
ar
X

iv
:1

50
9.

09
13

7v
1

 [c
s.

S
Y

]
30

 S
ep

 2
01

5

Cooperative Task Planning of Multi-Agent Systems Under Timed
Temporal Specifications

Alexandros Nikou, Jana Tumova and Dimos V. Dimarogonas

Abstract— In this paper the problem of cooperative task
planning of multi-agent systems when timed constraints are
imposed to the system is investigated. We consider timed
constraints given by Metric Interval Temporal Logic (MITL) .
We propose a method for automatic control synthesis in a two-
stage systematic procedure. With this method we guarantee that
all the agents satisfy their own individual task specifications as
well as that the team satisfies a team global task specification.

I. I NTRODUCTION

Cooperative control of multi-agent systems has tradition-
ally focused on designing local control laws in order to
achieve tasks such as consensus, formation, network con-
nectivity, and collision avoidance ([1]–[7]). Over the last
decade or so, the field of control of multi-agent systems
with complicated behavior under complex high-level task
specifications has been gaining significant research attention.
Such high-level tasks may have the form of “Periodically
survey regions A, B, C while avoiding region D”, or “Visit
regions A, B, C, in this order”, and many others. Multiple
robotic vehicles then may perform these types of tasks faster
and more efficiently than a single robot. In this work, we aim
to introduce specific time bounds into the complex tasks,
such as “Periodically survey regions A, B, C, avoid region
D and always keep the longest time between two consecutive
visits to A below 5 time units”, or “Visit regions A, B, C,
in this order within 10 time units”.

The team of agents is usually associated with a set of tasks
that should be fulfilled by the group of agents as a whole
at the discrete level. A three-step hierarchical procedure
to address such a problem is described as follows ([8],
[9]): First the robot dynamics is abstracted into a finite or
countable, discrete transition system using sampling or cell
decomposition methods based on triangulations, rectangular
or other partitions. Second, invoking ideas from verification
methods, a discrete plan that meets the high-level task is
synthesized. Third, the discrete plan is translated into a
sequence of continuous controllers for the original system.

The specification language that has extensively been used
to express the tasks is the Linear Temporal Logic (LTL) (see,
e.g., [10]). LTL has proven a valuable tool for controller
synthesis, because it provides a compact mathematical for-
malism for specifying desired behaviors of a system. There is
a rich body of literature containing algorithms for verification
and synthesis of system obeying temporal logic specifications
([11], [12]). A common approach in multi-agent planning
under LTL specifications is the consideration of a centralized,

The authors are with the ACCESS Linnaeus Center, School of Electrical
Engineering, KTH Royal Institute of Technology, SE-100 44,Stockholm,
Sweden and with the KTH Centre for Autonomous Systems. Email:
{anikou,tumova,dimos}@kth.se. This work was supported by
the H2020 ERC Starting Grant BUCOPHSYS and the Swedish Research
Council (VR).

global task specification for the team of agents which is
then decomposed into local tasks to be accomplished by the
individual agents. For instance, the authors in [13] utilized
the parallel composition (synchronous products) of multi-
robot systems in order to decompose a global specification
that is given to a team of robots into individual specifications.
This method has been proven computationally expensive due
to state space explosion problem and in order to relax the
computational burden the authors in [14], [15] proposed
a method that does not require the computation of the
parallel composition. This method, however, is restrictive
to specifications that can be expressed in certain subclasses
of LTL. In [16], the specification formula was given in
LTL in parallel with the problem of minimum inter-robot
communication.

Explicit time constraints in the system modeling have been
included e.g., in [17], where a method of automated planning
of optimal paths of a group of agents satisfying a common
high-level mission specification was proposed. The mission
was given in LTL and the goal was the minimization of
a cost function that captures the maximum time between
successive satisfactions of the formula. Authors in [18],
[19] used a different approach, representing the motion of
each agent in the environment with a timed automaton. The
composition of the team automaton was achieved through
synchronization and the UPPAAL verification tool ([20]) was
utilized for specifications given in Computational Tree Logic
(CTL). In the same direction, authors in [21] modeled the
multi-robot framework with timed automata and weighted
transition systems considering LTL specifications and then,
an optimal motion of the robots satisfying instances of the
optimizing proposition was proposed.

Most of the previous works on multi-agent planning
consider temporal properties which essentially treat timein
a qualitative manner. For real applications, a multi-agent
team might be required to perform a specific task within a
certain time bound, rather than at some arbitrary time in the
future (quantitative manner). Timed specifications have been
considered in [22]–[25]. In [22], the authors addressed the
problem of designing high-level planners to achieve tasks
for switching dynamical systems under Metric Temporal
Logic (MTL) specification and in [23], the authors utilized a
counterexample-guided synthesis to cyber-physical systems
subject to Signal Temporal Logic (STL) specifications. In
[24], the MTL formula for a single agent was translated
into linear constraints and a Mixed Integer Linear Program-
ming (MILP) problem was solved. However, these works
are restricted to single agent motion planning and are not
expendable to multi-agent systems in a straightforward way.
In [25], the vehicle routing problem was considered under the
presence of MTL specifications. The approach does not rely

http://arxiv.org/abs/1509.09137v1

on automata-based approach to verification, as it constructs
a set of linear inequalities from MTL specification formula
in order to solve an MILP problem.

In this work, we aim at designing automated planning
procedure for a team of agents that are given an individual,
independent timed temporal specification each and a single
global team specification. This constitutes the first step
towards including time constraints to temporal logic-based
multi-agent control synthesis. We consider a quantitative
logic called Metric Interval Temporal Logic (MITL) ([26])
in order to specify explicit time constraints. The proposed
solution is fully automated and completely desynchronizedin
the sense that a faster agent is not required to stay in a region
and wait for the slower one. It is decentralized in handling
the individual specifications and centralized only in handling
the global team specification. To the best of the authors’
knowledge this is the first work that address the cooperative
task planning for multi-agent systems under individual and
global timed linear temporal logic specifications.

The remainder of the paper is structured as follows. In
Sec. II a description of the necessary mathematical tools,
the notations and the definitions are given. Sec. III provides
the model of the multi-agent system, the task specification,
several motivation examples as well as the formal problem
statement. Sec. IV discusses the technical details of the
solution. Sec. V is devoted to an illustrative example. Finally,
the conclusions and the future work directions are discussed
in Sec. VI.

II. N OTATION AND PRELIMINARIES

Given a setS, we denote by|S| its cardinality and by2S

the set of all its subsets. An infinite sequence of elements of
S is called a infinite word over the setS and it is denoted by
w = w(0)w(1) . . . Thei-th element of a sequence is denoted
with w(i). We denote byQ+,N the set of positive rational
and natural numbers including 0, respectively. Let us also
defineT∞ = T ∪ {∞} for a set of numbersT.

