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Performance Bounds for the £-Batch Greedy Strategy
in Optimization Problems with Curvature

Yajing Liu, Zhenliang Zhang, Edwin K. P. Chong, and Ali Pdzes

Abstract— The k-batch greedy strategy is an approximate setS. These definitions will be discussed in more detail in
algorithm to solve optimization problems where the optimal  Section II.
solution is hard to obtain. Starting with the empty set, the k- Finding the optimal solution to problerfil(1) in general is

batch greedy strategy adds a batch of elements to the current )
solution set with the largest gain in the objective function 'NP-hard. Thel-batch greedy strategy provides a computa-

while satisfying the constraints. In this paper, we bound tle tionally feasible solution, which starts with the empty, set
performance of the k-batch greedy strategy with respect to and then adds one element to the current solution set with
the optimal strategy by defining the total curvature .. We  the largest gain in the objective function while satisfying
show that when the objective function is nondecreasing and the constraints. This scheme is a special case ofithe
submodular, the k-batch greedy strategy satisfies a harmonic . . .

bound 1/(1 + «ax) for a general matroid constraint and an batch greedy strategy (with £ > 1), Wh'Ch_ starts with the
exponential bound (1 — (1 — ax /t)") /au for a uniform matroid ~~ €mpty set but adds to the current solution setlements
constraint, where k divides the cardinality of the maximal setin ~ with the largest gain in the objective function under the
the general matroid, ¢t = K/k is an integer, and K is the rank  constraints. The performance of tiebatch greedy strategy
of the uniform matroid. We also compare the performance of optimization problems has been extensively investigjate

the k-batch greedy strategy with that of the kq-batch greedy .
strategy when k; divides k. Specifically, we prove that when While the performance of thé-batch greedy strategy for

the objective function is nondecreasing and submodular, ta ~ generalk has received little attention, notable exceptions
k-batch greedy strategy has better harmonic and exponential being Nemhauser et al. [11] and Hausmann et al. [12], which
bounds in terms of the total curvature. Finally, we illustrate  \ve will review in the following subsection.

our results by considering a task-assignment problem.

A. Review of Previous Work

|. INTRODUCTION Nemhauser et al. [11], [13] proved that whé¢nrs a non-

A variety of combinatorial optimization problems such aglecreasing submodular set function satisfyjf{§) = 0, the
generalized assignment (see, e.g., [1] and [2]), maover 1-batch greedy strategy yields at least &-approximation
(see, e.g., [3] and [4]), maximum coverage location (seg, e. for a general matroid and &l — 1/e)-approximation for
[5] and [6]), and sensor placement (see, e.g., [7] and [8]) ca uniform matroid. By introducing the total curvatueg
be formulated in the following way: Conforti and Cornuéjols [14] showed that whehis a

nondecreasing submodular set function, thkeatch greedy

strategy achieves at least 18(1 + «)-approximation for
(1) a general matroid and @l — e~“)/«-approximation for a

uniform matroid, where the total curvatuteis defined as

whereZ is a non-empty collection of subsets of a finite set F(X) = F(X\{jDH
X, andf is a real-valued set function defined on the power 0 = Imax {1 - 7O — 70 }
set2¥ of X. The set functionf is said to besubmodular
if it has the diminishing-return property [9]. The p&ik,z) and X* = {j € X : f({j}) > 0}. For a nondecreasing
is called amatroid if the collectionZ is hereditary and has submodular set functiof, the total curvature: takes values
the augmentation property [10]. Whéh= {S C Z : |S| < on the interval0, 1]. In this case, we have/(1+«a) > 1/2
K} for a given K, the pair(X,Z) is said to be aniform and(l —e~®)/a > (1 — 1/e), which implies the bounds
matroid of rank K, where|S| denotes the cardinality of the 1/(1 + ) and (1 — e™)/a are stronger than the bounds
1/2 and (1 — 1/e) in [13] and [11], respectively. Vondrak
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the rank quotient defined in [12]. Although Nemhauser et al.2. For anyA € B C X andj € X \ B, f(AU{j}) —

[11] and Hausmann et al. [12] investigated the performance f(A4) > f(BU{j}) — f(B).

