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Performance Bounds for thek-Batch Greedy Strategy
in Optimization Problems with Curvature

Yajing Liu, Zhenliang Zhang, Edwin K. P. Chong, and Ali Pezeshki

Abstract— The k-batch greedy strategy is an approximate
algorithm to solve optimization problems where the optimal
solution is hard to obtain. Starting with the empty set, thek-
batch greedy strategy adds a batch ofk elements to the current
solution set with the largest gain in the objective function
while satisfying the constraints. In this paper, we bound the
performance of the k-batch greedy strategy with respect to
the optimal strategy by defining the total curvature αk. We
show that when the objective function is nondecreasing and
submodular, the k-batch greedy strategy satisfies a harmonic
bound 1/(1 + αk) for a general matroid constraint and an
exponential bound

(

1− (1− αk/t)
t
)

/αk for a uniform matroid
constraint, wherek divides the cardinality of the maximal set in
the general matroid, t = K/k is an integer, andK is the rank
of the uniform matroid. We also compare the performance of
the k-batch greedy strategy with that of the k1-batch greedy
strategy when k1 divides k. Specifically, we prove that when
the objective function is nondecreasing and submodular, the
k-batch greedy strategy has better harmonic and exponential
bounds in terms of the total curvature. Finally, we illustrate
our results by considering a task-assignment problem.

I. I NTRODUCTION

A variety of combinatorial optimization problems such as
generalized assignment (see, e.g., [1] and [2]), maxk-cover
(see, e.g., [3] and [4]), maximum coverage location (see, e.g.,
[5] and [6]), and sensor placement (see, e.g., [7] and [8]) can
be formulated in the following way:

maximize f(M)
subject to M ∈ I

(1)

whereI is a non-empty collection of subsets of a finite set
X , andf is a real-valued set function defined on the power
set 2X of X . The set functionf is said to besubmodular
if it has the diminishing-return property [9]. The pair(X, I)
is called amatroid if the collectionI is hereditary and has
the augmentation property [10]. WhenI = {S ⊆ I : |S| ≤
K} for a givenK, the pair(X, I) is said to be auniform
matroid of rankK, where|S| denotes the cardinality of the
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setS. These definitions will be discussed in more detail in
Section II.

Finding the optimal solution to problem (1) in general is
NP-hard. The1-batch greedy strategy provides a computa-
tionally feasible solution, which starts with the empty set,
and then adds one element to the current solution set with
the largest gain in the objective function while satisfying
the constraints. This scheme is a special case of thek-
batch greedy strategy (with k ≥ 1), which starts with the
empty set but adds to the current solution setk elements
with the largest gain in the objective function under the
constraints. The performance of the1-batch greedy strategy
in optimization problems has been extensively investigated,
while the performance of thek-batch greedy strategy for
generalk has received little attention, notable exceptions
being Nemhauser et al. [11] and Hausmann et al. [12], which
we will review in the following subsection.

A. Review of Previous Work

Nemhauser et al. [11], [13] proved that whenf is a non-
decreasing submodular set function satisfyingf(∅) = 0, the
1-batch greedy strategy yields at least a1/2-approximation
for a general matroid and a(1 − 1/e)-approximation for
a uniform matroid. By introducing the total curvatureα,
Conforti and Cornuéjols [14] showed that whenf is a
nondecreasing submodular set function, the1-batch greedy
strategy achieves at least a1/(1 + α)-approximation for
a general matroid and a(1 − e−α)/α-approximation for a
uniform matroid, where the total curvatureα is defined as

α = max
j∈X∗

{

1−
f(X)− f(X \ {j})

f({j})− f(∅)

}

and X∗ = {j ∈ X : f({j}) > 0}. For a nondecreasing
submodular set functionf , the total curvatureα takes values
on the interval[0, 1]. In this case, we have1/(1+α) ≥ 1/2
and (1 − e−α)/α ≥ (1 − 1/e), which implies the bounds
1/(1 + α) and (1 − e−α)/α are stronger than the bounds
1/2 and (1 − 1/e) in [13] and [11], respectively. Vondrák
[15] proved that whenf is a nondecreasing submodular set
function, the continuous1-batch greedy strategy gives at least
a (1− e−α)/α-approximation for any matroid.