Definition 1. ([27]) A time sequenceτ = τ(0)τ(1) · · · is a
infinite sequence of time valuesτ(j) ∈ T = Q+, satisfying
the following constraints:

• Monotonicity: τ(j) < τ(j + 1) for all j ≥ 0.
• Progress: For everyt ∈ T, ∃ j ≥ 1, such thatτ(j) > t.

An atomic propositionp is a statement over the problem
variables and parameters that is either True(⊤) or False(⊥)
at a given time instance.

Definition 2. ([27]) LetAP be a finite set of atomic proposi-
tions. A timed wordw over the setAP is an infinite sequence
w = (w(0), τ(0))(w(1), τ(1)) · · · wherew(0)w(1) . . . is an
infinite word over the set2AP and τ(0)τ(1) . . . is a time
sequence withτ(j) ∈ T, j ≥ 0. A timed languageLangT
overAP is a set of timed words overAP .

A. Weighted Transition System

Definition 3. A Weighted Transition System(WTS) is a tuple
(S, S0,−→, d, AP, L) whereS is a finite set of states;S0 ⊆ S

is a set of initial states;−→⊆ S × S is a transition relation;

d :−→−→ T is a map that assigns a positive weight to each

transition; AP is a finite set of atomic propositions; and
L : S −→ 2AP is a labeling function.

For simplicity, we uses → s′ to denote the fact that
(s, s′) ∈→.

Definition 4. A timed runof a WTS is an infinite sequence
rt = (r(0), τ(0))(r(1), τ(1)) . . ., such thatr(0) ∈ S0, and
for all j ≥ 1, r(j) ∈ S and r(j) → r(j + 1). The time
stampsτk(j), j ≥ 0 are inductively defined as

1) τ(0) = 0.
2) τ(j + 1) = τ(j) + d(r(j), r(j + 1)), ∀ j ≥ 1.

Every timed run rt generates atimed word w(rt) =
(L(r(0)), τ(0)) (L(r(1)), τ(1)) . . . over the set2AP where
w(j) = L(r(j)), ∀ j ≥ 0 is the subset of atomic propositions
that are true at stater(j) at timeτ(j).

B. Metric Interval Temporal Logic and Timed Automata

The syntax ofMetric Interval Temporal Logic (MITL)over
a set of atomic propositionsAP is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∧ϕ2 |©I ϕ | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2 (1)

where p ∈ AP , and ©, ♦, � and U is the next, fu-
ture, always and until temporal operator, respectively.I ⊆
T is a non-empty time interval in one of the following
forms: [i1, i2], [i1, i2), (i1, i2], (i1, i2), [i1,∞], (i1,∞) where
i1, i2 ∈ T with i1 < i2. MITL can be interpreted either in
continuous or point-wise semantics. We utilize the latter one
and interpret MITL formulas over timed runs such as the
ones produced by a WTS (Def. 4).

Definition 5. ([28], [29]) Given a run rt =
(r(0), τ(0))(r(1), τ(1)) . . . of a WTS and an MITL
formula ϕ, we define(rt, i) |= ϕ, for i ≥ 0 (read rt

satisfiesϕ at positioni) as follows

(rt, i) |= p ⇔ p ∈ L(r(i))

(rt, i) |= ¬ϕ ⇔ (rt, i) 6|= ϕ

(rt, i) |= ϕ1 ∧ ϕ2 ⇔ (rt, i) |= ϕ1 and (rt, i) |= ϕ2

(rt, i) |= ©I ϕ ⇔ (rt, i+ 1) |= ϕ andτ(i + 1)− τ(i) ∈ I

(rt, i) |= ♦Iϕ ⇔ ∃j, i ≤ j, s.t. (rt, j) |= ϕ, τ(j) − τ(i) ∈ I

(rt, i) |= �Iϕ ⇔ ∀j, i ≤ j, τ(j)− τ(i) ∈ I ⇒ (rt, j) |= ϕ

(rt, i) |= ϕ1 UI ϕ2 ⇔ ∃j, i ≤ j, s.t. (rt, j) |= ϕ2,

τ(j)− τ(i) ∈ I and (rt, k) |= ϕ1 for every i ≤ k < j

Timed B̈uchi Automata (TBA)were introduced in [27] and
in this work, we also partially adopt the notation from [30],
[31]. LetX = {x1, x2, . . . , xM} be a finite set ofclocks. The
set ofclock constraintsΦ(X) is defined by the grammar

φ := ⊤ | ¬φ | φ1 ∧ φ2 | x ⊲⊳ c (2)

where x ∈ X is a clock, c ∈ T is a clock constant and
⊲⊳∈ {<,>,≥,≤,=}. A clock valuation is a functionν :
X → T that assigns a real value to each clock. A clockxi

has valuationνi for i ∈ {1, . . . ,M}, andν = (ν1, . . . , νM).
We denote byν |= φ the fact that the valuationν satisfies
the clock constraintφ.

Definition 6. A TBA is a tuple A =
(S, S init , X, I, E, F,AP,L) where S is a finite set of

locations;S init ⊆ S is the set of initial locations;X is
a finite set of clocks;I : S → Φ(X) is the invariant;
E ⊆ S×Φ(X)×2X ×S gives the set of transitions;F ⊆ S
is a set of accepting locations;AP is a finite set of atomic
propositions; andL : S → 2AP labels every state with a
subset atomic propositions.

A state ofA is a pair(s, ν) wheres ∈ S andν satisfies
the invariant I(s), i.e., ν |= I(s). The initial state ofA is
(s(0), (0, . . . , 0)), wheres(0) ∈ S0. Given two states(s, ν)
and (s′, ν′) and an edgee = (s, γ, R, s′), there exists a
discrete transition(s, ν)

e
−→ (s′, ν′) iff ν satisfies theguard

of the transitionγ, i.e., ν |= γ, ν′ |= I(s′), and R is
the reset set, i.e., ν′i = 0 for xi ∈ R and ν′i = νi for
xi /∈ R. Given a δ ∈ T, there exists atime transition
(s, ν)

δ
−→ (s′, ν′) iff s = s′, ν′ = ν + δ and ν′ |= I(s).

An infinite run ofA starting at state(s(0), ν) is an infinite

sequence of time and discrete transitions(s(0), ν(0))
δ0−→

(s(0)′, ν(0)′)
e0−→ (s(1), ν(1))

δ1−→ (s(1)′, ν(1)′) . . ., where
(s(0), ν(0)) is an initial state. This run produces the timed
word w = (L(s(0)), τ(0))(L(s(1)), τ(1)) . . . with τ(0) = 0
andτ(i+1) = τ(i)+δi, ∀ i ≥ 1. The run is calledaccepting
if s(i) ∈ F for infinitely many times. A timed word is
acceptedif there exists an accepting run that produces it.
The problem of deciding the emptiness of the language of a
given TBA A is PSPACE-complete [27]. In other words, we
can synthesize an accepting run of a given a TBAA, if one
exists.