of the k-batch greedy strategy, they only considered uniform pgnerty 2 means that the additional value accruing from
matroid constraints and independence system constrainigy exira action decreases as the size of the input set in-
respectively. This prompts us to investigate the perforcean creases, and is also called ttiieninishing-return property in

of the k-batch greedy strategy more comprehensively. economics. Property 2 implies that for adyC B C X and

B. Main Results and Contribution TCX\B,

In this paper, by defining the total curvatusg of the AUT) — f(A)> f(BUT) — £(B 2
objective function, we derive bounds for the performance ul )= HA) 2 K )= 1(B). @
of the k-batch greedy strategy for a general matroid and gor convenience, we denote the incremental value of adding

uniform matroid, respectively. By comparing the values ofet 7 t0 the setA C X as or(A) = f(AUT) — f(A)
ay, for different k and investigating the monotoneity of the(fO"Ong the notation of [14)).

bounds, we can compare the performance for diffefent
batch greedy strategies.
The remainder of the paper is organized as follows. In {1 05 (X '\ {j})}

The total curvature of a set functionf is defined as [14]

Section II, we review the harmonic and exponential bounds o= R

in terms of the total curvature. from [14] for a general % (0)

matroid and a uniform matroid, respectively. In Section lllwhere X* = {j € X : p;(0) > 0}. Note that0 < o < 1
we introduce the total curvature,, and prove that when when f is nondecreasing and submodular, ane: 0 if and
f is a nondecreasing submodular set function, kHsatch only if f is additive, i.e.,f(X) = f(X \ {j}) + f({j}) for
greedy strategy achieves 1&/(1 + ay)-approximation for all j € X*.

a general matroid constraint and(a— (1 — oy /t)!) /ak-

approximation for a uniform matroid constraint, whete B. Harmonic and Exponential Bounds in Terms of the Total
divides the cardinality of the maximal set in the generatyrvature

matroid,t = K/k is an integer, and< is the rank of the
uniform matroid. We also prove that, < aj, when f

is a nondecreasing submodular set function &ndlivides
k, which implies that thek-batch greedy strategy provides : X
tighter harmonic and exponential bounds compared to tfBatroid constraints. . . _
ki-batch greedy strategy. In Section IV, we present an Theorem 1. Assume that(X,7) is a matroid andf is
application to demonstrate our conclusions. In Sectiond&/, w2 Nondecreasing submodular set function wjtf) =0
provide a summary of our work and main contribution. ~ and total curvaturex. Then thel-batch greedy solutior

satisfies
Il. PRELIMINARIES 1

f(G)zHa

In this section, we review the theorems from [14] bounding
the performance of thé-batch greedy strategy using the
total curvaturex for general matroid constraints and uniform

10),

In this section, we first introduce some definitions related
to sets and curvature. We then review the harmonic and

. . whereO is the optimal solution of probleni](1).
exponential bounds in terms of the total curvatardrom : : :
When f is a nondecreasing submodular set function, we

[14]. havea € [0,1], so1/(1 + «) € [1/2,1]. Theoren{]L applies
A. Sets and Curvature to any matroid, which means the bouhd1+«) holds for a

Let X be a finite set, and be a non-empty collection of uniform matroid too. Theorefd 2 will present a tighter bound
subsets ofX. The pair(X,Z) is called amatroid if when (X, Z) is a uniform matroid.

Theorem 2: Assume that X, Z) is a uniform matroid and

ii. For any A, B € 7, if the cardinality of B is greater / IS @ nondecreasing submodular set function vitf) = 0
than that of A, then there existg € B\ A such that and total curvature.. Then thel-batch greedy solutiot i

AU €T satisfies

i. Forall B€Z, any setA C B is also inZ.

