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Cooperative Robust Estimation with Local Performance Guarantees

M. Zamani V. Ugrinovskii

Abstract— The paper considers the problem of cooperative
estimation for a linear uncertain plant observed by a network of
communicating sensors. We take a novel approach by treating
the filtering problem from the view point of local sensors while
the network interconnections are accounted for via an uncertain
signals modelling of estimation performance of other nodes.
That is, the information communicated between the nodes is
treated as the true plant information subject to perturbations,
and each node is endowed with certain believes about these
perturbations during the filter design. The proposed distributed
filter achieves a suboptimalH∞ consensus performance. Fur-
thermore, local performance of each estimator is also assessed
given additional constraints on the performance of the other
nodes. These conditions are shown to be useful in tuning the
desired estimation performance of the sensor network.

I. I NTRODUCTION

The research on cooperative filtering and estimation of
networked systems has gained much momentum during
the past decade, aiming at developing efficient estimation
algorithms for large assemblies of networked sensors [1]–
[5]. The mentioned references reflect the common trend in
the literature, where the main objective is to accomplish a
globally optimal or suboptimal estimation performance of the
network. Usually, the performance of individual sensors is
not considered in such problems. This observation motivates
the question about a relationship between the estimation
performance of the individual filters within a distributed
estimation network and the performance of the overall net-
work. This paper considers this problem within the specific
framework of distributedH∞ consensus estimation [4], [5].

Our approach also targets the global convergence problem
however not with a brute-force decoupling of the global
solution. Rather we define a local objective function in
terms of uncertain signals capturing the performance of the
other nodes. This leads to decoupling of the distributed filter
while implicitly maintaining a meaningful connection to the
network. This way, the local objective function abstracts the
dependence on other nodes, eliminating the need to consider
their exact models or their raw measurements. Nevertheless,
the convergence of the local filter is dependent on the rest of
the network and we provide conditions that render theH∞

convergence of the network of the filters. Furthermore, by
asserting further conditions on the individual performances
of the other nodes a guaranteedH∞ performance of the
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individual filters is established. These conditions express that
if all the neighbours maintain a certain level of accuracy then
the local filter also guarantees a nominatedH∞ performance.

To establish the above relationship, here we analyze the
distributed filter network consisting of estimators solving an
auxiliary optimal filtering problem at every node. In that
sense, our approach bears some resemblance with decentral-
ized control where each controller is constructed to regulate a
local subsystem. The mentioned auxiliary filtering problem
originates in [6], [7]; it was shown in [8] to yield inter-
connected consensus-type filters that exchange information
between the network nodes although the parameters for each
filter could be computed online in the decentralized fashion.

The new element of this paper compared with [8] is how
the neighboring information is interpreted by each node.
In [8], each node was considered to be agnostic about the
amount of energy in the error between the true state of the
plant and the neighbours’ estimates of that state. In contrast,
here we consider a model where each node perceives a
relationship between the energy in the neighbours’ error and
the accuracy of its own filter. We give a detailed discussion
of this idea later in the paper; for now we only note that
technically our model adds a constraint on the energy in the
error inputs arising in the auxiliary minimum energy prob-
lems. Such a constraint has the form of an Integral Quadratic
Constraint previously used in robust decentralized control
problems and filtering problems; e.g., see [9], [10]. However,
unlike those problems, the parameters of the constraints used
here play the role of tunable parameters which are adjusted
according to the desired local and global performance. They
also serve as indicators of sensitivity of the individual filters
to the neighbours’ performance.

The main result of this paper are sufficient conditions on
the network parameters that ensureH∞ performance of the
network consisting of the proposed minimum energy filters.
As mentioned, not only global disturbance attenuation is
guaranteed by these conditions, but also certain localH∞

properties of the node filters are established. We show that
these conditions admit the form of a convex semidefinite
program, which enables constructing a filter network yielding
a suboptimal disturbance attenuation.