Remark 1. Traditionally, the clock constraints and the TBAs
are defined withT = N, however, they can be extended to
accommodateT = Q+∪{0}. By multiplying all the rational
numbers that are appearing in the state invariants and the
edge constraints with their least common multiple, we have
equivalently only natural numbers occurring to the TBA. For
the sake of physical understanding of the timed properties of
the under investigation framework, we will be working with
T = Q+ ∪ {0}.

Any MITL formula ϕ over AP can be algorithmically
translated to a TBA with the alphabet2AP , such that the
language of timed words that satisfyϕ is the language of
timed words produced by the TBA [26], [32], [33].

III. PROBLEM FORMULATION

A. System Model

Consider a multi-agent team composed byN agents
operating in a bounded workspaceW0 ⊆ Rn. Let I =
{1, . . . , N} denote the index set of the agents. We assume
that the workspaceW0 is partitioned into a finite number
(assumeW) of regions of interestπ1, . . . , πW where

W0 =
⋃

i∈W

πi and πi∩πj 6= ∅, ∀ i 6= j with i, j ∈ W (3)

for the index setW = {1, . . . ,W}. We denote byπk
i the

agentk being at regionπi, wherek ∈ I, i ∈ W . In this work,
we focus on interaction and high-level control strategies
rather than on nonlinear models, and we assume that the
dynamics of each agent is given by a single integrator

ẋi = ui, i ∈ I. (4)

The partitioned environment (3) is a discretization that allows
us to control the agents with dynamics (4) using finite models
such as finite transition systems (e.g., [9], [34]–[36]). We
define a weighted transition system (see Def. 7) so that

• if there exists a controllerui, i ∈ I such that the agent
k can be driven from any point within the regionπi to
a neighboring regionπj , then we allow for a transition
πi
k →k πj

k between the respective system states, and
• the weight of each transition estimates the time each

agent needs in order to move from one region to another.
In particular, the travel time is here determined as
the worst-case shortest time needed to travel from an
arbitrary point of the current region to the boundary of
the following region. This estimate is indeed conserva-
tive, however, it is sufficient for specifications that we
are generally interested in within multi-agent control.
Namely, it is suitable for scenarios where tasks are given
deadlines and upper rather than lower bound require-
ments are associated with events along the agents’ runs.

Definition 7. The motion of each agentk ∈ I in the
workspace is modeled by a WTSTk = (Πk,Π

init
k ,→k

, dk, APk, Lk) where
• Πk =

{
πk
1 , π

k
2 , . . . , π

k
W

}
is the set of states of agentk.

Any state of an agentk can be denoted asπk
j ∈ Πk for

k ∈ I, j ∈ W . The number of states for each agent is
|Πk| = W .

• Πinit
k ⊆ Πk is the initial states of agentk, i.e. the set of

regions where agentk may start.
• →k⊆ Πk × Πk is the transition relation. For example,

by π3
3 →3 π3

5 we mean that the agent3 can move from
regionπ3 to regionπ5.

• dk :→k→ T is a map that assigns a positive weight
(duration) to each transition. For example,d2(π

2
2 , π

2
5) =

0.7, whereπ2
2 →2 π2

5 , means that agent2 needs at most
0.7 time units to move from any point of regionπ2 to
the boundary of the neighboring regionπ5.

• APk is a finite set of atomic propositions known to
agent k. Without loss of generality, we assume that
APk ∩APk′ = ∅ for all k 6= k′ ∈ I.

• Lk : Πk → 2APk is a labeling function that assigns
to each stateπk

j ∈ Πk a subset of atomic propositions
APk that are satisfied when agentk is in regionπj .

1) Individual Timed Runs and Words:The behaviors
of the individual agents can be captured through their
timed runs and timed words. The timed runrtk =
(rk(0), τk(0))(rk(1), τk(1)) · · · , k ∈ I of each WTS
Tk, k ∈ I and the corresponding timed wordsw(rtk) =
(Lk(rk(0)), τk(0)) (Lk(rk(1)), τk(1)) · · · are defined by
using the terminology of Def. 4.

2) Collective Timed Run and Word:At the same time,
the agents form a team and we are interested in their
global, collective behaviors, which we formalize through the
following definition.

Definition 8. Let rt1, . . . , r
t
N be individual timed runs of the

agents1, . . . , N , respectively, as defined above. Then, the
collective timed runrG = (rG(0), τG(0))(rG(1), τG(1)) . . .
of the team of agents is defined inductively as follows

1) (rG(0), τG(0)) = ((r1(0), . . . , rN (0)), τG(0)).

2) Let (rG(i), τG(i)) = ((r1(i1), . . . , rN (iN)), τG(i)),
where i ≥ 0 be the current state and time
stamp of the collective timed run. Then the next
state and time stamp(rG(i + 1), τG(i + 1)) =
((r1(j1), . . . , rN (jN)), τG(i + 1)) are given by the
following

• ℓ = argmin
k∈I

{τk(ik + 1)}.

• τG(i + 1) = τℓ(iℓ + 1).

• rk(jk) =

{
rℓ(iℓ + 1) if k = ℓ

rk(iℓ) if k 6= ℓ.

Intuitively, given the current statesr1(i1), . . . , rN (iN) and
the next statesr1(i1 + 1), . . . , rN (iN + 1) of the individual
agents at timeτG(i), ℓ is the index of the agentk who
will finish its current transition fromrℓ(iℓ) to rℓ(iℓ + 1)
the soonest amongst all. The time of agentℓ’s arrival to its
next staterℓ(iℓ +1) becomes the new time stampτG(i+1)
of the collective timed run. The next state of the collective
timed run reflects that each agentk which cannot complete
its transition fromrk(ik) to rk(ik + 1) before τG(i + 1)
remains inrk(ik).

In what follows,rtG = (rG(0), τG(0))(rG(1), τG(1)) . . . ,
whererG(i) = (r1(i1), . . . , rN (iN)), i, ik ≥ 0 and k ∈ I
denotes the collective timed run.

Definition 9. We define the global set of atomic propo-

sitions APG =
N⋃

k=1

APk and for every staterG(i) =

(r1(i1), . . . , rN (iN)) of a collective timed run, wherei, ik ≥
0 and k ∈ I, we define the labeling functionLG :
Π1 . . .ΠN → APG asLG(rG(i)) =

⋃N

k=1 Lk(rk(ik)).

A collective timed runrtG thus naturally produces a timed
word wt

G = (LG(rG(0)), τG(0))(LG(rG(1)), τG(1)) . . .
overAPG.