The collectionZ is said to behereditary and has the .. K
augmentation property if it satisfies properties i and ii, 1(Gr) 2 @ (1 (1-a/K) )f(OK)
respectively. The paifX,Z) is called auniform matroid > 1(1 — e ) f(OK)

p— a -

whenZ = {S§ C 7 : |S| < K} for a given K, called the
rank. The function(1 — e~®)/« is a nonincreasing function of
Let 2% denote the power set ok, and define the set , so (1 —-e*)/a € [1 —e',1] when f is a nonde-

function f: 2¥ — RT. The set functionf is said to be creasing submodular set function. Also it is easy to check
nondecreasing andsubmodular if it satisfies properties 1 and (1 — e=*)/a > 1/(1 4 a) for a € [0, 1], which implies that
2 below, respectively: the bound(1 —e~?)/« is stronger than the bound (1 + «)

1. ForanyA C B C X, f(A) < f(B). in Theoren{lL.



[1l. M AIN RESULTS B. Harmonic Bound and Exponential Bound in Terms of the

In this section, first we define thebatch greedy strategy T°0tal Curvature
and the corresponding curvatures that will be used for The following proposition will be applied to derive the
deriving the harmonic and exponential bounds. Then wgerformance bounds for both general matroid constrairds an
derive the performance bounds of thdvatch greedy strategy uniform matroid constraints.
in terms ofqy, for general matroid constraints and uniform Proposition 1: If f is a nondecreasing submodular set
matroid constraints, respectively. Moreover, we comphee t function onX, S andT are subsets ok, and{T},...,T,}
performance bounds for differektbatch greedy strategies. is a partition of7"\ .S, then

A. Srategy Formulation and Curvatures f(TUS) < f(S)+ Z or,(S). ()
When (X,Z) is a general matroid, assume that the cardi- T, CT\S
nality K of the the maximal set iff is such thatt divides Proof: By the assumption that7y,..., 7.} is a parti-
K. The k-batch greedy strategy is as follows: tion of T\ S and inequality P, we have
Step 1: LetS? = () andt = 0. ;
Step 2: Select/;; C X \ S* for which |J;.1| = &, F(TUS)— £(S) = f(SU UTl) — £(S)
StU Jiq € Z, and Pt
t _ t r j—1
f(S UJtJrl)_JgX\é?%?‘l(d\J\:kf(S UJ)? :ZQTJ(SUUT&)
then setS'+! = St U J, 1. =1 =1
Step 3: If f(S*1) — f(S?) > 0, sett = t + 1, repeat < Z or, (S5).
step 2; otherwise, stop. J T3 CT\S
When (X,Z) is a uniform matroid with rank’, without m
loss of generality, assume thatlivides K. Then thek-batch  The following proposition will be applied to derive the
greedy strateg% is as follows: performance bound for general matroid constraints.
Step 1: LetS” = () andt = 9 . Proposition 2: Assume thatf is a nondecreasing sub-
Step 2: Select/;1 € X\ S* for which | Ji41| =k, and  modular set function onX with f(#) = 0. Given a set
StuJ _ StUJ T C X, a partition{Ty,...,T,.} of T\ S, and an ordered
ut w41 JQX\SI'PE;%(d \J\:kf( ) setsS = UE:l Ji € X with |J;| = k, we have
then setS'*! = St U J, 1. T < a gi—1 i—1
< ; + (S
Step 3: Ift + 1 < K/k, sett = ¢t + 1 and repeat step 2; 1@ g Z.:Jg\TQJ ( ) i:J;"ﬁS ol )
otherwise, stop. - -
Similar to the definition of the total curvature in [14], + Z or: (5)- 4)
we define the total curvature, for a givenk as eT;CT\S

Proof: By the definition of the curvature;, we have

Qf = max {1 — M} t
JeX 0s(0) FTUS) = F(T) =) o) (TUS)

whereX = {J C X : f(J)>0and|J| = k}. i=1 »
Consider a sef’ C X and an ordered se&t = | J._, J; S en(musTh