Notation: Rn is the Euclidean space of vectors,‖ · ‖ is
the Euclidean norm, and for any positive semidefinite matrix
X , X = X ′ ≥ 0, ‖a‖X , (a′Xa)1/2. For 0 < T ≤ ∞,
L2[0, T ) denotes the Lebesgue space of vector-valued signals
square-integrable on[0, T ). diag[X1, . . . , XN ] denotes the
block diagonal matrix withX1, . . . , XN as its diagonal
blocks, and⊗ is the Kronecker product of matrices.λmin(Z)
is the smallest eigenvalue of a symmetric matrixZ.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A. The plant and the distributed estimator

Consider a linear system

ẋ = Ax+Bw, x(0) = x0, (1)

where x ∈ R
n and w ∈ R

m are, respectively, the state
and the unknown modeling disturbance input; the latter is
assumed to beL2 integrable on[0,∞). The matricesA ∈
R

n×n andB ∈ R
n×m are known, however the initial state

x0 is unknown and is considered to be part of the uncertainty
about the system (1).

The main objective of the paper is to determine conditions
under which the plant statex(t) can be estimated by a
network of filters each using its plant measurement

yi = Cix+Divi, (2)

where i = 1, 2, . . . , N indicates the measurement taken at
node i of the network. Each measurementyi ∈ R

pi is
imperfect, it is subject to a measurement disturbancevi
taking values inRmi that also belongs to the spaceL2[0,∞)
by assumption. The coefficients of each measured output
are matrices of the matching dimensions,Ci ∈ R

pi×n,
Di ∈ R

pi×mi , with Ei , DiD
′
i > 0.

In addition to its direct measurements of the plant, each
node receives information from other nodes of the network,
of the form

cij = Wij x̂j + Fijǫij , (3)

where x̂j is the estimate of statex at the neighbouring
node j. The signalǫij with values inRmij represents the
communication errors or uncertainty in the communication
channel,ǫij ∈ L2[0,∞). We assume thatGij , FijF

′
ij > 0.

The network graph describing communications between
the filtering nodes is assumed to be directed, its node and
edge sets are denotedV = {1, . . . , N} andE ⊆ V × V,
respectively. The neighborhood of nodei, i.e., the set of
nodes which send information to nodei, is denoted byNi =
{j : (i, j) ∈ E} and its cardinality is denotedli. The Laplace
matrix of the network graph is denotedL [11].

Following [1], [2], [4] and many other papers on dis-
tributed estimation, we consider a class of consensus-based
interconnected filters each processing the direct measure-
mentsyi and neighbours’ informationcij by means of a
Luenberger-type observer of the form

˙̂xi = Ax̂i + Li(yi − Cix̂i) +
∑

j∈Ni

Kij(cij −Wij x̂i), (4)

x̂i(0) = ξi.

The estimation problem in this paper is to determine
coefficientsLi, Kij (which can be time-varying) that ensure
convergence of the network to trajectories of the plant, and
also guarantee an acceptable attenuation of the detrimental
effects of disturbances on the estimation error. Formally,
these properties are formulated as follows. Given a positive
semidefinite matrixP ∈ R

nN×nN and a collection of
positive semidefinite matricesXi ∈ R

n×n, and constantsγ2

and γ̄2
i , i ∈ V, we wish to determine a collection of filters

of the form (4) that guarantee the following properties:
P1. In the absence of disturbancesw, vi and ǫij , j ∈ Ni,

i = 1, . . . , N the estimation error of the filterei(t) =
x̂i(t)− x(t) converges to zero asymptotically.

P2. In the presence of disturbances, the network of filters (4)
attains the type ofH∞ disturbance attenuation property
∫ ∞

0

‖e‖2Pdt ≤ γ2

(

N
∑

i=1

‖x(0)− ξi‖
2
Xi

+N‖w‖22

+

N
∑

i=1

(

‖vi‖
2
2 +

∑

j∈Ni

‖ǫij‖
2
2

)

)

, (5)

wheree = [(x̂1 − x)′, . . . , (x̂N − x)′]′ and ‖.‖22 is the
L2 norm.