Example 1. Consider N = 2 robots operating in a
workspace withW = π1 ∪ π2 ∪ π3,W0 = 3 andI = {1, 2}
modeled as the WTSs illustrated in Fig. 1. LetAP1 =
{green}, and AP2 = {red}. The labeling functions are
L1(π

1
1) = {green}, L1(π

1
2) = L1(π

1
3) = ∅, andL2(π

2
1) =

L2(π
2
2) = ∅, L2(π

2
3) = {red}.

π1
1 π1

2 π1
3

π2
1 π2

2 π2
3

1.0

2.0

1.5

0.5

2.0

1.5

0.5

2.0

WTS T1 :

WTS T2 :

Fig. 1. WTSsT1, T2 representing two agents inW . Π1 = {π1

1
, π1

2
, π1

3
},

Π
init
1

= {π1

1
}, Π2 = {π2

1
, π2

2
, π2

3
},Πinit

2
= {π2

1
}, the transitions are

depicted as arrows which are annotated with the corresponding weights.

Examples of the agents’ runs are:

rt1 =(r1(0) = π1
1 , τ1(0) = 0.0)(r1(1) = π1

2 , τ1(1) = 1.0)

(r1(2) = π1
3 , τ1(2) = 2.5)(r1(3) = π1

2 , τ1(3) = 3.0)

(r1(4) = π1
1 , τ1(4) = 5.0) . . .

rt2 =(r2(0) = π2
1 , τ2(0) = 0.0)(r2(1) = π2

2 , τ2(1) = 2.0)

(r2(2) = π2
3 , τ2(2) = 2.5)(r2(3) = π2

2 , τ2(3) = 4.5)

(r2(4) = π2
3 , τ2(4) = 5.0) . . .

Given rt1 andrt2 the collective runrG is given according
to Def. 8 as follows:

rtG =((π1
1 , π

2
1)︸ ︷︷ ︸

rG(0)

, τG(0) = 0.0)((π1
2 , π

2
1)︸ ︷︷ ︸

rG(1)

, τG(1) = 1.0)

((π1
2 , π

2
2)︸ ︷︷ ︸

rG(2)

, τG(2) = 2.0)((π1
3 , π

2
3)︸ ︷︷ ︸

rG(3)

, τG(3) = 2.5)

((π1
2 , π

2
3)︸ ︷︷ ︸

rG(4)

, τG(4) = 3.0)((π1
2 , π

2
2)︸ ︷︷ ︸

rG(5)

, τG(5) = 4.5)

((π1
1 , π

2
3)︸ ︷︷ ︸

rG(6)

, τG(6) = 5.0) . . .

The produced collective timed word is

wt
G =({green}, 0.0)(∅, 1.0)(∅, 2.0)({red}, 2.5)

({red}, 3.0)(∅, 4.5)({green, red}, 5.0)

B. Specification

Several different logics have been designed to express
timed properties of real-time systems, such as MTL [37]
that extends the until operator of LTL with a time interval.
Here, we consider a fragment of MTL, called MITL (see
Sec. II for definition) which has been proposed in [26].
Namely, we utilize its point-wise semantics and interpret
its formulas over timed runs. Unlike MTL, MITL excludes
punctual constraints on the until operator. For instance, the
formula�(a ⇒ ♦=1b) saying that everya is followed by ab
precisely 1 time unit later, is not allowed in MITL, whereas
�(a ⇒ ♦(0,1]b), saying that everya is followed by ab at
most after 1 time unit later, is. While MTL formulas cannot
be generally translated into TBAs, MITL formulas can [26].

1) Local Agent’s Specification:Each agentk, k ∈ I
is given an individual, local, independent specification in
the form of a MITL formulaϕk over the set of atomic
propositionsAPk. The satisfaction ofϕk is decided from
the agent’s own perspective, i.e., on the timed runrtk.

2) Global Team Specification:In addition, the team of
agents is given a global team specification, which is a MITL
formula ϕG over the set of atomic propositionsAPG. The
team specification satisfaction is decided on the collective
timed runrtG.

Example 1 (Continued). Recall the two agents from Ex-
ample 1. Each of the agents is given a local, independent,
specification and at the same time, the team is given an
overall goal that may require collaboration or coordina-
tion. Examples of local specification formulas areϕ1 =
�♦≤10(green) andϕ2 = �(red ⇒ ©�≤5(¬red)) stating
that “The green region is periodically visited with at most 10

time units between two consecutive visits” and “Whenever a
red region is visited, it will not be visited for the following
5 time units again”, respectively. Whileϕ1 is satisfied on
rt1, ϕ2 is not satisfied onrt2. An example of the global
specification isϕG = �♦≤5(green ∧ red) that imposes
requirement on the agents’ collaboration; it states that agents
1 and 2 will periodically simultaneously visit the green and
the red region, respectively, with at most 5 time units between
two consecutive visits.

C. Problem Statement

Problem 1 (Run Synthesis). Given N agents governed by
dynamics as in (4), a task specification MITL formulaϕG

for the team of robots, over a set of atomic propositions
APG andN local task specificationsϕk overAPk, k ∈ I,
synthesize a sequence of individual timed runsrt1, . . . , r

t
N

such that the following hold
(
rtG |= ϕG

)
∧
(
rt1 |= ϕ1 ∧ . . . ∧ rtN |= ϕN

)
. (5)

Though it might seem that the satisfaction of the individual
specificationsϕ1, . . . , ϕN can be treated as the satisfaction of
the formula

∧
k∈I ϕk on the collective timed runrtG, this is

generally not the case, as demonstrated through the following
example:

Example 1 (Continued). Recall the two agents
from Example 1 and a local specification
ϕ2 = �(red ⇒ ©�≤2(¬red)). While this
specification is satisfied onrt2 since w(rt2) =
(∅, 0.0)(∅, 2.0)({red}, 2.5)(∅, 4.5)({green, red}, 5.0) . . ., it
can be easily seen that it is not satisfied onrtG.

Formally, we have

rtG |=
∧

k∈I

ϕk < rt1 |= ϕ1 ∧ . . . ∧ rtN |= ϕN . (6)

Hence, Problem 1 may not be treated in a straightforward,
fully centralized way. We propose a two-stage solution that
first pre-computes all timed runs of the individual agents in
a decentralized way and stores them efficiently in weighted
transition systems enhanced with a Büchi acceptance condi-
tion. Second, these are combined and inspected with respect
to guaranteeing the satisfaction of the team specification by
the collective timed run.

IV. PROPOSEDSOLUTION

In this section, we introduce a systematic solution to
Problem 1. Our overall approach builds on the following
steps:

1) We construct TBAsAk, k ∈ I andAG that accept all
the timed words satisfying the specification formulas
ϕk, k ∈ I andϕG, respectively (Sec. IV-A).