1N
|

X, whereJ; € X and|J;| = k. We defineS® = 0, $° i J;CS\T
U,—, /i for 1 <i <t, and the curvature > (1 - ay,) Z 0s.(8°7).
_ {jS (1) — 04, (S U T)} T CS\T
Qp = max . .
i:J; C5* 07,(51) By Propositior L, we have

whereS* = {J; €S —T:|J;|=kandpy, (S1) > 0}. It < (S).
is easy to check thaf(S) = S°_, 0s,(S"1) anday, < . JEus)=rs i:T;F\s e
For a uniform matroid with rank’, we useSx = U‘;:l Ji o ) N . ) . )
to denote thek-batch greedy solution, wheré is the set Combining the inequalities above and using the identity
selected by the:-batch greedy strategy at stageAssume o i1 i1
that Ok is the optimal solution to Problem 1. We define the F(8) = Z 0 (87) + Z SACHE
curvatured;, with respect to the optimal solution as
(Ox) we get the inequality{4). [ |
{ - m} Recall that wher( X, Z) is a general matroid, we assume
0s:(0) that k& divides the cardinalityx’ of the maximal set irnZ.
It is easy to prove thafy, < aj when f is a nondecreasing By the augmentation property of a general matroid, any
submodular set function. greedy solution and optimal solution can be augmented to

i:J; CS\T :J; CTNS

G = max
<)<t



a set of lengthk, respectively. LetS = U‘;Zl J; be thek- Remarks
batch greedy solution, wherg; is the set selected by the , The harmonic bound/(1+ a) for the k-batch greedy

k-batch greedy strategy at théh step forl < i < ¢. Let strategy holds forany matroid. However, for uniform

O = {o1,...,0k} be the optimal solution. We prove that  matroids, a better bound is given in Theorgm 4.

the following lemma holds. o The functiong(x) = 1/(1 + x) is nonincreasing inc
Lemma 1: The optimal solutiorO = {oy, ..., 0k } can be on the intervall0, 1].

ordered a®) = J;_, J/ such thatg; (S1) < 0;,(S7),

Theorem 4: Assume thajlf is a nondecreasing submodular
set function with f()) = 0, the pair(X,Z) is a uniform
matroid with rank K, and k divides K. Then thek-batch
greedy solutionSx = Uf.zl J; satisfies

where Ji, ..., J; is a partition ofO and |J]| = k for 1 <
i < t. Furthermore, ifJ C ON S, thenJ! = J,.
Proof: Similar to the proof in [11], we will prove this

lemma by backward induction arfor ¢ = ¢,t—1,...,1. As-

sume thatJ] satisfies the inequality ; (S'~") < o (Slfl) F(Sx) > 1 (1 (- %)t) F(Ox)

for I >4, and letO* = O\ U, J;. Consider the setS'}Z e t

and O¢. By definition, |S~1| = (i — 1)k and |O!] = ik. > i(l — e ) f(Og). (6)
Using the augmentation property of a general matroid, we oo

have that there exists one element € O\ S*~' such Proof: Taking 7' to be the optimal solutioDx and

that S°~' U {o;,} € Z. Next considerS~' U {0;,} and S to be the setS’ generated by thé-batch greedy strategy
0". Using the augmentation property again, there exists orger the firstj stages in Propositiod 1 results in
elemento;, € O\ S*~1\ {0;, } such thats""*U{o;,,0;,} € , . ,
Z. Similar to the process above, using the augmentation f(OxkUS?) < f(87) + Z or, (57),
property(k —2) more times, finally we have that there exists T COR\SI
Ji ={0i,...,0i,} € O"\ S such thatS"" ' UJ; € . \where|T}| = k.
By the k-batch greedy strategy, we have thgt(S'~*) < By the k-batch greedy strategy, we have that fbr C
04, (S*~1). Furthermore, ifJ; C O%, we can set// = J;,. & Ok \ 9,

The following two theorems present our performance or,(87) < QJ,_H(SJ')’
bounds in terms of the total curvatuee, for the k-batch ' !
greedy strategy under a general matroid constraint andvdlich implies that
uniform matroid, respectively. j j j

Theorem 3. Assume thaf is a nondecreasing submodular FOx VS < F(S7) 4 07,1, (57). (7)
set function with f(0) = 0, the pair (X,Z) is a general By the definition ofa;, we have
matroid, andk divides the cardinalitys’ of the maximal set

in Z. Then thek-batch greedy strategy = |J;_, J; satisfies F(Ox)+ (1 —ag)f(S7) < f(Oxg U S).
£(8) > 1 F(0). (5) Combining the inequality above ard (7), we have
T 14y 4
; 1
Proof: By Lemma[l, we have that the optimal solution f(S7H) > gf(OK) (1- T)f(SJ) (8)

