dynamics (6):

αk+1 = αk + tsf(αk, Θk) + tsuα,k, (7a)
xd,k+1 = xd,k + tsud,k, (7b)

ȳm,k = h(αk,xd,k, Θk) + n̄k, (7c)

where ts represents the sampling interval, (7a) and (7b)
are obtained via approximated numerical integration applied
to (1) and (6). In (7c), all redundant AOA and VCAS
measurements identified as healthy by the FDI step (see
Figure 1) are merged into two single components in the
output vector ȳm,k, respectively, i.e.,

ȳm,k =
[∑

j∈Hα α
(j)
m,k

Nα
Vz,m,k

∑
j∈Hvc V

(j)
c,m,k

Nvc

]T
, (8)

where Hα and Hvc represent the sets of AOA and VCAS
sensors identified as healthy, 1 ≤ Nα ≤ 3 and 1 ≤ Nvc ≤
3 are the number of sensors in the sets Hα and Hvc,
respectively. n̄k is defined similarly to (8).

Given a moving horizon including N samples of system
output measurements {ȳm,l, ȳm,l+1, . . . , ȳm,k} (l = k−N+
1) at time instant k, the MHE problem is formulated as

min
xi,ui

1

2

∥∥xl − x−l
∥∥2
P−1 +

1

2

k−1∑
i=l

‖ui‖2Q−1 (9a)

+
1

2

k∑
i=l

‖ȳm,i − h(xi, Θi)‖2R−1

s.t. xi+1 = F (xi,ui, Θi), (9b)

uLB ≤ ui ≤ uUB, i = l, . . . , k − 1,

xLB ≤ xi ≤ xUB, i = l, . . . , k,

where

x =

[
α
xd

]
,u =

[
uα
ud

]
,P =

[
pα 0
0 pdI2

]
,

Q =

[
qα 0
0 qdI2

]
,R = diag(

Rα
Nα

, Rvz,
Rvc
Nvc

),

(10)

the weighting matrices P, Q, and R are all diagonal positive
definite, and the function F (·) in (9b) represents the right-
hand side of (7a) and (7b). The first term of the objec-
tive function (9a) is the so-called arrival cost to account
for data before the current estimation horizon, where x−l

represents the a priori state estimate [17]. In the Bayesian
framework, the weighting matrices P, Q, and R in (9a) can
be explained as covariance matrices, and the problem (9)
formulates the maximum likelihood estimation [17]. When
reliable covariance information of measurement noises and
the a priori state estimates is unavailable, as in this air data
sensor fault diagnosis problem, the weighting matrices can
be regarded as tuning parameters. Note that Rα and Rvc are
weighting parameters for each AOA and VCAS sensors, and
the weighting matrix R takes its form in (10) according to the
definition of ȳm,k in (8). We will discuss how these tuning
parameters affect both robustness to winds and sensitivity to
faults later in Section IV-C.

Throughout this paper, the MHE problem (9) with or
without inequality constraints is referred to as constrained or
unconstrained MHE (CMHE or UMHE), respectively. The
benefit of incorporating constraints in residual generation
will be analyzed by comparing CMHE with UMHE in
terms of fault sensitivity. Rigorous comparisons with other
forms of unconstrained residual generators are out of the
scope of this paper. The algorithm implemented to solve the
MHE problem (9) adopts a real-time iteration scheme with
the interior-point sequential quadratic programming strategy,
with its details explained in [20], [19].

IV. FAULT SENSITIVITY OF MHE-BASED
RESIDUAL GENERATOR

In this section, we will analyze the improved fault sen-
sitivity of CMHE based residual generator (CMHE-RG) by
comparing with UMHE based residual generator (UMHE-
RG), and then explain the trade-off between fault sensitivity
and disturbance robustness when tuning the weighting ma-
trices in the objective function (9a).