Nemhauser et al. [11] proved that when(X, I) is a
uniform matroid andK = ks − p (s and p are integers
and0 ≤ p ≤ k− 1), thek-batch greedy strategy achieves at
least a(1 − (1 − λ/s)(1 − 1/s)s−1)-approximation, where
λ = 1−p/k. Hausmann et al. [12] showed that when(X, I)
is an independence system, then thek-batch greedy strategy
achieves at least aq(X, I)-approximation, whereq(X, I) is

http://arxiv.org/abs/1509.08516v4


the rank quotient defined in [12]. Although Nemhauser et al.
[11] and Hausmann et al. [12] investigated the performance
of thek-batch greedy strategy, they only considered uniform
matroid constraints and independence system constraints,
respectively. This prompts us to investigate the performance
of the k-batch greedy strategy more comprehensively.

B. Main Results and Contribution

In this paper, by defining the total curvatureαk of the
objective function, we derive bounds for the performance
of the k-batch greedy strategy for a general matroid and a
uniform matroid, respectively. By comparing the values of
αk for different k and investigating the monotoneity of the
bounds, we can compare the performance for differentk-
batch greedy strategies.

The remainder of the paper is organized as follows. In
Section II, we review the harmonic and exponential bounds
in terms of the total curvatureα from [14] for a general
matroid and a uniform matroid, respectively. In Section III,
we introduce the total curvatureαk, and prove that when
f is a nondecreasing submodular set function, thek-batch
greedy strategy achieves a1/(1 + αk)-approximation for
a general matroid constraint and a(1− (1− αk/t)

t) /αk-
approximation for a uniform matroid constraint, wherek
divides the cardinality of the maximal set in the general
matroid, t = K/k is an integer, andK is the rank of the
uniform matroid. We also prove thatαk ≤ αk1 when f
is a nondecreasing submodular set function andk1 divides
k, which implies that thek-batch greedy strategy provides
tighter harmonic and exponential bounds compared to the
k1-batch greedy strategy. In Section IV, we present an
application to demonstrate our conclusions. In Section V, we
provide a summary of our work and main contribution.

II. PRELIMINARIES

In this section, we first introduce some definitions related
to sets and curvature. We then review the harmonic and
exponential bounds in terms of the total curvatureα from
[14].

A. Sets and Curvature

Let X be a finite set, andI be a non-empty collection of
subsets ofX . The pair(X, I) is called amatroid if

i. For all B ∈ I, any setA ⊆ B is also inI.
ii. For any A,B ∈ I, if the cardinality ofB is greater

than that ofA, then there existsj ∈ B \ A such that
A ∪ {j} ∈ I.

The collectionI is said to behereditary and has the
augmentation property if it satisfies properties i and ii,
respectively. The pair(X, I) is called auniform matroid
when I = {S ⊆ I : |S| ≤ K} for a givenK, called the
rank.

Let 2X denote the power set ofX , and define the set
function f : 2X → R

+. The set functionf is said to be
nondecreasing andsubmodular if it satisfies properties 1 and
2 below, respectively:

1. For anyA ⊆ B ⊆ X , f(A) ≤ f(B).

2. For anyA ⊆ B ⊆ X and j ∈ X \ B, f(A ∪ {j}) −
f(A) ≥ f(B ∪ {j})− f(B).

Property 2 means that the additional value accruing from
an extra action decreases as the size of the input set in-
creases, and is also called thediminishing-return property in
economics. Property 2 implies that for anyA ⊆ B ⊆ X and
T ⊆ X \B,

f(A ∪ T )− f(A) ≥ f(B ∪ T )− f(B). (2)

For convenience, we denote the incremental value of adding
set T to the setA ⊆ X as ̺T (A) = f(A ∪ T ) − f(A)
(following the notation of [14]).