P3. Provided the neighbours of nodei contribute a sufficient
effort (this will be quantitatively defined later) to assist
i, it is also guaranteed that at that node

∫ ∞

0

‖ei‖
2ds ≤ γ̄2

i

[

βi + ‖x0 − ξi‖
2
Xi

+

∫ ∞

0

[

‖w‖2 + ‖vi‖
2 +

∑

j∈Ni

‖ǫij‖
2
]

ds
]

; (6)

βi > 0 is a constant which will be determined later.
These properties formalize the desired attributes of a

distributed filter that we want to achieve. In particular, prop-
erty P2 specifies the desired global disturbance attenuation
performance across the sensor network using a network of
decoupled filter equations (4). Note that decoupled equa-
tions governing the gains in filters (4) will be provided
later. Furthermore, propertyP3 articulates the desired lo-
cal disturbance attenuation provided that there is sufficient
contribution from the neighbours. The sufficient contribution
condition is quantitatively defined later in the paper.

We remark that propertiesP1, P2 jointly generalize the
property ofH∞ consensus introduced in [4]; also see [5],
[12]. For example, letP = (L + L⊤) ⊗ P0 whereP0 =
P ′
0 ≥ 0, and L⊤ is the Laplacian matrix of the graph

obtained from the network graph by reversing its edges.
This choice ofP results in the left hand side of (5) being
equal to the weightedH∞ disagreement cost between the
nodes,

∫∞

0

∑

i

∑

j∈Ni
‖x̂i − x̂j‖

2
P0
ds [4], [5], [13]. More

generally, lettingP = (L + L⊤) ⊗ P0 + diag[P1 . . . PN ],
Pi = P ′

i > 0, reducesP1, P2 to the property of strong robust
synchronization introduced in [12]. In addition, property
P3 describesH∞ attenuation properties of individual node
filters. Including such property into analysis constitutesthe
main difference between the problem posed above and the
previous work in the area of distributed estimation.

B. Representation of the neighboring information

To make performance analysis of individual filters possi-
ble, let us introduce the mismatch between the disturbance-
free information contained in the signalcij and the corre-
sponding true version of this information,

ηij = Wij(x̂j − x) = −Wijej ∈ R
pij , j ∈ Ni. (7)



With these signals the information received by sensori can
be represented as

cij = Wijx+ ηij + Fijǫij , j ∈ Ni. (8)

Equation (8) can be regarded as an additional measurement
of the plant affected by disturbancesǫij andηij .

Treating the signalsηij , for the purpose of filter derivation,
as the disturbances additional tow, vi andǫij has an effect
of decoupling nodei from its neighbours. Indeed, consider
the error dynamics of the filter (4) at nodei,

ėi =



A− LiCi −
∑

j∈Ni

KijWij



 ei −Bw

+LiDivi +
∑

j∈Ni

Kij(ηij + Fijǫij), (9)

ηki = Wkiei, i ∈ Nk.

In this system, the signalsηij , j ∈ Ni, play the role
of exogenous disturbances and each signalηki = Wkiei
represents the output used by agentk for whom i is the
neighbour, i.e.,i ∈ Nk. This interpretation allowed us to
construct in [8] minimum energy filters of the form (4) with
the property that for any initial conditionx0, arbitraryL2-
integrable disturbancesw, vi, ǫij , ηij and an arbitraryT > 0

∫ T

0

‖ei‖
2
Ri
dt ≤ γ2

(

‖x0 − ξi‖
2
Xi

+

∫ T

0

[

‖w‖2 + ‖vi‖
2

+
∑

j∈Ni

(‖ǫij‖
2 + ‖ηij‖

2
Z−1

ij

)
]

dt

)

. (10)

Here, γ2 and Ri = R′
i > 0 are a positive constant and

matrices whose existence is determined by certain LMI
conditions in [8]. Also,Zij = Z ′

ij > 0 are given matrices;
in [8] they were associated with the confidence of nodei
about performance of nodej.