Before a rigorous analysis, intuitive explanations can be
given below. Sensor faults contaminate the measurements
before being detected. In UMHE-RG, the state estimates are
adjusted to compensate for the fault effect, thus the output
residuals (4) might be still small even in the presence of
faults. On the contrary, CMHE-RG respects the inequality
constraints in (9b) when adjusting its state estimates. When
the presence of faults causes some inequality constraints to
become active, the state estimates would be restricted by the
active constraints and reluctant to compensate for the fault
effect, thus the generated residual signal becomes larger, i.e.,
more sensitive to faults.

A. Fault Sensitivity of Unconstrained-MHE-based Residual

By defining

zk =
[
xT
l uT

l · · · xT
k−1 uT

k−1 xT
k

]T
, (11)

Ik =
[
(x−l )T 0T ȳT

m,l · · · 0T ȳT
m,k−1 ȳT

m,k

]
,

(12)
V = diag (P,Q,R, · · · ,Q,R,R) ,



the MHE problem (9) can be written in the following
compact form

ẑk(Ik) = arg min
zk

1

2
‖Ik − F1(zk)‖2V−1

s.t. F2(zk) = 0.

(13)

The inequality constraints in (9b) are omitted in this subsec-
tion, and will be discussed in Section IV-B. It can be seen
that (13) defines a function which produces the estimate ẑk
from the information vector Ik. Since Ik consists of the
fault-free part I0k and the sensor fault perturbation εk, i.e.,

Ik = I0k + εk (14)

with

εk =
[
0T 0T fT

l · · · 0T fT
k−1 fT

k

]T
, (15)

fault sensitivity of the predicted signal can be analyzed via
sensitivity of ẑk(I0k +εk) in (13) to the fault perturbation εk.

The KKT conditions for the problem (13) are given by{
−JT

1 (zk)V−1
[
I0k + εk − F1(zk)

]
+ JT

2 (zk)λ = 0
F2(zk) = 0

(16)
where we define JT

1 (zk) = ∂F1(zk)
∂zk

and JT
2 (zk) = ∂F2(zk)

∂zk
.

Note that ẑk(I0k) and ẑk(I0k + εk) are the solutions to the
MHE problem (13) in the fault-free case (εk = 0) and the
faulty case (εk 6= 0), respectively. Then

∆ẑk(I0k , εk) = ẑk(I0k + εk)− ẑk(I0k) (17)

should satisfy the linearized KKT conditions given below:[
H JT

2

J2 0

] [
∆ẑk
∆λ

]
=

[
JT
1 V−1εk

0

]
. (18)

Note that the Jacobian matrices J1 and J2 in (18) are
defined at ẑk(I0k), and the Hessian matrix H = JT

1VJ1

being positive definite for the considered MHE problem (9).
The dependence of ∆ẑk and ∆λ on I0k and εk is omitted
hereafter for the sake of brevity. We assume that the linear
independence constraint qualification (LICQ) and sufficient
second order condition hold [14]. Then the above linearized
KKT system (18) can be solved by using inversion of block
matrices, and we obtain

∆ẑk = XJT
1 V−1εk (19)

with

X = H−1 −H−1JT
2 (J2H

−1JT
2 )−1J2H

−1. (20)

Theorem 1: For the predicted residual rk = ym,k −
h
(
x̂k|k−1, Θk

)
, the fault sensitivity matrix is

Sf =
[
Φ I

] [V − J1XJT
1 0

0 I

] [
V−1 0
−Φ I

]
, (21)

with the definition of Φ given in (36).
The proof is given in Appendix II. Different from the

averaged healthy measurements ȳm,k used in the MHE
problem (9), the original output measurements ym,k in (1)
are used in residual generation. For the sake of simple

notations, the complete output vector ym,k is used. If the
residual signal of particular sensor(s), e.g., AOA or VCAS,
is of interest, then the corresponding rows of rk in the above
theorem are selected. In this case, all analysis in Section IV
remains the same except that Φ changes according to the
selected output components.

