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Cooperative Robust Estimation with Local Performance &uizes

M. Zamani V. Ugrinovskii

Abstract— The paper considers the problem of cooperative individual filters is established. These conditions expthat
estimation for a linear uncertain plant observed by a netwok of  if all the neighbours maintain a certain level of accuragnth
communicating sensors. We take a novel approach by treating  h |ocal filter also guarantees a nominaéd performance.
the filtering problem from the view point of local sensors whie . . .
the network interconnections are accounted for via an unceain _TO_ EStabl'_Sh the above relgtlpnshlp, hgre we a”a')/ze the
signals modelling of estimation performance of other nodes distributed filter network consisting of estimators sotyian
That is, the information communicated between the nodes is auxiliary optimal filtering problem at every node. In that
treated as the true plant information subject to perturbations, sense, our approach bears some resemblance with decentral-

and each node is endowed with certain believes about these j;eq control where each controller is constructed to reguda
perturbations during the filter design. The proposed distributed

filter achieves a suboptimal H., consensus performance. Fur- local subsystem. The mentioned auxiliary filtering problem

thermore, local performance of each estimator is also assssd originates in [6], [7]; it was shown in [8] to yield inter-
given additional constraints on the performance of the othe  connected consensus-type filters that exchange informatio

nodes. These conditions are shown to be useful in tuning the petween the network nodes although the parameters for each
desired estimation performance of the sensor network. filter could be computed online in the decentralized fashion
The new element of this paper compared with [8] is how
the neighboring information is interpreted by each node.
The research on cooperative filtering and estimation qf [8], each node was considered to be agnostic about the
networked systems has gained much momentum duringnount of energy in the error between the true state of the
the past decade, aiming at developing efficient estimatigfiant and the neighbours’ estimates of that state. In csttra
algorithms for large assemblies of networked sensors [lhere we consider a model where each node perceives a
[5]. The mentioned references reflect the common trend iationship between the energy in the neighbours’ errdr an
the literature, where the main objective is to accomplish ghe accuracy of its own filter. We give a detailed discussion
globally optimal or suboptimal estimation performancef® t of this idea later in the paper; for now we only note that
network. Usually, the performance of individual sensors igechnically our model adds a constraint on the energy in the
not considered in such problems. This observation motvat@ror inputs arising in the auxiliary minimum energy prob-
the question about a relationship between the estimatigfms. Such a constraint has the form of an Integral Quadratic
performance of the individual filters within a distributedcgonstraint previously used in robust decentralized contro
estimation network and the performance of the overall Neproblems and filtering problems; e.g., see [9], [10]. Howeve
work. This paper considers this problem within the specifigjike those problems, the parameters of the constraiets us
framework of distributed7., consensus estimation [4], [5]. here play the role of tunable parameters which are adjusted
Our approach also targets the global convergence problefacording to the desired local and global performance. They
however not with a brute-force decoupling of the globaso serve as indicators of sensitivity of the individuatfis
solution. Rather we define a local objective function ing the neighbours’ performance.
terms of uncertain signals capturing the performance of the The main result of this paper are sufficient conditions on
other nodes. This leads to decoupling of the distributeerfilt the network parameters that ensufe, performance of the
while implicitly maintaining a meaningful connection toeth network consisting of the proposed minimum energy filters.
network. This way, the local objective function abstrat#s t As mentioned, not only global disturbance attenuation is
dependence on other nodes, eliminating the need to ConSi‘éﬁfaranteed by these conditions, but also certain Id£al
their exact models or their raw measurements. Neverthelegpoperties of the node filters are established. We show that
the convergence of the local filter is dependent on the rest ffese conditions admit the form of a convex semidefinite

the network and we provide conditions that render h¢  program, which enables constructing a filter network yiegi
convergence of the network of the filters. Furthermore, by suboptimal disturbance attenuation.

asserting further conditions on the individual performesic Notation: R™ is the Euclidean space of vectoffs, || is
of the other nodes a guaranteéfl, performance of the the Euclidean norm, and for any positive semidefinite matrix

X, X =X >0, |la|lx £ (¢’Xa)/2. For0 < T < oo,
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Il. PROBLEM FORMULATION AND PRELIMINARIES and#?, i € V, we wish to determine a collection of filters

A. The plant and the distributed estimator of the form [4) that guarantee the following properties:
Consider a linear system P1. In the absence of disturbances v; ande;;, j € N,
i =1,...,N the estimation error of the filtes;(¢) =

& = Ax + Bw, x(0) = xo, (1) #;(t) — z(t) converges to zero asymptotically.