2) We construct alocal Büchi WTST̃k = Tk ⊗ Ak, for
all k ∈ I. The accepting timed runs of̃Tk are the
timed runs of theTk that satisfy the corresponding
local specification formulaϕk, k ∈ I (Sec. IV-B).

3) We construct aproduct B̈uchi WTSTG = T̃1⊗· · ·⊗T̃N
such that its timed runs are collective timed runs of the
team and their projections onto the agents’ individual
timed runs are admissible by the local Büchi WTSs
T̃1, . . . T̃N respectively (Sec. IV-C).

4) We construct aglobal Büchi WTST̃G = TG⊗AG. The
accepting timed runs of thẽTG are the timed runs of
theTG that satisfy the team formulaϕG (Sect. IV-D).

5) We find an accepting timed ruñrtG of the global
Büchi WTS T̃G and project it onto timed runs of
the product Büchi WTSTG, then onto timed runs
of the local Büchi WTSsT̃1, . . . , T̃N , and finally
onto individual timed runsrt1, . . . , r

t
N of the original

WTSs T1, . . . , TN . By construction,rt1, . . . , r
t
N are

guaranteed to satisfyϕ1, . . . , ϕN , respectively, and
furthermorertG satisfiesϕG (Sec. IV-E).

A. Construction of TBAs

As stated in Sec. II, every MITL formulaϕ can be trans-
lated into a language equivalent TBA. Several approaches
are proposed for that purpose, for instance [26], [32], [33],
[38]. Here, we translate each local specificationϕk, where
k ∈ I into a TBAAk = (Sk, S

init
k , Xk, Ik, Ek,Fk, APk,Lk),

and the global specificationϕG into a TBA AG =
(SG, S

init
G , XG, IG, EG,FG, APG,LG).

B. Construction of the local B̈uchi WTSsT̃1, . . . , T̃N

Definition 10. Given a WTS Tk =
(Πk,Π

init
k ,→k, APk, Lk, dk), and a TBA Ak =

(Sk, S
init
k , Xk, Ik, Ek, Fk, APk,Lk) with Mk = |Xk|

and Cmax

k being the largest constant appearing inAk,
we define their local Büchi WTS T̃k = Tk ⊗ Ak =
(Qk, Q

init

k , k, d̃k, F̃k, APk, L̃k) as follows:

• Qk ⊆ {(rk, sk) ∈ Πk×Sk : Lk(rk) = Lk(sk)}×TMk
∞ .

• Qinit
k = Πinit

k × Sinit
k × {0} × . . .× {0}︸ ︷︷ ︸

Mk products

.

• q k q
′ iff

◦ q = (r, s, ν1, . . . , νMk
) ∈ Qk,

q′ = (r′, s′, ν′1, . . . , ν
′
Mk

) ∈ Qk,
◦ r →k r′, and
◦ there existsγ,R, such that(s, γ, R, s′) ∈ Ek,

ν1, . . . , νMk
|= γ, ν′1, . . . , ν

′
Mk

|= Ik(s
′), and for

all i ∈ {1, . . . ,Mk}

ν′i =

0, if xi ∈ R

νi + dk(r, r
′), if xi 6∈ R and

νi + dk(r, r
′) ≤ Cmax

k

∞, otherwise.

Then d̃k(q, q′) = dk(r, r
′).

• F̃k = {(rk, sk, ν1, . . . , νMk
) ∈ Qk : sk ∈ Fk}.

• L̃k(rk, sk, ν1, . . . , νMk
) = Lk(rk).

Each local Büchi WTST̃k, k ∈ I is in fact a WTS with
a Büchi acceptance conditioñFk. A timed run of T̃k can
be written as̃rtk = (qk(0), τk(0))(qk(1), τk(1)) . . . using the
terminology of Def. 4. It isaccepting if qk(i) ∈ F̃k for
infinitely manyi ≥ 0. An accepting timed run of̃Tk projects
onto a timed run ofTk that satisfies the local specification
formulaϕk by construction. Formally, the following lemma,
whose proof follows directly from the construction and and
the principles of automata-based LTL model checking (see,
e.g., [39]), holds:

Lemma 1. Consider an accepting timed ruñrtk =

(qk(0), τk(0))(qk(1), τk(1)) . . . of the local B̈uchi WTST̃k
defined above, whereqk(i) = (rk(i), sk(i), νk,1, . . . , νk,Mk

)

denotes a state of̃Tk, for all i ≥ 1. The timed ruñrtk projects
onto the timed runrtk = (rk(0), τk(0))(rk(1), τk(1)) . . .
of the WTSTk that produces the timed wordw(rtk) =
(Lk(rk(0)), τk(0))(Lk(rk(1)), τk(1)) . . . accepted by the
TBA Ak via its run ρk = sk(0)sk(1) . . . Vice versa, if
there exists a timed runrtk = (rk(0), τk(0))(rk(1), τk(1)) . . .
of the WTSTk that produces a timed wordw(rtk) =
(Lk(rk(0)), τk(0))(Lk(rk(1)), τk(1)) . . . accepted by the
TBAAk via its run ρk = sk(0)sk(1) . . . then there exist the
accepting timed ruñrtk = (qk(0), τk(0))(qk(1), τk(1)) . . . of
T̃k, whereqk(i) denotes(rk(i), sk(i), νk,1(i), . . . , νk,Mk

(i))

in T̃k.

C. Construction of the product B̈uchi WTSTG
Now we aim to construct a finite product WTSTG whose

timed runs represent the collective behaviors of the team and
whose Büchi acceptance condition ensures that the accepting
timed runs account for the local specifications. In other
words,TG is a product of all the local WTS̃Tk built above.
In the construction ofTG, we need to specifically handle the
cases when transitions of different agents are associated with
different time durations, i.e, different transition weights. To
this end, we introduce a vectorb = (b1, . . . , bN) ∈ TN . Each
element of the vector is a rational numberbk ∈ T, k ∈ I
which can be either0, when the agentk has just completed
its transition, or the time elapsed from the beginning of the
agent’s current transition, if this transition is not completed,
yet. The state of the team of agents is then in the form
qG = (q1, . . . , qN , b1, . . . , bN , ℓ) whereqk is a state ofT̃k,
for all k ∈ I, and ℓ ∈ I has a special meaning in relation
to the acceptance condition ofTG that will become clear
shortly. Taking the above into consideration we define the
global modelTG as follows:

Definition 11. GivenN local Büchi WTSsT̃1, . . . , T̃N from
Def. 10, theirproduct B̈uchi WTSTG = T̃1 ⊗ . . . ⊗ T̃N =
(QG, Q

init
G ,→G, dG, FG,APG, LG) is defined as follows:

• QG ⊆ Q1 × · · · ×QN × TN × {1, . . . , N}.
• Qinit

G = Qinit
1 × . . .×Qinit

N × {0} × . . .× {0}︸ ︷︷ ︸
N products

×{1}.