B. Fault Sensitivity of Constrained-MHE-based Residual

When the faults are too small to activate any inequality
constraints, fault sensitivity of CMHE-RG is the same as that
of UMHE-RG. Next, we will show that the improved fault
sensitivity of CMHE-RG is attributed to the active inequality
constraints caused by sufficiently large faults. In this case,
we have additional equalities Ja∆ẑk = 0 corresponding to
the active constraints. Then the linearized KKT conditions
(18) turn intoH JT

2 JT
a

J2 0 0
Ja 0 0

∆ẑk
∆λ
∆µa

 =

JT
1 V−1εk

0
0

 , (22)

where µa represents the Lagrange multiplier of the active
inequality constraints. The solution ∆ẑk to (22) and the fault
sensitivity matrix Saf of its corresponding predicted residual
are in the same form as (19) and (21), respectively:

∆ẑk = XaJ
T
1 V−1εk, (23)

Saf =
[
Φ I

] [V − J1XaJ
T
1 0

0 I

] [
V−1 0
−Φ I

]
, (24)

with

Xa = H−1 −H−1JT
2a(J2aH

−1JT
2a)−1J2aH

−1, (25)

J2a =
[
JT
2 JT

a

]T
. (26)

Theorem 2: Assume that LICQ and sufficient second or-
der condition hold before and after sensor faults occur,
and additional inequality constraints become active in the
presence of faults. With the same weighting matrix V in the
MHE problem (13), we have Xa ≤ X, hence V−J1XaJ

T
1 ≥

V−J1XJT
1 which implies Saf (Saf )T ≥ SfS

T
f , i.e., improved

fault sensitivity of CMHE-RG compared to UMHE-RG.
Besides, more activated inequality constraints lead to higher
fault sensitivity.

The proof is given in Appendix III.

C. Trade-off between fault sensitivity and disturbance ro-
bustness

As pointed out in Section IV-A, when the perturbation εk
in the MHE problem (13) represents the fault signal, Sf in
(21) determines fault sensitivity. However, winds and VCAS
sensor faults affect the same entries of the perturbation vector
εk, as pointed out in Section II. When the perturbation εk
comes from normal wind variations, Sf describes robustness
to wind disturbances. Combining the above two aspects,
it can be seen that higher fault sensitivity implies poorer
disturbance robustness.

First, we consider UMHE-RG, i.e., (9)-(10) without in-
equality constraints. With fixed parameters pα, qα, and R



that have been tuned for estimation performance, pd and
qd are to be tuned for a trade-off between fault sensitivity
and disturbance robustness. By using larger pd and qd, more
wind disturbances and a larger portion of fault perturbation
εk can be interpreted by the assumed wind dynamics (6),
thus disturbance robustness improves but fault sensitivity
decreases. Similarly, smaller pd and qd lead to loss of
disturbance robustness and improvement of fault sensitivity.

According to Section IV-B, the active inequality contraints
caused by faults in CMHE-RG bring benefits to the above
performance trade-offs in the following two scenarios:

a) With fixed tuning parameters, CMHE-RG enables fault
sensitivity improvement, and simultaneously maintains
the same disturbance robustness if no inequality is
activated by the normal wind variations.

b) When increasing pd and qd, the disturbance robustness
of both UMHE-RG and CMHE-RG improve. At the
same time, however, UMHE-RG suffers from reduced
fault sensitivity, whereas fault sensitivity of CMHE-
RG decreases only for small faults but increases for
relatively larger faults. The reason is that the inequality
constraints are still inactive in the presence of small
faults, whereas some inequality constraints are acti-
vated by large faults if larger variations of the state
estimates are allowed by larger pd and qd.