P2. In the presence of disturbances, the network of fil{ers (4)

wherez < R™ andw € R™ are, respectively, the state  gyains the type ofi.. disturbance attenuation property

and the unknown modeling disturbance input; the latter is N
assumed to b&, integrable on[0, c0). The matricesA € 2 2 2 2
’ o < _ £
R™*"™ and B € R™"*™ are known, however the initial state lelldt < Z; I2(0) = &illz, + Nlwllz
xo IS unknown and is considered to be part of the uncertainty NZ
about the systeni{1). ( 2 2)
+ (% + €ij ) 5

The main objective of the paper is to determine conditions ; il 7.621\;_ leiill ®)

under which the plant state(t) can be estimated by a '

— Lol !/ 2 Al 2
network of filters each using its plant measurement \theree =@ —2),...,(@x —2)) and|.|2 is the
2 norm.

y; = Cyx + Dyv;, (2) P3. Provided the neighbours of nodeontribute a sufficient
wherei — 1.9 N indicates the measurement taken at effort (this will be quantitatively defined later) to assist
node i of the network. Each measuremempt € RP: is n itls a(lf)o guaranteed that at that node
imperfect, it is subject to a measurement disturbance / lleil|2ds < 72 [BiJr llzo — &%
taking values ifR™ that also belongs to the spaceg[0, co) - '
by assumption. The coefficients of each measured output o 2 2 2 )
are matrices of the matching dimensions;, € RPi*™, T [lwl® + llos]l* + Z les] }ds}’ ©6)

D; € Rrix™i with E; £ D;D} > 0. JEN;

In addition to its direct measurements of the plant, each /2 > 0 is & constant which will be determined later.
node receives information from other nodes of the network, These properties formalize the desired attributes of a
of the form distributed filter that we want to achieve. In particulaQpr

cij = Wii; + Fijeij, (3) erty P2 specifies the desired global disturbance attenuation

performance across the sensor network using a network of

where z; is the estimate of state at the neighbouring decoupled filter equation§](4). Note that decoupled equa-
nodej. The signale;; with values inR™ represents the tions governing the gains in filter§1(4) will be provided
communication errors or uncertainty in the communicatiopater. Furthermore, propertp3 articulates the desired lo-
channele;; € £2[0,00). We assume that;; = F;;F/; > 0. cal disturbance attenuation provided that there is sufficie

The network graph describing communications betweegontribution from the neighbours. The sufficient contribot
the filtering nodes is assumed to be directed, its node ag@ndition is quantitatively defined later in the paper.
edge sets are denotéd = {1,...,N} andE C V x V, We remark that propertieB1, P2 jointly generalize the
respectively. The neighborhOOd of nOdEi.e., the set of property OfHoo consensus introduced in [4], also see [5],
nodes which send information to nodlds denoted byN; =  [12]. For example, letP = (L + Lt) ® P, where P, =
{7 : (4,j) € E} and its cardinality is denoted The Laplace pj > 0, and L+ is the Laplacian matrix of the graph
matrix of the network graph is denotdd[11]. obtained from the network graph by reversing its edges.