O can be ordered a® = |Ji_, J/ such thato/(S*) < o _
07,(S71), where{J/}{_, is a partition ofO and|J/| = & 1akingj=0,1,....t —11in @), we have

for1 <[l <t & _
By Propositio{ 2, we have f(Sk) = £(8") = _f(OK) + (1= Tk)f(st D)
. . t—1 ~
fOsan 3, en(8™H+ 3, en(s™ > 11(0) Y01 - %)
#:J;CS\O i:.J,CONS P
+ Z QJ;(S)- fi 1— 1_%75
:J{CO\S - A ( n ) f(OK)a
By inequality [2), we have which implies
i—1 i—1 1
05:(8) < 05:(577) < 05 (577). F(Sk) > - (1 - %)t) F(Ox)
Then 1
. . > —(1—-e"*)f(Ox).
fO)<ar Y en(STH+ Y en(sh ak
:J;CS\O i:J,CONS [ |
T Z (571 Remarks
i:J/CO\S « Whenay, = 1, the bound1— (1 —ay/t)") /oy becomes
< anf(S) + £(S) 1—(1—1/t)t, which is the bound in [11] whep = 0.

o Let h(z,y) = (1—-(1—=a/y)¥)/x. The function
which implies thatf(S) > 1+1akf(0)' ] h(z,y) is nonincreasing in: on the intervall0, 1] for



any positive integey. Also h(x,y) is nonincreasing in and
y whenz is a constant on the intervé, 1]. B
o The functioni(z) = (1 —e~%)/x is nonincreasing i, 05, (0) = Z 0\ (=11
S0 (1—e ) /ay € [1 —e1,1]. _ _ =t
« The monotoneiety ofg(z) and h(z,y) implies that By inequality [2), we have fot <[ < ks,

k2

the k—bat(_:h greedy strategy has better harmonic _and O\ e (X \ Ji,) >
exponential bounds than thebatch greedy strategy if ! !
ap < a . OJie \T1—1y, (X \ (Jlk1 \ J(l—l)kl))
The following theorem establishes that indeed< «. and
Theorem 5: Assume thajf is a nondecreasing submodular
set function satisfying’(#) = 0. Thenay, < a. 0\ vy (J=1)00) < i \ T, (0):
Proof: By the definition ofay,, we have From the inequalities above and by the definitionaqf
B 07, (X \ Ji) we have
B v 3 P ()R
JCX J
= k ’ o { 0.Jy (X \ Jk) }
o = max {1 — ——~——=
> 0 (X \ 1) JhCX 07, (0)
=1— mlq l:; ) k2
FEEL Y 04, (Dim) ; @ \Japiy (XN Jia)
=1 =1— min ¢ —
JCx | k2
whereJ; = {j1,...,j} for 1 <1< k. 121 071 \Tat—1ye, (J=1)k1)
By the assumption that is a submodular set function, we . B
< 1— min
have, forl <1 <k, JLCX
. ko
0, (X \ 1) = 0, (X \ {ii}) and g, (Ji—1) < 0;, (D), l; e\ a1y X\ (Tt \ T 1)

which imply that ko
121 OJie \T1— 1y, (9)

k k
05, (X \ J, 0, (X \ J i
z; (XA > z; (XA A3) By the definition ofay,, we have forl <[ < ko,
k = k ‘
lz gjl(']lfl) lz QJL (@) QJlkl \J(lfl)kl (X \ (J“ill \ J(lfl)kl))
=1 =1
> (1 - akl)g Ik 1—1)k (Q)
Then, we have T M-t
i Using the inequalities above, we have
ZQJL(X\{]Z}) akgl—(l—akl):akl.
ap <1— min l:Ik— . (9)
J1yeensd €X Z ) (@) |
lzlgﬂ One would also expect the following generalization of
o Theoren6 to hold: ifk; < k, thenay < ay,, leading to
By the definition of, we have forl <! <#, better bounds for the-batch greedy strategy than for the-
05, X\ {ai}) = (1 — )0, (0). batch greedy strategy. We have a proof for this claim using
Lemmas 1.1 and 1.2 in [18], but the proof is more involved
Combining the inequality above arld (9), we have and is omitted for the sake of brevity. We will illustrate the

validity of this claim in Section IV.
ap<l-—(1-a)=a.
IV. APPLICATION: TASK ASSIGNMENT
[ |
The following theorem states that#f dividesk, then the
total curvatureny, for the k-batch greedy is smaller than the
total curvatureny,, for the k;-batch greedy strategy.