The assumed bounds on winds are critical for performance
tradeoffs. If the assumed wind bounds are larger than the
true bounds, both UMHE-RG and CMHE-RG have the
same robustness to winds because no inequality constraints
become active in the presence of real winds. If the assumed
wind bounds are smaller than the true bounds, the CMHE-
RG would suffer from reduced robustness to winds because
some inequality constraints are activated by large winds.
With any assumed wind bounds, the CMHE-RG achieves the
same fault sensitivity as the UMHE-RG if the fault effect is
too small to activate any inequality constraint, and it achieves
higher fault sensitivity than the UMHE-RG as long as the
fault effect results in some activated constraints.

V. SIMULATION RESULTS AND COMPARISON
A high-fidelity Airbus civil aircraft simulator, developed

in the RECONFIGURE project for numerical evaluation, is
used [7]. The considered scenario is level flight at the alti-
tude of 5× 103 ft with varying VCAS. Both horizontal and
vertical winds Wx and Wz are simulated. Wind turbulence
is also included in the simulator.

The method proposed in Section III is applied to the
longitudinal model described in Section II. The inequality
constraints of the MHE problem (9) use the following
bounds on wind speeds and accelerations: |Wx| ≤ 120 kts,
|Wz| ≤ 30 kts and |Ẇx| ≤ 15 kts/s, |Ẇz| ≤ 15 kts/s
Considering the scales of different variables, we select the
weighting parameters in (10) as qα = 10−8, Rα = 10−8,
Rvz = 2.5 × 10−3, Rvc = 2.5 × 10−3. In the arrival cost
term, pα = 10−6 is selected to be larger than qα, which
means more belief on the AOA measurements than on the a
priori AOA estimates. For the augmented wind dynamics, the

weighting parameters pd and qd are tuned for performance
trade-offs as explained in Section IV-C.

The real-time iteration scheme described in [19] is imple-
mented in the MATLAB2011b environment on a computer
with a 3.4 GHz processor and 8 GB RAM. The horizon
length of the MHE problem (9) is 5. The peak computational
time per sample for CMHE-RG is 26 ms, below the sampling
period of 40 ms. The computational cost will be further
reduced by structure-exploiting matrix manipulations and
algorithmic approximations, e.g., lookup tables.

In the following, we compare UMHE-RG and CMHE-
RG in terms of disturbance robustness and fault sensitivity
with different tuning parameters pd and qd. For given wind
disturbances, disturbance robustness can be measured by
RMS of the predicted residual in the absence of faults. In
this case, smaller RMS of the predicted residual implies
higher robustness to disturbances. Therefore, to investigate
disturbance robustness, we test the above two algorithms
with pd = 1 and different qd in the fault-free scenario. The
performance comparisons with different pd are similar, thus
are omitted. As shown by the wind scenario 1 in Figure 2,
when both the wind speed and its acceleration are within
their bounds used by CMHE-RG, the disturbance robustness
of CMHE-RG is the same as that of UMHE-RG, because
no inequality constraints are active when solving (9). In
the wind scenario 2, however, the true wind Wx is larger
than its bound allowed by CMHE-RG. Then as analyzed in
Sections IV-B and IV-C, the active constraints lead to more
sensitivity, or equivalently, less robustness, to disturbances.
This explains why CMHE-RG gives larger RMS of the
predicted residual than UMHE-RG in wind scenario 2.
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Fig. 2. Comparison of robustness to disturbances: RMS of the predicted
residual with pd = 1 and different qd in two fault-free scenarios. 1) Wx

varies from 0 to 10 kts with the acceleration 5 kts/s, and Wz varies from
0 to −5 kts with the acceleration −5 kts/s; 2) Wx varies from 0 to 21 kts
with the acceleration 5 kts/s, and Wz is the same as in the first scenario.