Following [1], [2], [4] and many other papers on dis-This choice ofP results in the left hand side ofI(5) being
tributed estimation, we consider a class of consensusibasgjual to the weightedd,, disagreement cost between the
interconnected filters each processing the direct measuffodes, [~ S, > e, 1 — i;]%,ds [4], [5], [13]. More
mentsy; and neighbours’ informatior;; by means of a generally, lettingP _ (L + L) ® Py + diag[P; ... Py,
Luenberger-type observer of the form P; = P! > 0, reduces1, P2to the property of strong robust

2 . . . synchronization introduced in [12]. In addition, property

&= AR+ Lilys — Cidn) + Z Kijlei = Wigdi), (4) - pg describesH . attenuation properties of individual node

JEN: . filters. Including such property into analysis constituties
2i(0) = &- main difference between the problem posed above and the

The estimation problem in this paper is to determin@revious work in the area of distributed estimation.
coefficientsL;, K;; (which can be time-varying) that ensureg_ Representation of the neighboring information
convergence of the network to trajectories of the plant, and To make performance analysis of individual filters possi-
also guarantee an acceptable attenuation of the detrimergf\e let us introduce the mismatch between the disturbance-
effects of disturbances on the estimation error. Formall¥ '

. . .. Tfee information contained in the signaj; and the corre-
these properties are formulated as follows. Given a ptfnsmvS onding true version of this information
semidefinite matrixP € R"™*"N and a collection of P 9 ’

positive semidefinite matrice; € R"*", and constants? nij = Wij(&; —a) = —Wije; e RPY 5 eN;.  (7)



. . . . . w
With these signals the information received by seriscan 7 v; 7 . Mki
be represented as i5€ij i
cij = Wijz +nij + Fijeij,  j € N (8)
Equation [[B) can be regarded as an additional measurement Fli€ri
of the plant affected by disturbances and7;;. SL(J)btg)%temc v exs § A i
Treating the signals;;, for the purpose of filter derivatign Nij . b A J

as the disturbances additional 49 v; ande;; has an effect _ . _
of decoupling node from its neighbours. Indeed, consider  Fig- 1. A two-block representation of the error dynamicsteys
the error dynamics of the filtef](4) at node

[O, OO) and W, V4, €55 € Lo [0, t),

t t
TN / H%‘H%{;ldtﬁ/ (leill + [lwl*)dt + dij,  (11)
FLiDivi+ Y Kyl + Fyiy): ©) ’ Y WjeNuni=1,...N
= i ....,N.
Nki = Whiiei, 1€ Np. As a generalized form of the properfy{10), conditibnl (11)

reflects how the neighbours’ accuracy influences the local
disturbance attenuation properfty (6) at every node. Thezef

in what follows, we will use conditio_(11) to establi§d (6),
i.e., (11) is the quantitative characteristic of the neiginis’
effort mentioned inP3.

To demonstrate the role of_{11) more vividly, take for
exampleZ;; = z;;1, with a scalarz;; > 0 and suppose_{6)
holds provided[(11) is satisfied with a very smal). Since

T T according to the energy iy is bounded,[(111) suggests
[ veitte < 2 (1zo -t + [ (1wl + jul? g (oIlB). the energy [ sugg

In this system, the signalg;;, j € N;, play the role
of exogenous disturbances and each signal = Wy;e;
represents the output used by agénfor whom i is the
neighbour, i.e.i € Ng. This interpretation allowed us to
construct in [8] minimum energy filters of the fori (4) with
the property that for any initial conditiom,, arbitrary £-
integrable disturbances, v;, €;;, n;; and an arbitrary” > 0

that nodei can only tolerate relatively ‘small’ mismatch
inputs;; to be able guarantegl (6). However, a small energy
+ Z(|6ij|2+|77ij||22”1)}dt>- (10) in n; can only be accomplished by the corresponding

JEN; Y neighbourj. This suggests that the eigenvalues%f may
nd be indicative of sensitivity of the local filters to fidelity its
I_Nneighbou[s’ estimates. In SectibnlIV we will show that the
matricesZ;; can be computed jointly with the attenuation
levels v2, 42. This provides the means for performance
tuning of the local filters.

Similarly, the constantsl;; in (I1) describe the bound
on the estimation error energy that nodflés prepared to
r{alerate from its neighbouy, in response to (hypothetically)
estimating the perfectly known plantw(= 0) with the
ytmost precisiond; = 0). Indeed, in this hypothetical case,
condition [I1) reduces to a bound on the energy in the
mismatch disturbance signgl; of the neighbouy.