• qG →G q′G iff
◦ qG = (q1, . . . , qN , b1, . . . , bN , ℓ) ∈ QG,

q′G = (q′1, . . . , q
′
N , b′1, . . . , b

′
N , ℓ′) ∈ QG,

◦ ∃ q′′k ∈ Qk : qk k q
′′
k , for somek ∈ I,

◦

b′k =

0, if bk + dmin = d̃k(qk, q
′′
k)

andq′k = q′′k
bk + dmin , if bk + dmin < d̃k(qk, q

′′
k)

andq′k = qk

where dmin = min
k∈{1,...,N}

(d̃k(qk, q
′′
k) − bk) is

(loosely speaking) the smallest time step that can
be applied, and

◦

ℓ′ =

{
ℓ, if qℓ 6∈ F̃ℓ

((ℓ + 1) mod N), otherwise

ThendG(qG, q′G) = dmin .
• FG = {(q1, . . . , qN , b1, . . . , bN , N) ∈ QG : qN ∈ F̃N}.

• APG =
N⋃

k=1

APk.

• LG((q1, . . . , qN , b1, . . . , bN , ℓ) =
N⋃

k=1

L̃k(qk).

The product WTSTG is again a WTS with a Büchi
acceptance condition. Informally, the indexℓ in a state
qG = (q1, . . . , qN , b1, . . . , bN , ℓ) ∈ QG allows to project an
accepting timed run ofTG onto an accepting run of every
one of the local Büchi WTS. The construction is based on
the standard definition of Büchi automata intersection (see,
e.g., [39]).

The following lemma follows directly from the construc-
tion and and the principles of automata-based LTL model
checking (see, e.g., [39]):

Lemma 2. For all k ∈ I, an accepting timed runrtG of the
product B̈uchi WTSTG projects onto an accepting timed run
rtkof the local B̈uchi WTST̃k that produces a timed word
w(rtk) accepted by the corresponding TBAAk. Vice versa,
if there exists a timed runrtk of the local B̈uchi WTST̃k that
produces a timed wordw(rtk) accepted by the TBAAk for
eachk ∈ I, then there exist an accepting timed runrtG of
TG.

D. Construction of the global B̈uchi WTST̃G
Definition 12. Finally, given the product Büchi WTS
TG = (QG, Q

init
G ,→G, dG, FG, APG, LG), and a TBAAG =

(SG, S
init
G , XG, IG, EG,FG, APG,LG) that corresponds to

the team specification formulaϕG with MG = |XG| and
Cmax

G being the largest constant appearing inAG, we define
their product WTST̃G = TG ⊗ AG = (Q̃G, Q̃

init
G , G,

d̃G, F̃G, APG, L̃G) as follows:

• Q̃G ⊆ {(q, s) ∈ QG × SG : LG(q) = LG(s)} × TMG
∞ .

• Q̃init
G = Qinit

G × Sinit
G × {0} × . . .× {0}︸ ︷︷ ︸

MG−products

×{1, 2}.

• q G q′ iff
◦ q = (r, s, ν1, . . . , νMG

, ℓ) ∈ QG ,
q′ = (r′, s′, ν′1, . . . , ν

′
MG

, ℓ′) ∈ QG,
◦ r →G r′, and
◦ there existsγ,R, such that(s, γ, R, s′) ∈ EG,

ν1, . . . , νMG
|= γ, ν′1, . . . , ν

′
MG

|= IG(s
′), and for

all i ∈ {1, . . . ,MG}

ν′i =

0, if xi ∈ R

νi + dG(r, r
′), if xi 6∈ R and

νi + dG(r, r
′) ≤ Cmax

G

∞, otherwise

◦

ℓ′ =

{
1 if ℓ = 1 andr 6∈ FG, or ℓ = 2 ands ∈ FG

2 otherwise

Then d̃G(q, q′) = dG(r, r
′).

• F̃G = {(r, s, ν1, . . . , νMG
, 1) ∈ QG : r ∈ FG}.

• L̃G(rG, sG, ν1, . . . , νMG
) = LG(rG).

Analogously to above, the global Büchi WTS̃TG is
a WTS with a Büchi acceptance condition. An accepting
timed run of T̃G guarantees the satisfaction of the team
specification formulaϕG by construction. Furthermore, the
projected individual timed runs of the originalT1, . . . , TN
satisfy their respective local specifications. The following
lemma follows directly from the construction and and the
principles of automata-based LTL model checking (see, e.g.,
[39]):

Lemma 3. An accepting timed ruñrtG of the global B̈uchi
WTS T̃G projects onto an accepting timed runrtG of the
product B̈uchi WTSTG that produces a timed wordw(rtG)
accepted by the TBAAG. Vice versa, if there exists a timed
run rtG of the product B̈uchi WTSTG that produces a timed
word w(rtG) accepted by the TBAAG then there exist an
accepting timed ruñrtG of T̃G.

E. Projection to the desired timed runs ofT1, . . . , TN

An accepting ruñrtG of the global Büchi WTST̃G can be
found efficiently leveraging ideas from automata-based LTL
model checking [39]. Namely,̃TG is viewed as a graph that is
searched for a so-called accepting lasso; a cycle containing
an accepting state that is reachable from the initial state.
Once r̃tG is obtained, Lemmas 3, 2, and 1 directly provide
guidelines for projection of̃rtG onto the individual timed runs
of T1, . . . , TN . In particular,̃rtG is projected onto a timed run
rtG of TG, which is projected onto timed runs̃rt1, . . . , r̃

t
N

of T̃1, . . . , TN , which are finally projected onto timed runs
rt1, . . . , r

t
N of T1, . . . , TN , respectively. Such a projection

guarantees thatrt1, . . . , r
t
N are a solution to Problem 1.

V. I LLUSTRATIVE EXAMPLE

For an illustrative example, consider2 robots in the shared
workspace of Fig. 2. The workspace is partitioned into
W = 21 cells and a robot’s state is defined by the cell it is
currently present at. Agent 1 (R1) is depicted in green and
it is two times faster than Agent 2 (R2) which is depicted in
red. We assume that the environment imposes such moving
constraints that the traveling right and up is faster than left
and down. Let Agent 1 need 1 time unit for up and right
moves and 2 time units for down and left moves. Let also
Agent 2 need 2 time units for up and right moves and 4 time
units for down and left moves.