Similarly, fault sensitivity of CMHE-RG is not directly
evaluated by computing the fault sensitivity matrix Saf in
(24), because the active constraints required to compute Saf
are unknown before solving the problem (9) at each time in-
stant. Here, we indirectly evaluate fault sensitivity by RMS of



the predicted residual within 100 samples immediately after
fault injection. This indirect evaluation requires excluding
the wind effect in the predicted residual, thus no wind is
included in the simulations for evaluating fault sensitivity.
In this case, larger RMS of the predicted residual implies
higher sensitivity to faults. As explained in the last paragraph
of Section II, fault sensitivity is more critical to VCAS sensor
fault than to AOA sensor faults. Hence we focus on the
constant bias fault in one VCAS sensor for comparisons.
The simulation results are shown in Figure 3. For fault
amplitude smaller than 5 kts, CMHE-RG produces the same
RMS of predicted residual as UMHE, i.e., both algorithms
have the same fault sensitivity, and have their fault sensitivity
slightly decreased when qd increases from 0.1 to 1. For fault
amplitude larger than 5 kts, CMHE-RG gives larger RMS
of predicted residual, which implies higher fault sensitivity,
than UMHE-RG given either qd = 0.1 or qd = 1. Moreover,
for these larger faults, when qd increases from 0.1 to 1, fault
sensitivity of UMHE reduces, whereas fault sensitivity of
CMHE increases. These above observations can be explained
by no active inequality constraints in the presence of faults
smaller than 5 kts, and additional active constraints due to
larger faults, which are consistent with Theorem 2 and the
two scenarios given at the end of Section IV-C.
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Fig. 5. Comparison of estimation and FDI results for simultaneous AOA
and VCAS sensor faults in the presence of wind and turbulence (tuning
parameters pd = 1 and qd = 1)

By increasing the bias amplitude of VCAS sensor by
0.1 kts each time in a sequence of simulations, we find
the approximate size of the minimal detectable faults of
the UMHE-RG and CMHE-RG. Smaller minimal detectable
fault implies higher fault sensitivity. In the FDI logic, we



select the length of the residual evaluation window to be
Neval = 10. For fair comparison, the detection thresholds Jth
in (5) of the two algorithms need to be carefully chosen.
The fault-free simulation data in the presence of wind with
largest speed (Wx = 20 kts) and fastest acceleration (Ẇx =
15 kts/s) within the assumed bounds are used to determine the
thresholds, and each threshold is set to be the smallest value
that ensures zero false alarms for each algorithm. A VCAS
sensor is concluded to be faulty when its residual evaluation
is above the detection threshold for at least three times in
the past 10 time instants. Figure 4 shows the results during
constant winds and wind shear. The CMHE-RG reduces the
amplitude of minimal detectable fault in both scenarios.

Finally, we consider simultaneous bias of VCAS sensors
and runaway of AOA sensors: constant bias 5 kts in sensor
V

(1)
c , constant bias 7 kts in sensor V (2)

c , runaway fault at
rate 1 deg/s in sensor α(1), runaway fault at rate 10 deg/s
in sensor α(2), as plotted in Figure 5(a). The VCAS/AOA
estimates and the residual evaluations for all sensors are
illustrated in Figures 5(b) and 5(c). It can be seen that both
methods can correctly isolate AOA sensor faults, but CMHE-
RG gives better performance than UMHE-RG in isolating
VCAS sensor faults: UMHE-RG gives false alarms on the
healthy sensor V (3)

c , while CMHE-RG isolates all VCAS
sensor faults within less than 0.2 s.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a moving horizon estimation based
approach for robust air data sensor fault diagnosis. The
challenge due to simultaneous influence of winds and sensor
faults on calibrated airspeed measurements is tackled by
incorporating wind dynamics and exploiting wind bounds in
residual generation. The Karush-Kuhn-Tucker condition of
the formulated moving horizon estimation problem is ana-
lyzed to show that the constrained residual generator based
on moving horizon estimation has improved fault sensitivity
because some inequality constraints become active in the
presence of faults. With tuning parameters that increases
disturbance robustness, conventional unconstrained residual
generators would simply lose fault sensitivity, whereas our
proposed constrained residual generator gains additional fault
sensitivity as long as the fault activates inequality constraints.
A high-fidelity Airbus simulator is used to illustrate the
advantage of our proposed approach.