Here,+? and R; = R, > 0 are a positive constant a
matrices whose existence is determined by certain
conditions in [8]. Also,Z;; = Z;; > 0 are given matrices;
in [8] they were associated with the confidence of nade
about performance of nodg
Condition [10) provides aiil, type bound on the energy
in the filter estimation errors at nodeexpressed in terms
of the energy of the disturbances affecting that node, a
is similar to [6) in propertyP3. The important difference
between[(ID) and [6) is that the former condition include
the energy in the signalg; that depend on the neighbours’
accuracy. Also, according t@_(10), tlsame level of distur-
bance_ z_;tttenuatiomQ is state(_JI for all nodes. _Our goallis C. Distributed estimation problem
to revisit the design of the filterg](4) to obtain a possibly ) - o
sharperH., property for at least some of the local filters, Ve aré now in a position to present a formal definition of
and for other filters, to provide a means for assessing théfte distributed estimation problem described in Sedfiefi Il
local performance and sensitivity to the neighbours’ exror _ Problem 1: Determine a collection of filters of the form
Owing to the relationy;; = —W;;e;, from the viewpoint @) and matricesZ;; € RPu*?s5, j € N;, i € V, and
of nodei, the error dynamics of the network can be seen donstants* and?? such that the following conditions hold:
an interconnection of two systems, representing, respgti (i) Given a positive semidefinite matrie € R»VxnV,
i's own error dynamics and the errors dynamics of the rest  the network of filters[{§4) achieves propertied and
of the system; see Figufé 1. Motivated by](10), we propose P2 with this P and the foundy?.
the following condition to formally capture the sensityvibf (ii) The following implication holds with the found;; and
each node to the accuracy of its neighbours’ filters: 32 If signalsn;; (t), j € N;, satisfy [11), then the filter
For everyi, there exist positive definite symmetric matrices (4) guarantees the satisfaction of conditibh (6), iR8,
Zij and constantsi;; > 0, j € N;, such that for allt € is satisfied.



We stress that the global performance propefitandP2 Here=; ; denotes the class of vector signaisobtained by
of the proposed distributed filter will be proved withoutngsi  stacking up ally;;, j € N;, satisfying [11L). Originated from
condition [I1). The IQCL(11) will only be used to guaranteghe minimum energy filtering [6] and least square fitting,
certain local performance of each nodsubject to accept- this problem will lead to the ‘most likely’ minimum-energy
able performance of its neighbours. The latter developmetrgjectoryz;,(-) compatible with the data at nodeylo ;.
will be analogous to how 1QCs were used in the derivation;; (o [6]. The subscripts, ¢ atz?,(-) are to highlight that
of decentralized robust controllers to quantify the uraiaty  the trajectoryz; ,(-) is consistent with the data collected on
arising from system interconnections; e.g, see [9], [14}he intervall0, ¢] at nodei. By definition, the end point of this
However, different from decentralized controllers in thostrajectory is the minimum-energy estimate of the stas,
references, our aim is to maintain coupling between thgiven the measurement dagfo ¢, cijljo,4: ©4(t) éx;t(t).
filters, to ensure cooperation between them. To solve the constrained optimization problelml(13), we
apply the method of S-procedure [14]. In fact, since the cost
[1l. DISTRIBUTED MINIMUM ENERGY FILTERING WITH Ji +(x, w, ;) itself depends on;(+), this requires us to solve
LOCAL PERFORMANCE GUARANTEES a family of minimum energy filtering problems, in whidh