Condition (10) provides anH∞ type bound on the energy
in the filter estimation errors at nodei expressed in terms
of the energy of the disturbances affecting that node, and
is similar to (6) in propertyP3. The important difference
between (10) and (6) is that the former condition includes
the energy in the signalsηij that depend on the neighbours’
accuracy. Also, according to (10), thesame level of distur-
bance attenuationγ2 is stated for all nodes. Our goal is
to revisit the design of the filters (4) to obtain a possibly
sharperH∞ property for at least some of the local filters,
and for other filters, to provide a means for assessing their
local performance and sensitivity to the neighbours’ errors.

Owing to the relationηij = −Wijej , from the viewpoint
of nodei, the error dynamics of the network can be seen as
an interconnection of two systems, representing, respectively,
i’s own error dynamics and the errors dynamics of the rest
of the system; see Figure 1. Motivated by (10), we propose
the following condition to formally capture the sensitivity of
each node to the accuracy of its neighbours’ filters:
For everyi, there exist positive definite symmetric matrices
Z̄ij and constantsdij ≥ 0, j ∈ Ni, such that for allt ∈
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Fig. 1. A two-block representation of the error dynamics system.

[0,∞) andw, vi, ǫij ∈ L2[0, t),
∫ t

0

‖ηij‖
2
Z̄−1

ij

dt ≤

∫ t

0

(‖ei‖
2 + ‖w‖2)dt+ dij , (11)

∀j ∈ Ni, i = 1, . . . , N.

As a generalized form of the property (10), condition (11)
reflects how the neighbours’ accuracy influences the local
disturbance attenuation property (6) at every node. Therefore
in what follows, we will use condition (11) to establish (6),
i.e., (11) is the quantitative characteristic of the neighbours’
effort mentioned inP3.

To demonstrate the role of (11) more vividly, take for
exampleZ̄ij = z̄ijI, with a scalarz̄ij > 0 and suppose (6)
holds provided (11) is satisfied with a very smallz̄ij . Since
according to (6), the energy inei is bounded, (11) suggests
that nodei can only tolerate relatively ‘small’ mismatch
inputsηij to be able guarantee (6). However, a small energy
in ηij can only be accomplished by the corresponding
neighbourj. This suggests that the eigenvalues ofZ̄ij may
be indicative of sensitivity of the local filters to fidelity of its
neighbours’ estimates. In Section IV we will show that the
matricesZ̄ij can be computed jointly with the attenuation
levels γ2, γ̄2

i . This provides the means for performance
tuning of the local filters.

Similarly, the constantsdij in (11) describe the bound
on the estimation error energy that nodei is prepared to
tolerate from its neighbourj, in response to (hypothetically)
estimating the perfectly known plant (w = 0) with the
utmost precision (ei = 0). Indeed, in this hypothetical case,
condition (11) reduces to a bound on the energy in the
mismatch disturbance signalηij of the neighbourj.

C. Distributed estimation problem

We are now in a position to present a formal definition of
the distributed estimation problem described in Section II-A.

Problem 1: Determine a collection of filters of the form
(4) and matricesZ̄ij ∈ R

pij×pij , j ∈ Ni, i ∈ V, and
constantsγ2 andγ̄2

i such that the following conditions hold:

(i) Given a positive semidefinite matrixP ∈ R
nN×nN ,

the network of filters (4) achieves propertiesP1 and
P2 with this P and the foundγ2.

(ii) The following implication holds with the found̄Zij and
γ̄2
i : If signalsηij(t), j ∈ Ni, satisfy (11), then the filter

(4) guarantees the satisfaction of condition (6), i.e.,P3
is satisfied.



We stress that the global performance propertiesP1andP2
of the proposed distributed filter will be proved without using
condition (11). The IQC (11) will only be used to guarantee
certain local performance of each nodei subject to accept-
able performance of its neighbours. The latter development
will be analogous to how IQCs were used in the derivation
of decentralized robust controllers to quantify the uncertainty
arising from system interconnections; e.g, see [9], [14].
However, different from decentralized controllers in those
references, our aim is to maintain coupling between the
filters, to ensure cooperation between them.