Theorem 6: Assume thatf is a submodular set function ¢ 5 canonical example for problerfll (1), we consider

satisfyingf(@) = 0. Thenay, < ay, whenk, dividesk. the task assignment problem posed in [1], which was also
Proof: Suppose that = kik2 (ki andk, are integers). gnaiyzed in [16] and [17]. In this problem, there are

In this section, we consider a task assignment problem
to demonstrate that thk-batch greedy strategy has better
performance than thg,-batch greedy strategy whefiis a
nondecreasing submodular set function.

Write subtasks and a seX of N agentsa; (j = 1,...,N).
ko At each stage, a subtaskis assigned to an agent;,
07, (X \ Jk) :ZQJZ,CI\J(FDM (X \ Tk ) who accomplishes the task with probabilify(a;). Let

=1 X;(a1,az,...,a;) denote the random variable that describes



whether or not subtask has been accomplished after
performing the sequence of actioms,as,...,a; over k
stages. Then}—l Z?:l X;(a1,a9,...,ax) is the fraction of
subtasks accomplished aftérstages by employing agents
ai,as,...,a. The objective functionf for this problem is 2]
the expected value of this fraction, which can be written as

(3]

(1]

n

f({al,...,ak}):%Z

=1

(4]
(5]

k
1= T10 - pilay)

Assume thap;(a) > 0 for anya € X. Then it is easy to
check thatf is nondecreasing. Therefore, whén= {S C
X :|S| < K}, the solution to this problem should be of
length K. Also, it is easy to check thathas the diminishing-
return property.

For convenience, we only consider the special easel;
our analysis can be generalized to amy> 2. Forn = 1,
we have

)

7

)
k

fRay,... an}) =1- H(l - plag))

[9]
wherep(-) = p1(-).

Assume that) < p(a1) < plas) < -+ < play) < 1. [0
Then by the definition of the total curvatuse,, we have [11]
J1yeJk€X f({]la oo 7]k}) - f(@) (12]
K
=1- ] (0 —pla)). [13]
I=k+1

From the form ofas, we haveay, € [0, 1], which is con- [14]

sistent with our conclusion that whehis a nondecreasing

submodular set function, then, € [0,1]. Also we have

ar < ai, whenk, dividesk. Even if k; does not dividek, [15]

we still haveay, < ay, in this example, which is consistent
with our claim. [16

V. CONCLUSION [17]

In this paper, we derived performance bounds for the
batch greedy strategy; > 1, in terms of a total curva-
ture a. We showed that when the objective function ig18]
nondecreasing and submodular, thatch greedy strategy
satisfies a harmonic bourid (1 + o) for a general matroid
and an exponential boun@l — e~ “*)/«y for a uniform
matroid, wherek divides the cardinality of the maximal set
in the general matroid and the rank of the uniform matroid,
respectively. We proved that, for a submodular objective
function, a; < ay, whenk; divides k. Consequently, for
a nondecreasing submodular objective function, AHsatch
greedy strategy has better performance bounds thak,the
batch greedy strategy in such a case. This is true even
when k; < k does not dividek, but it follows a more
involved proof that we have left out. We demonstrated our
results by considering a task-assignment problem, whih al
corroborated our claim that #; < k, thenay < ag, even
if k; does not dividek.

REFERENCES

M. Streeter and D. Golovin, “An online algorithm for maxizing
submodular functions,” ifProc. NIPS: Advances in Neural Informa-
tion Processing Systems 21, Vancouver, British Columbia, Canada,
Dec. 2008, pp. 67-74.