In this section, our main results are presented. As wag replaced with an arbitrary signal;. Then we take the
explained in SectioRII=B, our goal is to obtain a converging?ixeOI point of the mapping;(¢) — 7 ,(t) generated by this
(in the H., sense) distributed filter which provides globalfamily of minimum energy filtering problems, ds(t). Due
estimation performance described in item (i) of Prob[@m 10 lack of space, we omit the details and proceed assuming
and also characterize quantitatively the connection batwethatZ;(t) is such a fixed point.
local H.. properties of the filters and their sensitivity to L€t 7 € R" be a vectorr; = [ri1 ...7n]" such that
estimation accuracy of their neighbours. 7ij > 0 if j € N;, andr;; = 0 otherwise. Then define

To solve Problenh]1, we first introduce an auxiliary robust B e [t
minimum energy filtering problem involving a modified ver-  Jis(,w,m) = Jio(z,w,m) + %/0 (”%”221;1

sion of the standard minimum energy cost [6]. This cost func- JEN;
: H H A tr A 12 _ 2 )2
tlonalZ depending on the signais andn; = [n;;, ._..n;jli]/, — |z Zi|I7 = wll® = lys — Ciz™||
affecting the me'a_suremenj;shojﬂ and {cijlo, 7 € Ny} _ Z leir — Wipzh® —mrIIQ)dS (14)
available at node is as follows: NG
Jii(z,w,m;) and for fixedt and &;(-), =, consider the unconstrained
1, , , 1t ) . optimization problem
= 3o =&l [ (Il + s - Gt o
0 i Vii(z,t) = inf  J7i(x,w,m;). (15)
t,x 2 w,m€L2[0,t] 7
+ > ey = Wi —nyll5- o .
jex, i For_ eacht, :c,_the opt|m|zathn prok_JIenE(lS)_ls a stan_d_ard
optimal tracking problem with a fixed terminal condition
i ?{i>d5§ (12)  x(t) = 2, which has a unigue solution under the condition
Compared to the standard minimum energy cost func- Z 7ij < L. (16)
tional, it includes the additional weighted penalty on the JEN;

tracking error at nodei; see the last term in[(12). It We now establish a relationship between this problem and
was shown in [8] that the inclusion of this term enforceghe constrained inner optimization problem [in](13).
a guaranteedd..-type performance of the filter while a Let T;(t,z) = {r;: (I6) holds andV, (x,t) > —oo}.
minimum energy estimate is sought; cf. [15]. The weighflso for convenience, define a vectdr € R™ whose jth
matrix of this term,R; = R, > 0, R, € R"*™ was componentisi;; if j € N; and is O otherwise.
regarded as parameters of the filter, and a process of sglecti Lemma 1:For everyz;(-), € R, if the corresponding
those matrices to optimize? was proposed in [8]. However, set 7;(¢,z) is nonempty, then the value of the inner opti-
different from [8], the cost[{12) does not include a direcmization problem in[{(I3) is finite,
quadratic penalty om;;. Instead, our derivation of the local ~ o d;
filters will impose the constrainf(11) on the mismatch slgna wEiLr;[fO y Ji(z, w,m;) > sup (V;TI (w,t) — 17) :
Mij, J € Ni. ni€ss, Ti€Ti(t.w)

With these modifications, the auxiliary robust minimum-
energy filtering problem consists of determining a set of the
unknowns, w, ; compatible with the measurementsand ~ Problem (13) follows:

(17)
From Lemmal[ll, a lower bound on the value of the

the _communicationeij .and minimizing the energy cos$t(|12) inf inf  J; (2, w,m)
subject to the constraint (1L1): voweal

_ . =T Tlldl
inf < inf inf Jiyt(x,w,m)> . (13) >inf sup (‘/7, Hz,t) — T) : (18)
T \w€eL[0,t] Mi€Ei ¢ T reTi(t,x)



We now consider the following optimization problem IV. DESIGN OF A ROBUST DISTRIBUTED ESTIMATOR

e The algorithm to compute a solution to Problem 1 utilizes
Ti Ti
lgfv; (1) = 1gfw717?€f£2 J”(x w;m:). (19) a collection of linear matrix inequalities (LMIs) includin