We consider a scenario where the robots have to eventually
meet at yellow regions (global team task), and at the same
time, they have to recharge within a certain time interval
in recharge locations (blue squares with the circles in the
respective color). The individual specifications areϕ1 =
♦≤6(recharge1) and ϕ2 = ♦≤12(recharge2) stating that
agent 1 has to recharge within 5 time units and agent 2
within 10 units, respectively, and the team task isϕG =
♦≤30{(meetA1 ∧meetA2)∨(meetB1 ∧meetB2)} stating that the
agents have to meet either in yellow regionA or B within
30 time units.

By following the process that was described in Section
IV step by step we have that an accepting timed run isr̃tG =
((π1

4 , π
2
18), 0)((π

1
11, π

2
18), 2) . . . ((π

1
9 , π

2
10), 6)((π

1
16, π

2
3), 8) . . .

((π1
13, π

2
5), 13)((π

1
6 , π

2
6), 14) . . . with corresponding timed

word w(r̃tG) = (∅, 0)(∅, π2
18), 2) . . . ({recharge1 }, 6)

({recharge2}, 8) . . . (∅, π2
5), 13)(({meetA1 ,meetA2 }, 14) . . .

which satisfies formulaφG. The run r̃tG can be projected

R1

R2

A

B

2

1

1 2

π1

π21

π14π8

Fig. 2. An illustrative example with2 robots evolving in a common
workspace. LetW0 = π1 ∪ . . . ∪ π21. We enumerate the regions starting
from the left region in every row and ending in the right. The initial positions
of robotsR1, R2 are depicted by a green and a red circle, respectively, the
desired meeting points in yellow and the recharging spots bythe agents’
respective colors inside a blue box. The accepting runs for task specifications
φ1, φ2, φG are depicted with green and red arrows for agent 1 and agent
2 respectively.

onto individual the timed runs̃r1
t = (π1

4 , 0)(π
1
11, 2)(π

1
10, 4)

(π1
9 , 6)(π

1
16, 8)(π

1
17, 9)(π

1
18, 10)(π

1
19, 11)(π

1
20, 12)(π

1
13, 13)

(π1
6 , 14) . . . andr̃2

t = (π2
18, 0)(π

2
17, 4)(π

2
10, 6)(π

2
3 , 8)(π

2
4 , 10)

(π2
5 , 12)(π

2
6 , 14) . . . (they are depicted in Fig.

2 with green and red arrows respectively)
with corresponding timed words w(r̃t1) =
(∅, 0)(∅, 2)(∅, 4)({recharge1}, 6)(∅, 8)(∅, 9)(∅, 10)(∅, 11)
(∅, 12)(∅, 13)({meetA1 }, 14) . . . andw(rt2) = (∅, 0)(∅, 4)
(∅, 6)({recharge2}, 8)(∅, 10)(∅, 12)({meetA2 }, 14) . . .
which satisfy formulas φ1 and φ2 respectively. All
conditions from (5) are satisfied. The runs and the words of
the illustrative example are depicted in Fig. 3.

Consider now the alternative runs of the agents, where they
first meet in the meeting pointA (after 8 time units) and then
recharge in the regionπ7 (after 9 and 10 time units, respec-
tively). Regardless of how the agents continue, they have
accomplished the untimed formulasϕ′

1 = ♦(recharge1),
ϕ′
2 = ♦(recharge2), and ϕ′

G = ♦{(meetA1 ∧ meetA2) ∨
(meetB1 ∧meetB2)}. Although this is in fact a more efficient
way to satisfy the untimed formulasϕ′

1, ϕ
′
2, andϕ′

G than the
one described above, the formulaϕ1 is violated due to its
time constraint.

VI. CONCLUSIONS ANDFUTURE WORK

We have proposed a systematic method for multi-agent
controller synthesis aiming cooperative planning under high-
level specifications given in MITL formulas. The solution
involves a sequence of algorithmic automata constructions
such that not only team specifications but also individual
specifications should be fulfilled. Future research directions
include the consideration of more complicated dynamics than
the fully actuated ones in (4), the decentralized solution such
that every agent has information only from his neighbors as
well as the modeling of the system with Markov Decision
Processes (MDPs) and probabilistic verification.

REFERENCES

[1] W. Ren and R. Beard, “Consensus Seeking in Multi-agent Systems
under Dynamically Changing Interaction Topologies,”IEEE Transac-
tions on automatic control, vol. 50, no. 5, pp. 655–661, 2005.

[2] R. Olfati-Saber and R. Murray, “Consensus Problems in Networks of
Agents with Switching Topology and Time-Delays,”IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[3] A. Jadbabaie, J. Kin, and S. Morse, “Coordination of Groups of
Mobile Autonomous Agents Using Nearest Neighbor Rules,”IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(π1

4 , 0)

(π1

11, 2)

(π1

10, 4)

(π1

9 , 6)

(π1

16, 8)

(π1

17, 9)

(π1

18, 10)

(π1

19, 11)

(π1

20, 12)

(π1

13, 13)

(π1

6 , 14)

(π2

18, 0)

(π2

17, 4)

(π2

10, 6)

(π2

3 , 8)

(π2

4 , 10)

(π2

5 , 12)

(π2

6 , 14)

((π1
4 , π2

18), 0)

((π1
11, π2

18), 2)

((π1
10, π2

17), 4)

((π1
9 , π2

10), 6)

((π1
16, π2

3), 8)

((π1
17, π2

3), 9)

((π1
18, π2

4), 10)

((π1
9 , π2

4), 11)

((π1
20, π2

5), 12)

((π1
13, π2

5), 13)

((π1
6 , π2

6), 14)

Agent 2

Agent 1

Team

Fig. 3. The accepting runs̃rt
1
, r̃t

2
, the collective ruñrt

G
and the corresponding timed stamps. We denote with red dashed lines the times that both agents

have the same time stamps

[4] M. Zavlanos and G. Pappas, “Distributed Connectivity Control of
Mobile Networks,” IEEE Transactions on Robotics, vol. 24, no. 6,
pp. 1416–1428, 2008.

[5] M. Egerstedt and X. Hu, “Formation Constrained Multi-Agent Con-
trol,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6,
pp. 947–951, 2001.

[6] H. Tanner, A. Jadbabaie, and G. Pappas, “Flocking in Fixed and
Switching Networks,” IEEE Transactions on Automatic Control,
vol. 52, no. 5, pp. 863–868, 2007.

[7] D. Dimarogonas and K. J. Kyriakopoulos, “On the Rendezvous
Problem for Multiple Nonholonomic Agents,”IEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 916–922, 2007.

[8] A. Bhatia, M. Maly, L. Kavraki, and M. Vardi, “Motion Planning with
Complex Goals,”IEEE Robotics and Automation Magazine,, vol. 18,
no. 3, pp. 55–64, 2011.