III. D ISTRIBUTED MINIMUM ENERGY FILTERING WITH

LOCAL PERFORMANCE GUARANTEES

In this section, our main results are presented. As was
explained in Section II-B, our goal is to obtain a converging
(in the H∞ sense) distributed filter which provides global
estimation performance described in item (i) of Problem 1,
and also characterize quantitatively the connection between
local H∞ properties of the filters and their sensitivity to
estimation accuracy of their neighbours.

To solve Problem 1, we first introduce an auxiliary robust
minimum energy filtering problem involving a modified ver-
sion of the standard minimum energy cost [6]. This cost func-
tional, depending on the signalsw andηi , [η′ij1 . . . η

′
ijli

]′,
affecting the measurementsyi|[0,t] and {cij |[0,t] j ∈ Ni}
available at nodei is as follows:

J̄i,t(x,w, ηi)

=
1

2
‖xt,x(0)− ξi‖

2
Xi

+
1

2

∫ t

0

(

‖w‖2 + ‖yi − Cix
t,x‖2

E−1
i

+
∑

j∈Ni

‖cij −Wijx
t,x − ηij‖

2
G−1

ij

−γ−2‖xt,x − x̂i‖
2
Ri

)

ds; (12)

Compared to the standard minimum energy cost func-
tional, it includes the additional weighted penalty on the
tracking error at nodei; see the last term in (12). It
was shown in [8] that the inclusion of this term enforces
a guaranteedH∞-type performance of the filter while a
minimum energy estimate is sought; cf. [15]. The weight
matrix of this term,Ri = R′

i > 0, Ri ∈ R
n×n was

regarded as parameters of the filter, and a process of selecting
those matrices to optimizeγ2 was proposed in [8]. However,
different from [8], the cost (12) does not include a direct
quadratic penalty onηij . Instead, our derivation of the local
filters will impose the constraint (11) on the mismatch signals
ηij , j ∈ Ni.

With these modifications, the auxiliary robust minimum-
energy filtering problem consists of determining a set of the
unknownsx, w, ηi compatible with the measurementsyi and
the communicationscij and minimizing the energy cost (12)
subject to the constraint (11):

inf
x

(

inf
w∈L2[0,t]

inf
ηi∈Ξi,t

J̄i,t(x,w, ηi)

)

. (13)

HereΞi,t denotes the class of vector signalsηi obtained by
stacking up allηij , j ∈ Ni, satisfying (11). Originated from
the minimum energy filtering [6] and least square fitting,
this problem will lead to the ‘most likely’ minimum-energy
trajectoryx∗

i,t(·) compatible with the data at nodei, y|[0,t],
cij |[0,t] [6]. The subscriptsi, t at x∗

i,t(·) are to highlight that
the trajectoryx∗

i,t(·) is consistent with the data collected on
the interval[0, t] at nodei. By definition, the end point of this
trajectory is the minimum-energy estimate of the statex(t),
given the measurement datay|[0,t], cij |[0,t]: x̂i(t) , x∗

i,t(t).
To solve the constrained optimization problem (13), we

apply the method of S-procedure [14]. In fact, since the cost
J̄i,t(x,w, ηi) itself depends on̂xi(·), this requires us to solve
a family of minimum energy filtering problems, in whicĥxi

is replaced with an arbitrary signal̄xi. Then we take the
fixed point of the mappinḡxi(t) → x∗

i,t(t) generated by this
family of minimum energy filtering problems, aŝxi(t). Due
to lack of space, we omit the details and proceed assuming
that x̂i(t) is such a fixed point.