. . ) . _ .. the condition[(Ib) and the following matrix inequalities:
A solution to this problem involves the differential Ricicat

equation AY, +Vid+ (772 + Y )1
yen Y,B
Qr = QU AQr - Qr (cree ~(emres 3 wirows) <0
JEN; )
-1 —2 T Ti _
+ >0 WU Wiy =y 2R = W) Q7 + Si, (20) BY. (S my-1)1
JEN; JEN;
Q7' (0) = X7, -
Y=Y/ >0, T”_T > 0, T”<GU, Tij > 0,
where V; = (‘21:\1 Tij)ln, Us; £ Gij + 755" Zij, Si = (1 - jEN;, i=1,...,N,
€Ny _
¥ 6> 0. (22)

—1
Ljen.7s) B N
Lemma 2:Given fixedr; € 7;(t,z) andT > 0. Suppose Here, the symmetric matri® is composed as follows. Its
the differential Riccati equatiofi(R0) has a symmetric fions diagonal blocksd;; are defined as

gular solution@;* = Q" (¢) on the interval0, T]. Then the gii git ... @i
following filter computes recursively the minimizef (¢) of ~ © Gt .0
the optimization problen{{19) on the intenval 77, SHES : Lo |
T1 — "T1 + :7/ 7: ( /\Tl
:ZW’TW %24 Y i) I =y 2Py,
= T jeEN; JEN;
+ 2 W05 ey W,x.q) vy
z_] z] J I ’ i ! —
jeN, O = Wi Vi, k=1,....1
£7'(0) = &. Also, its off-diagonal block®;;, i,j = 1,..., N, j # i, are
The value of the optimization problern {19) is finite and for Wij — v 2Py Opx, .
&; = &' is given by 0, = Ot Orxat, o 1<,
oAl . o Ci i >,
oty [ [-carin o 3 tes-wai o /
jeN, where
Let —WTiiWis — Wi, T5Wys, j €Ny,i € Ny;
U= WTW J €Ni,i ¢ Nj;
(@8) holds and the DRE_(20) 0T Wl Wﬂ, j €N, ieNy;
TT) = has a bounded positive definite. 0 § & Ni,d & Ny

The LMIs (22), [16) represent a linear constraint on the
variablesY; = Y/ > 0, ;% Yy, 7; > 0 (j € N,
_ 2
Lemma 3:For all T > 0, 75(T) C N Tt ). 1=1,. _ ., N), and_y Sln_cey_ repre_sents the ghsturbance
te[0,T], zeRn attenuatlon level in the distributed filter, a suitable sét o
The following theorem summarizes the above discussiofilter parameters is of interest which minimizes this valeab
Theorem 1:Given constants? and~? and matricesZ;;, This can be numerically achieved by solving the convex
j € Nj, suppose the sef;(+00) = (-, 7:(T) is not Optimization problem

solution on[0, T1.

empty. Then for anyy,;; for which condition [(11L) holds, ) .
the filter (Z1) computes recursively the procgsgt) which SUpTY subject to[(22),[(T6). (23)
satisfies conditior(6) witl®; = 7/d,. Let v*? be the value of the supremum {n_{23).

Compared with the distributed minimum energy filter Theorem 2:Let the pair(A4, B) be stabilizable. Given a
in [8], we have now obtained a family of suboptimal min-positive semidefinite weighting matrik = P’ ¢ R*VxnN,
imum energy filters for each node parametrized hye supposey?® > ~*2, Tijy Yijs ﬁ[QI and Y;, j € N,
Ti(+00). To be able to apply Theorefd 1, it is necessary = 1,...,N, are a feasible collection of matrices and
to have a method for computing at least one such vegtor scalars that satisfy the constraints of the convex optititima
for every node. In the next section, we will present an algo-problem [2B). Then each Riccati equatignl(20) with =
rithm that accomplishes this task. In addition, this algoni  (v/7;)? has a positive definite bounded solution [Bnoo).
obtains the matrice&;; and constants? consistent with the Furthermore, the corresponding filtering algoritfiml (221)(
found~2, thus providing a complete solution to Problein 1verifies claims (i) and (ii) of Problern 1.