It should be pointed out that sensitivity to fault and
robustness to disturbance are indirect measures related to
fault detection rate and false alarm rate. Besides theoretically
statistical analysis, extensive Monte Carlo evaluations of
our proposed approach and comparisons with difference
approaches are the focus of our future work.
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APPENDIX I
MODELING OF LONGITUDINAL MOTIONS

Considering wind speeds Wx and Wz in the inertial frame,
the longitudinal dynamics of AOA in the body frame is

α̇ =
1

Vt
fα(α,Θ) + q +

1

Vt
fw(α,w, Θ), (27)

with

fα(α,Θ) = nz cosα− nx sinα+ g cos(α− θ), (28)

fw(α,w, Θ) = Ẇxsin(α− θ)− Ẇzcos(α− θ). (29)

The above model is obtained from the third row of the equa-
tion (1) of [11] by (a) including only longitudinal motions,



and (b) equivalently replacing the terms of aerodynamic
and propulsion forces RBTWT

AT + PT in [11] with load
factors [nx 0 nz]

T, as in the equation (14) of [5]. Note
that measurements of true airspeed Vt are unreliable in the
presence of VCAS sensor fault [7], [8], thus cannot be
directly used in the model (27). In this case, we make the
following approximations by using reliable measurements of
ground speed Vg to replace Vt in (27). Let ∆V = Vt − Vg
denote the difference between true airspeed Vt and ground
speed Vg due to the winds. Since we have

V 2
g � ∆V fα(α,Θ), Vt � Ẇx, Vt � Ẇz (30)

for the flight scenarios in the RECONFIGURE project [7],
[8], the approximations

1

Vt
fα(α,Θ) ≈

(
1

Vg
− 1

V 2
g

∆V

)
fα(α,Θ) ≈ 1

Vg
fα(α,Θ),

(31a)
1

Vt
fw(α,w, Θ) ≈ 0 (31b)

can be used to derive the following simplified model from
(27) without sacrificing FDI and estimation performance:

α̇ =
1

Vg
fα(α,Θ) + q + uα. (32)

Here the first two terms on the right-hand side are represented
by f(α,Θ) in the model (1), and uα accounts for the model
mismatch including the approximation errors in (31a) and
the effect of noises in the measured parameter Θ.

The output equation for vertical speed Vz in the inertial
frame is (Equation (2.4-5) of [18])

Vz = −Vt sin(α− θ) +Wz

= −hvt(α,w, Θ) sin(α− θ) +Wz.
(33)

To avoid using the unreliable measurements of Vt mentioned
in the previous paragraph, the function

hvt(α,w, Θ) = −Wx cos(α− θ) +Wz sin(α− θ)

+
√
V 2
g − [Wx sin(α− θ) +Wz cos(α− θ)]2

in (33) is used to transform the ground speed Vg into the true
airspeed Vt, which is constructed based on (Equation (1.5-6)
of [18]) 

V 2
g = u2g + w2

g

ug = Vt cosα+Wx cos θ +Wz sin θ
wg = Vt sinα+Wx sin θ −Wz cos θ.

The output equation for fault-free VCAS Vc consists of
two conversions: 1) from ground speed Vg to true airspeed
Vt by the function hvt(α,w, Θ); and 2) from Vt to Vc [3],
[10], i.e.,

Vc =
√

5γRT0%(Vt, T, p̄),

=
√

5γRT0% (hvt(α,w, Θ), T, p̄)
(34)

with T = T0 + Lz, p̄ =
(

1 + L
T0
z
) g
−RL

,

%(Vt, T, p̄) =

√√√√[((
1 +

V 2
t

5γRT

)3.5

− 1

)
p̄+ 1

] 1
3.5

− 1,

where z, T , and p̄ represent pressure altitude, outside air tem-
perature, static pressure scaled by the ground static pressure
value, respectively. The constants T0, L, R, and γ take their
values according to International Standard Atmosphere [3]:
T0 = 288.15K, L = −6.5K/km, R = 287.05287 (m/s)2 ·K,
and γ = 1.4. z in Θ, T and p̄ in (34) uses altitude
measurements.