Let τi ∈ R
n be a vectorτi = [τi1 . . . τiN ]′ such that

τij > 0 if j ∈ Ni, andτij = 0 otherwise. Then define

J̄τi
i,t(x,w, ηi) = J̄i,t(x,w, ηi) +

∑

j∈Ni

τij
2

∫ t

0

(

‖ηij‖
2
Z̄−1

ij

− ‖xt,x − x̂i‖
2 − ‖w‖2 − ‖yi − Cix

t,x‖2

−
∑

r∈Ni

‖cir −Wirx
t,x − ηir‖

2
)

ds (14)

and for fixed t and x̂i(·), x, consider the unconstrained
optimization problem

V̄ τi
i (x, t) = inf

w,ηi∈L2[0,t]
J̄τi
i,t(x,w, ηi). (15)

For eacht, x, the optimization problem (15) is a standard
optimal tracking problem with a fixed terminal condition
x(t) = x, which has a unique solution under the condition

∑

j∈Ni

τij < 1. (16)

We now establish a relationship between this problem and
the constrained inner optimization problem in (13).

Let Ti(t, x) , {τi : (16) holds andV̄ τi
i (x, t) > −∞}.

Also for convenience, define a vectordi ∈ R
n whosejth

component isdij if j ∈ Ni and is 0 otherwise.
Lemma 1:For everyx̂i(·), x ∈ R

n, if the corresponding
set Ti(t, x) is nonempty, then the value of the inner opti-
mization problem in (13) is finite,

inf
w∈L2[0,t],
ηi∈Ξi,t

J̄i,t(x,w, ηi) ≥ sup
τi∈Ti(t,x)

(

V̄ τi
i (x, t)−

τ ′idi
2

)

.

(17)
From Lemma 1, a lower bound on the value of the

problem (13) follows:

inf
x

inf
w∈L2[0,t],
ηi∈Ξi,t

J̄i,t(x,w, ηi)

≥ inf
x

sup
τi∈Ti(t,x)

(

V̄ τi
i (x, t)−

τ ′idi
2

)

. (18)



We now consider the following optimization problem

inf
x
V̄ τi
i (x, t) = inf

x
inf

w,ηi∈L2

J̄τi
i,t(x,w, ηi). (19)

A solution to this problem involves the differential Riccati
equation

Q̇τi
i = Qτi

i A′ +AQτi
i −Qτi

i

(

C′
iE

−1
i Ci

+
∑

j∈Ni

W ′
ij Ū

−1
ij Wij − γ−2Ri − W̄i

)

Qτi
i + Si, (20)

Qτi
i (0) = X−1

i ,

whereW̄i = (
∑

j∈Ni

τij)In, Ūij , Gij + τ−1
ij Z̄ij , Si =

(

1−

∑

j∈Ni
τij

)−1

BB′.

Lemma 2:Given fixedτi ∈ Ti(t, x) andT > 0. Suppose
the differential Riccati equation (20) has a symmetric nonsin-
gular solutionQτi

i = Qτi
i (t) on the interval[0, T ]. Then the

following filter computes recursively the minimizerx̂τi
i (t) of

the optimization problem (19) on the interval[0, T ],

˙̂xτi
i = Ax̂τi

i +Qτi
i

(

C′
iE

−1
i (yi − Cix̂

τi
i )

+
∑

j∈Ni

W ′
ij Ū

−1
ij (cij −Wij x̂

τi
i )

)

, (21)

x̂τi
i (0) = ξi.

The value of the optimization problem (19) is finite and for
x̂i = x̂τi

i is given by

ρ̄τii,t ,
1

2

∫ t

0

[

‖yi−Cix̂
τi
i ‖2

E−1
i

+
∑

j∈Ni

‖cij−Wij x̂
τi
i ‖2

Ū−1
ij

]

ds.

Let

T̄i(T ) ,















τi : (16) holds and the DRE (20)

has a bounded positive definite

solution on[0, T ].















.

Lemma 3:For all T > 0, T̄i(T ) ⊆
⋂

t∈[0,T ], x∈Rn

Ti(t, x).