TABLE |

SOLUTIONS TO THE PROBLEM(Z3)

Simulation 1:Z;; > 0 Simulation 2:Z;; > 0.11
~2 = 0.2500 ~2 =0.3116

Node 472-2 min; Amin(Zi;) "y,? min; Amin(Z;;)
1 0.2643 | 2.6219 x 10—4 0.6288 0.1074
2 0.0185 0.0250 0.0260 0.3416
3 0.0181 0.0158 0.0395 0.1788
4 0.1313 | 2.7548 x 104 0.2904 0.1000
5 0.0176 0.0263 0.0265 0.2682

As Theorem[R shows, solving the SDP problem] (23
allows us to determine the suboptimgt as well as the
local disturbance attenuation level$ that characterize local
performance of the node filters (séé (6)) as well as the mat
ces Z,; in condition [I1) consistent with that performance
Then sensitivity of performance of the obtained local fiter

simulation indicates that robustness of the estimatorl wit
respect to accuracy of their neighbours can be improved by
moderately increasing?® and~?.

VI. CONCLUSIONS

In this paper we proposed a distributed filtering algorithm
by utilizing an H,, minimum-energy filtering approach to
the design of constituent filters. The algorithm employs a
decoupled computation of the individual filter coefficients
This is achieved by considering the estimation error of
neighbouring agents as additional exogenous disturbances
weighted according to the nodes’ confidence in their neigh-

ours’ estimates. The conditions are obtained under which
he proposed filter to provides guaranteed internal stabili
and desired disturbance attenuation of the network error
ynamics. In addition each local filter guarantees certain
isturbance attenuation when assisted by the neighbours.
We have also provided a simulation example that confirms
vergence of the proposed filter in the case a system has

to the neighbours’ accuracy can be assessed using, e.g.,
eigenvalues 0¥, ;, as explained in Sectign [I}B. This process
is illustrated in the example presented next.

V. ILLUSTRATIVE EXAMPLE

In this section, a simulated network of five sensor node 1]
is considered that are to estimate a three-dimensionat.plan

The plant’s state matrix and the input matrix are (2]
—-3.2 10 0 0.4
A= 1 -1 1|, B=|o04]. (24) B
0 —14.87 0 0.4
The matrix A corresponds to one of the regimes of the 4]
controlled Chua electronic circuit considered in [13]. 5]

The network consists of five nodes, its connectiv-
ity is described by the set of directed edg#s = (6]
{(1,3),(2,3),(3,1),(3,2),(3,4), (4,3), (4,5), (5,4)}. The
matrices C; were taken from [13] to beC;, = Cy = [7]
0.001 x [3.1923 — 4.6597 1] and Cy; = C3 = C5 = (8]
[-0.8986 0.1312 — 1.9703]. Note that none of the pairs
(A, C;) are observable, wittA,Cy) and A, C4) being not  [9]
detectable. Also following [13], all communication mag&
are taken to bdV;; = Isxs if (i,j) € E. Also, we let
D; =0.02511 «3 andFij =0.51343.

For the above system two distributed filter designs were
compared. Both filters were designed to achieve a suboptimal;
H,, consensus performance, that is,[ih (5) we seleéted
(L+L7)®1, cf. [4], [5]. First, the optimization problen (23) [12]
was solved with the above parameters. Next, an additional
constraintZ;; > 0.1/ was imposed. The computed levels
of local H., attenuationy? and the minimum eigenvalues [t
of the computed matriceéij with which the PropertyP3  [14]
is guaranteed by Theoreld 2 are shown in Tdble I. One
can see that in the first case, the filters at nodes 1 afd
4 have much larger constamt$ and substantially smaller [16]
values of eigenvalues of matric&s;. Together these features
indicate that these filters are significantly more sensitive
accuracy of their neighbours. This is not unexpected given
that the pairg A, C1), (A, C,) are not detectable. The second

[10]

undetectable pairgA, C;) at some of the nodes. Tuning of
the filter is discussed to reduce the dependence of the local
filters from neighbours accurate estimates.
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