APPENDIX II
PROOF OF THEOREM 1

Let x̂k|k = Psẑk(Ik) (with Ps =
[
0 · · · 0 I

]
), and

Îk = F1 (ẑk(Ik)), then we have ẑk(Ik) = ẑk(Îk) according
to (13). From (7c), (19), and (9b), the one-step-ahead output
prediction ŷk|k−1 can be written as

ŷk|k−1 = h
(
x̂k|k−1, Θk

)
= h

(
F (x̂k−1|k−1,0, Θk−1), Θk

)
= h

(
F (Psẑk−1(Îk−1),0, Θk−1), Θk

)
= ν

(
Îk−1, Θk−1, Θk

)
= ν (F1 (ẑk−1(Ik−1)) , Θk−1, Θk) .

(35)

In the above equation, the function ν(·) describes how
the output prediction relies on the estimation of the past
information vector, and we define

Φ = ∂ν
∂Îk−1

. (36)

With (14), (19) and (35), the sensitivity of the predicted
residual rk = ym,k−h

(
x̂k|k−1, Θk

)
to the fault perturbation

εk can be analyzed via first-order Taylor expansion as below:

rk = ym,k − ν
(
F1

(
ẑk−1(I0k−1 + εk−1)

)
, Θk−1, Θk

)
≈ ym,k − ν

(
F1

(
ẑk−1(I0k−1)

)
+ J1∆ẑk−1, Θk−1, Θk

)
≈ yk + nk + fk − ν

(
F1

(
ẑk−1(I0k−1)

)
, Θk−1, Θk

)
−ΦJ1XJT

1 V−1εk−1

= yk + nk − ν
(
F1

(
ẑk−1(I0k−1)

)
, Θk−1, Θk

)
+
[
−ΦJ1XJT

1V
−1 I

] [εk−1
fk

]
(37)

Note that Φ is defined in (36), and its value in the
above equation is not related to faults, but determined
by F1

(
ẑk−1(I0k−1)

)
, i.e., the fault-free information vector

I0k−1. Hence the last term of the last equation in (37) shows
the effect of faults on the predicted residual, and the fault
sensitivity matrix is

Sf =
[
−ΦJ1XJT

1V
−1 I

]
which can be rewritten as (21).



APPENDIX III
PROOF OF THEOREM 2

Let the symmetric matrix Π denote the matrix square root
of the Hessian matrix H, i.e., H = Π ·Π, and define

P = I−Π−1JT
2

(
J2Π

−2JT
2

)−1
J2Π

−1, (38)

Pa = I−Π−1JT
2a

(
J2aΠ

−2JT
2a

)−1
J2aΠ

−1. (39)

Then X in (20) and Xa in (25) can be rewritten as

X = Π−1PΠ−1 and Xa = Π−1PaΠ−1, (40)

respectively. Let N (·) denote the left null space of a matrix.
It can be seen from (38) and (39) that P and Pa are two
orthogonal projectors onto the left null spaces N (J2Π

−1)
and N (J2aΠ

−1), respectively. According to (26), the left
null space N (J2aΠ

−1) is a subset of N (J2Π
−1), which

implies Pa < P . Therefore, Xa ≤ X and V − J1XaJ
T
1 ≥

V − J1XJT
1 according to (40). Then it can be concluded

from (21) and (24) that Saf (Saf )T ≥ SfS
T
f .

For the same reason as above, the left null space
N (J2aΠ

−1) with more active inequality constraints in J2a

is a subset of N (J2aΠ
−1) with fewer active inequality

constraints in J2a. Hence when more inequality constraints
are active in solving the MHE problem, Pa becomes smaller,
and fault sensitivity increases accordingly.
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