The following theorem summarizes the above discussion.
Theorem 1:Given constantsγ2 andγ2

i and matrices̄Zij ,
j ∈ Ni, suppose the set̄Ti(+∞) =

⋂

T>0 T̄i(T ) is not
empty. Then for anyηij for which condition (11) holds,
the filter (21) computes recursively the processx̂τi

i (t) which
satisfies condition (6) withβi = τ ′idi.

Compared with the distributed minimum energy filter
in [8], we have now obtained a family of suboptimal min-
imum energy filters for each node parametrized byτi ∈
T̄i(+∞). To be able to apply Theorem 1, it is necessary
to have a method for computing at least one such vectorτi
for every nodei. In the next section, we will present an algo-
rithm that accomplishes this task. In addition, this algorithm
obtains the matrices̄Zij and constantsγ2

i consistent with the
found γ2, thus providing a complete solution to Problem 1.

IV. D ESIGN OF A ROBUST DISTRIBUTED ESTIMATOR

The algorithm to compute a solution to Problem 1 utilizes
a collection of linear matrix inequalities (LMIs) including
the condition (16) and the following matrix inequalities:














A′Ȳi + ȲiA+
(

γ̄−2

i +
∑

j∈Ni

τij
)

I

−

(

C′

iE
−1

i Ci +
∑

j∈Ni

W ′

ijΥijWij

) ȲiB

B′Ȳi

(
∑

j∈Ni

τij − 1
)

I















< 0,

Ȳi = Ȳ ′
i > 0, Υij = Υ′

ij > 0, Υij < G−1
ij , τij > 0,

j ∈ Ni, i = 1, . . . , N,

Θ̄ > 0. (22)

Here, the symmetric matrix̄Θ is composed as follows. Its
diagonal blocks̄Θii are defined as

Θ̄ii =









θ̄ii
0 θ̄ii

1 . . . θ̄ii
li

(θii
1 )′ G−1

ij1
. . . 0

.

.

.
.
.
.

. . .
.
.
.

(θii
li
)′ 0 . . . G−1

ijli









,

θ̄ii0 =
∑

j∈Ni

W ′
ijΥijWij +

(

γ̄−2
i +

∑

j∈Ni

τij
)

I − γ−2Pii,

θ̄iik = W ′
ijkΥijk , k = 1, . . . , li.

Also, its off-diagonal blocks̄Θij , i, j = 1, . . . , N , j 6= i, are

Θ̄ij =











[

Ψij − γ−2Pij 0n×Mj

0n×Mi
0Mi×Mj

]

, i < j,

Θ̄′
ji, i > j,

where

Ψij =







−W ′

ijΥijWij − W ′

jiΥjiWji, j ∈ Ni, i ∈ Nj ;

−W ′

ijΥijWij , j ∈ Ni, i 6∈ Nj ;

−W ′

jiΥjiWji, j 6∈ Ni, i ∈ Nj ;

0 j 6∈ Ni, i 6∈ Nj .

The LMIs (22), (16) represent a linear constraint on the
variables Ȳi = Ȳ ′

i > 0, γ̄−2
i , Υij , τij > 0 (j ∈ Ni,

i = 1, . . . , N ), andγ−2. Sinceγ2 represents the disturbance
attenuation level in the distributed filter, a suitable set of
filter parameters is of interest which minimizes this variable.
This can be numerically achieved by solving the convex
optimization problem

sup γ−2 subject to (22), (16). (23)

Let γ∗2 be the value of the supremum in (23).
Theorem 2:Let the pair(A,B) be stabilizable. Given a

positive semidefinite weighting matrixP = P ′ ∈ R
nN×nN ,

supposeγ2 > γ∗2, τij , Υij , γ̄−2
i I and Ȳi, j ∈ Ni,

i = 1, . . . , N , are a feasible collection of matrices and
scalars that satisfy the constraints of the convex optimization
problem (23). Then each Riccati equation (20) withRi =
(γ/γ̄i)

2 has a positive definite bounded solution on[0,∞).
Furthermore, the corresponding filtering algorithm (21), (20)
verifies claims (i) and (ii) of Problem 1.