U. Feige and J. Vondrak, “Approximation algorithms fallocation
problems: Improving the factor of — 1/e,” in Proc. IEEE. FOCS
Berkeley, CA, USA, Oct. 2006, pp. 667—676.

D. S. Hochbaum and A. Pathria, “Analysis of the greedyrapph in
problems of maximunk-coverage,Naval Research Logistics, vol. 45,
no. 6, pp. 615-627, Dec. 1998.

U. Feige, “A threshold of Inn for approximating set coverJournal
of the ACM, vol. 45, no. 4, pp. 634-652, Jul. 1998.

G. Cornuégjols, M. L. Fisher, and G. L. Nemhauser, “Lagatof bank
accounts to optimize float: An analytic study of exact andragpmate
algorithms,” Management Science, vol. 23, no. 8, pp. 789-810,
Apr. 1977.

N. Megiddo, E. Zemel, and S. L. Hakimi, “The maximum coxge
location problem,” SAM Journal of Algebraic Discrete Methods,
vol. 4, no. 2, pp. 253-261, Jun. 1983.

E. Liu, E. K. P. Chong, and L. L. Scharf, “Greedy adaptiveebr
compression in signal-plus-noise modeltEEE Trans. Inf. Theory,
vol. 60, no. 4, pp. 2269-2280, Apr. 2014.

A. Krause, A. Singh, and C. Guestrin, “Near-Optimal sergacement
in Gaussian processes: Theory, efficient algorithms andirealp
studies,”Journal of Machine Learning Research, vol. 9, pp. 235-284,
Feb. 2008.

J. Edmonds, “Submodular functions, matroids and cenpalyhedra,”
in Combinatorial Structures and Their Applications, Gordon and
Breach, New York, USA, 1970, pp. 69-87.

W. Tutte, “Lecture on matroidsJournal of Research of the National
Bureau of Sandards Section B, vol. 69, no. 468, pp. 1-47, 1965.
G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An argfy of
approximations for maximizing submodular set functiofisMathe-
matical Programming Sudy, vol. 14, no. 1, pp. 265-294, 1978.

D. Hausmann, B. Korte, and T. Jenkyns, “Worst case aimlpf
greedy type algorithms for independence systenMdthematical
Programming Study, vol. 12, pp. 120-131, 1980.

M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An ara$y of
approximations for maximizing submodular set functiolis-Mathe-
matical Programming Sudy, vol. 8, no. 1, pp. 73-87, 1978.

M. Conforti and G. Cornugjols, “Submodular set funas, matroids
and the greedy algorithm: Tight worst-case bounds and s@nergl-
izations of the Rado-Edmonds theorerDjscrete Applied Mathemat-
ics, vol. 7, no. 3, pp. 251-274, 1984.

J. Vondrak, “Submodularity and curvature: The optiraigorithm,”
RIMS Kokyuroku Bessatsu B23, Kyoto, 2010, pp. 253—-266.

] Z. Zhang, E. K. P. Chong, A. Pezeshki, and W. Moran, f&ri

submodular functions with curvature constraintdfEE Trans. Au-
tom. Control, vol. 61, no. 3, pp. 601-616, Mar. 2016.

Y. Liu, E. K. P. Chong, and A. Pezeshki, “Bounding the egg
strategy in finite-horizon string optimization,” iRroc. |EEE 54th
Annual Conf. Decision Control, Osaka, Japan, Dec. 2015, pp. 3900—
3905.

J. Lee, M. Sviridenko, and J. Vondrak, “Submodular imzxation
over multiple matroids via generalized exchange propgttiglathe-
matics of Operations Research, vol. 35, no. 4, pp. 795-806, Nov. 2010.



	I Introduction
	I-A Review of Previous Work
	I-B Main Results and Contribution

	II Preliminaries
	II-A Sets and Curvature
	II-B Harmonic and Exponential Bounds in Terms of the Total Curvature

	III Main Results
	III-A Strategy Formulation and Curvatures
	III-B Harmonic Bound and Exponential Bound in Terms of the Total Curvature

	IV Application: Task Assignment
	V Conclusion
	References