[9] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-Logic-Based
Reactive Mission and Motion Planning,”Robotics, IEEE Transactions
on, vol. 25, no. 6, pp. 1370–1381, 2009.

[10] S. Loizou and K. Kyriakopoulos, “Automatic Synthesis of Multi-Agent
Motion Tasks Based on LTL Specifications,”IEEE Conference on
Decision and Control (CDC), vol. 1, pp. 153–158, 2004.

[11] M. Guo and D. Dimarogonas, “Multi-Agent Plan Reconfiguration Un-
der Local LTL Specifications,”The International Journal of Robotics
Research, vol. 34, no. 2, pp. 218–235, 2015.

[12] S. Karaman and E. Frazzoli, “Linear Temporal Logic Vehicle Routing
with Applications to Multi-UAV Mission Planning,”International
Journal of Robust and Nonlinear Control, vol. 21, no. 12, pp. 1372–
1395, 2011.

[13] M. Kloetzer and C. Belta, “Automatic Deployment of Distributed
Teams of Robots From Temporal Logic Motion Specifications,”IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[14] Y. Chen, X. Ding, A. Stefanescu, and C. Belta, “A Formal Approach
to Deployment of Robotic Teams in an Urban-Like Environment,”
Distributed Autonomous Robotic Systems, pp. 313–327, 2013.

[15] Y. Chen, Ding, X. Chu, A. Stefanescu, and C. Belta, “Formal Approach
to the Deployment of Distributed Robotic Teams,”IEEE Transactions
on Robotics, vol. 28, no. 1, pp. 158–171, 2012.

[16] M. Kloetzer, X. C. Ding, and C. Belta, “Multi-Robot Deployment from
LTL Specifications with Reduced Communication,”IEEE Conference
o Decision and Control (CDC), pp. 4867–4872, 2011.

[17] A. Ulusoy, S. Smith, X. Ding, C. Belta, and D. Rus, “Optimality
and Robustness in Multi-Robot Path Planning with Temporal Logic
Constraints,”The Int. Jour. of Rob. Res., vol. 32, no. 8, pp. 889–911.

[18] M. Quottrup, T. Bak, and R. Zamanabadi, “Multi-Robot Planning:
A Timed Automata Approach,”IEEE International Conference on
Robotics and Automation (ICRA), vol. 5, pp. 4417–4422, 2004.

[19] M. Andersen, R. Jensen, T. Bakand, and M. Quottrup, “Motion
Planning in Multi-Robot Systems Using Timed Automata,”5th
IFAC/EURON, 2004.

[20] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” Inter-
national Journal on Software Tools for Technology Transfer(STTT),
vol. 1, no. 1, pp. 134–152, 1997.

[21] A. Ulusoy, S. Smith, X. Ding, C. Belta, and D. Rus, “Optimal Multi-
Robot Path Planning with Temporal Logic Constraints,”2011 IROS,
pp. 3087–3092, 2011.

[22] J. Liu and P. Prabhakar, “Switching Control of Dynamical Systems
from Metric Temporal Logic Specifications,”2014 ICRA, pp. 5333–
5338, 2014.

[23] V. Raman, A. Donzé, D. Sadigh, R. Murray, and S. Seshia,“Reactive
Synthesis from Signal Temporal Logic Specifications,” pp. 239–248.

[24] Y. Zhou, D. Maity, and J. S. Baras, “Optimal Mission Planner with
Timed Temporal Logic Constraints,”European Control Conference
(ECC), 2015.

[25] S. Karaman and E. Frazzoli, “Vehicle Routing Problem with Metric
Temporal Logic Specifications,”IEEE Conference on Decision and
Control (CDC), pp. 3953–3958, Dec 2008.

[26] R. Alur, T. Feder, and T. A. Henzinger, “The Benefits of Relaxing
Punctuality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–
146, 1996.

[27] R. Alur and D. Dill, “A Theory of Timed Automata,”Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[28] D. D. Souza and P. Prabhakar, “On the Expressiveness of MTL in
the Pointwise and Continuous Semantics,”International Journal on
Software Tools for Technology Transfer, vol. 9, no. 1, pp. 1–4, 2007.

[29] J. Ouaknine and J. Worrell, “On the Decidability of Metric Temporal
Logic,” IEEE Symposium on Logic in CS, pp. 188–197, 2005.

[30] P. Bouyer, “From Qualitative to Quantitative Analysisof Timed
Systems,”Mémoire D ’ habilitation, Université Paris, vol. 7, pp. 135–
175, 2009.

[31] S. Tripakis, “Checking Timed Buchi Automata Emptinesson Simula-
tion Graphs,”ACM TCL, vol. 10, no. 3, 2009.

[32] O. Maler, D. Nickovic, and A. Pnueli, “From MITL to Timed
Automata,”Formal Modeling and Analysis of Timed Systems, pp. 274–
289, 2006.

[33] T. Brihaye, M. Estivenart, and G. Geeraerts, “On MITL and Alter-
nating Timed Automata,”Formal Modeling and Analysis of Timed
Systems, vol. 8053, pp. 47–61, 2013.

[34] P. Tabuada,Verification and Control of Hybrid Systems: a Symbolic
Approach. Springer Science and Business Media, 2009.

[35] A. Girard and G. J. Pappas, “Approximation Metrics for Discrete
and Continuous Systems,”IEEE Transactions on Automatic Control,
vol. 52, no. 5, pp. 782–798, 2007.

[36] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete
Abstractions of Hybrid Systems,”Proceedings of the IEEE, vol. 88,
no. 7, pp. 971–984, 2000.

[37] R. Koymans, “Specifying Real-Time Properties with Metric Temporal
Logic,” Real-time systems, vol. 2, no. 4, pp. 255–299, 1990.

[38] D. Ničković and N. Piterman, “From MTL to Deterministic Timed
Automata,”Formal Modeling and Analysis of Timed Systems, pp. 152–
167, 2010.

[39] C. Baier and J. Katoen,Principles of Model Checking. MIT Press,
2008.

	I Introduction
	II Notation and Preliminaries
	II-A Weighted Transition System
	II-B Metric Interval Temporal Logic and Timed Automata

	III Problem Formulation
	III-A System Model
	III-A.1 Individual Timed Runs and Words
	III-A.2 Collective Timed Run and Word

	III-B Specification
	III-B.1 Local Agent's Specification
	III-B.2 Global Team Specification

	III-C Problem Statement

	IV Proposed Solution
	IV-A Construction of TBAs
	IV-B Construction of the local Büchi WTSs T"0365T1,…,T"0365TN
	IV-C Construction of the product Büchi WTS TG
	IV-D Construction of the global Büchi WTS T"0365TG
	IV-E Projection to the desired timed runs of T1,…, TN

	V Illustrative Example
	VI Conclusions and Future Work
	References