TABLE I

SOLUTIONS TO THE PROBLEM(23)

Simulation 1:Z̄ij > 0 Simulation 2:Z̄ij > 0.1I

γ2 = 0.2500 γ2 = 0.3116

Node γ̄2

i minj λmin(Z̄ij) γ̄2

i minj λmin(Z̄ij)

1 0.2643 2.6219 × 10−4 0.6288 0.1074

2 0.0185 0.0250 0.0260 0.3416

3 0.0181 0.0158 0.0395 0.1788

4 0.1313 2.7548 × 10−4 0.2904 0.1000

5 0.0176 0.0263 0.0265 0.2682

As Theorem 2 shows, solving the SDP problem (23)
allows us to determine the suboptimalγ2 as well as the
local disturbance attenuation levelsγ̄2

i that characterize local
performance of the node filters (see (6)) as well as the matri-
ces Z̄ij in condition (11) consistent with that performance.
Then sensitivity of performance of the obtained local filters
to the neighbours’ accuracy can be assessed using, e.g., the
eigenvalues of̄Zij , as explained in Section II-B. This process
is illustrated in the example presented next.

V. I LLUSTRATIVE EXAMPLE

In this section, a simulated network of five sensor nodes
is considered that are to estimate a three-dimensional plant.
The plant’s state matrix and the input matrix are

A =

[

−3.2 10 0

1 −1 1

0 −14.87 0

]

, B =

[

0.4

0.4

0.4

]

. (24)

The matrix A corresponds to one of the regimes of the
controlled Chua electronic circuit considered in [13].

The network consists of five nodes, its connectiv-
ity is described by the set of directed edgesE =
{(1, 3), (2, 3), (3, 1), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4)}. The
matricesCi were taken from [13] to beC1 = C4 =
0.001 × [3.1923 − 4.6597 1] and C2 = C3 = C5 =
[−0.8986 0.1312 − 1.9703]. Note that none of the pairs
(A,Ci) are observable, with(A,C1) andA,C4) being not
detectable. Also following [13], all communication matrices
are taken to beWij = I3×3 if (i, j) ∈ E. Also, we let
Di = 0.025I1×3 andFij = 0.5I3×3.

For the above system two distributed filter designs were
compared. Both filters were designed to achieve a suboptimal
H∞ consensus performance, that is, in (5) we selectedP =
(L+L⊤)⊗I, cf. [4], [5]. First, the optimization problem (23)
was solved with the above parameters. Next, an additional
constraintZ̄ij > 0.1I was imposed. The computed levels
of local H∞ attenuationγ̄2

i and the minimum eigenvalues
of the computed matrices̄Zij with which the PropertyP3
is guaranteed by Theorem 2 are shown in Table I. One
can see that in the first case, the filters at nodes 1 and
4 have much larger constants̄γ2

i and substantially smaller
values of eigenvalues of matrices̄Zij . Together these features
indicate that these filters are significantly more sensitiveto
accuracy of their neighbours. This is not unexpected given
that the pairs(A,C1), (A,C4) are not detectable. The second

simulation indicates that robustness of the estimators with
respect to accuracy of their neighbours can be improved by
moderately increasingγ2 and γ̄2

i .

VI. CONCLUSIONS

In this paper we proposed a distributed filtering algorithm
by utilizing an H∞ minimum-energy filtering approach to
the design of constituent filters. The algorithm employs a
decoupled computation of the individual filter coefficients.
This is achieved by considering the estimation error of
neighbouring agents as additional exogenous disturbances
weighted according to the nodes’ confidence in their neigh-
bours’ estimates. The conditions are obtained under which
the proposed filter to provides guaranteed internal stability
and desired disturbance attenuation of the network error
dynamics. In addition each local filter guarantees certain
disturbance attenuation when assisted by the neighbours.
We have also provided a simulation example that confirms
convergence of the proposed filter in the case a system has
undetectable pairs(A,Ci) at some of the nodes. Tuning of
the filter is discussed to reduce the dependence of the local
filters from neighbours accurate estimates.
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