The total curvature of a set functionf is defined as [14]

α = max
j∈X∗

{

1−
̺j(X \ {j})

̺j(∅)

}

whereX∗ = {j ∈ X : ̺j(∅) > 0}. Note that0 ≤ α ≤ 1
whenf is nondecreasing and submodular, andα = 0 if and
only if f is additive, i.e.,f(X) = f(X \ {j}) + f({j}) for
all j ∈ X∗.

B. Harmonic and Exponential Bounds in Terms of the Total
Curvature

In this section, we review the theorems from [14] bounding
the performance of the1-batch greedy strategy using the
total curvatureα for general matroid constraints and uniform
matroid constraints.

Theorem 1: Assume that(X, I) is a matroid andf is
a nondecreasing submodular set function withf(∅) = 0
and total curvatureα. Then the1-batch greedy solutionG
satisfies

f(G) ≥
1

1 + α
f(O),

whereO is the optimal solution of problem (1).
When f is a nondecreasing submodular set function, we

haveα ∈ [0, 1], so 1/(1 + α) ∈ [1/2, 1]. Theorem 1 applies
to any matroid, which means the bound1/(1+α) holds for a
uniform matroid too. Theorem 2 will present a tighter bound
when (X, I) is a uniform matroid.

Theorem 2: Assume that(X, I) is a uniform matroid and
f is a nondecreasing submodular set function withf(∅) = 0
and total curvatureα. Then the1-batch greedy solutionGK

satisfies

f(GK) ≥
1

α

(

1− (1− α/K)K
)

f(OK)

≥
1

α
(1− e−α)f(OK).

The function(1 − e−α)/α is a nonincreasing function of
α, so (1 − e−α)/α ∈ [1 − e−1, 1] when f is a nonde-
creasing submodular set function. Also it is easy to check
(1− e−α)/α ≥ 1/(1 + α) for α ∈ [0, 1], which implies that
the bound(1−e−α)/α is stronger than the bound1/(1+α)
in Theorem 1.



III. M AIN RESULTS

In this section, first we define thek-batch greedy strategy
and the corresponding curvatures that will be used for
deriving the harmonic and exponential bounds. Then we
derive the performance bounds of thek-batch greedy strategy
in terms ofαk for general matroid constraints and uniform
matroid constraints, respectively. Moreover, we compare the
performance bounds for differentk-batch greedy strategies.

A. Strategy Formulation and Curvatures

When (X, I) is a general matroid, assume that the cardi-
nality K of the the maximal set inI is such thatk divides
K. Thek-batch greedy strategy is as follows:

Step 1: LetS0 = ∅ and t = 0.
Step 2: SelectJt+1 ⊆ X \ St for which |Jt+1| = k,

St ∪ Jt+1 ∈ I, and

f(St ∪ Jt+1) = max
J⊆X\St and |J|=k

f(St ∪ J),

then setSt+1 = St ∪ Jt+1.
Step 3: If f(St+1) − f(St) > 0, set t = t + 1, repeat

step 2; otherwise, stop.
When (X, I) is a uniform matroid with rankK, without

loss of generality, assume thatk dividesK. Then thek-batch
greedy strategy is as follows:

Step 1: LetS0 = ∅ and t = 0.
Step 2: SelectJt+1 ⊆ X \ St for which |Jt+1| = k, and

f(St ∪ Jt+1) = max
J⊆X\St and |J|=k

f(St ∪ J),

then setSt+1 = St ∪ Jt+1.
Step 3: If t + 1 < K/k, set t = t + 1 and repeat step 2;

otherwise, stop.
Similar to the definition of the total curvatureα in [14],

we define the total curvatureαk for a givenk as

αk = max
J∈X̂

{

1−
̺J(X \ J)

̺J (∅)

}

whereX̂ = {J ⊆ X : f(J) > 0 and |J | = k}.
Consider a setT ⊆ X and an ordered setS =

⋃t

i=1 Ji ⊆
X , whereJi ⊆ X and |Ji| = k. We defineS0 = ∅, Si =
⋃i

l=1 Jl for 1 ≤ i ≤ t, and the curvature

ᾱk = max
i:Ji⊆S∗

{

̺Ji
(Si−1)− ̺Ji

(Si−1 ∪ T )

̺Ji
(Si−1)

}

whereS∗ = {Ji ⊆ S − T : |Ji| = k and̺Ji
(Si−1) > 0}. It

is easy to check thatf(S) =
∑t

i=1 ̺Ji
(Si−1) andᾱk ≤ αk.

For a uniform matroid with rankK, we useSK =
⋃t

i=1 Ji
to denote thek-batch greedy solution, whereJi is the set
selected by thek-batch greedy strategy at stagei. Assume
thatOK is the optimal solution to Problem 1. We define the
curvatureα̂k with respect to the optimal solution as

α̂k = max
1≤j≤t

{

1−
̺Sj (OK)

̺Sj (∅)

}

.

It is easy to prove that̂αk ≤ αk whenf is a nondecreasing
submodular set function.

B. Harmonic Bound and Exponential Bound in Terms of the
Total Curvature

The following proposition will be applied to derive the
performance bounds for both general matroid constraints and
uniform matroid constraints.

Proposition 1: If f is a nondecreasing submodular set
function onX , S andT are subsets ofX , and{T1, . . . , Tr}
is a partition ofT \ S, then

f(T ∪ S) ≤ f(S) +
∑

i:Ti⊆T\S

̺Ti
(S). (3)

Proof: By the assumption that{T1, . . . , Tr} is a parti-
tion of T \ S and inequality 2, we have

f(T ∪ S)− f(S) = f(S ∪
r
⋃

l=1

Tl)− f(S)

=

r
∑

j=1

̺Tj
(S ∪

j−1
⋃

l=1

Tl)

≤
∑

j:Tj⊆T\S

̺Tj
(S).

The following proposition will be applied to derive the
performance bound for general matroid constraints.

Proposition 2: Assume thatf is a nondecreasing sub-
modular set function onX with f(∅) = 0. Given a set
T ⊆ X , a partition{T1, . . . , Tr} of T \ S, and an ordered
setS =

⋃t

i=1 Ji ⊆ X with |Ji| = k, we have

f(T ) ≤ ᾱk

∑

i:Ji⊆S\T

̺Ji
(Si−1) +

∑

i:Ji⊆T∩S

̺Ji
(Si−1)

+
∑

i:Ti⊆T\S

̺Ti
(S). (4)

Proof: By the definition of the curvaturēαk, we have

f(T ∪ S)− f(T ) =

t
∑

i=1

̺Ji
(T ∪ Si−1)

=
∑

i:Ji⊆S\T

̺Ji
(T ∪ Si−1)

≥ (1− ᾱk)
∑

i:Ji⊆S\T

̺Ji
(Si−1).

By Proposition 1, we have

f(T ∪ S) ≤ f(S) +
∑

i:Ti⊆T\S

̺Ti
(S).

Combining the inequalities above and using the identity

f(S) =
∑

i:Ji⊆S\T

̺Ji
(Si−1) +

∑

i:Ji⊆T∩S

̺Ji
(Si−1),

we get the inequality (4).
Recall that when(X, I) is a general matroid, we assume

that k divides the cardinalityK of the maximal set inI.
By the augmentation property of a general matroid, any
greedy solution and optimal solution can be augmented to



a set of lengthK, respectively. LetS =
⋃t

i=1 Ji be thek-
batch greedy solution, whereJi is the set selected by the
k-batch greedy strategy at theith step for1 ≤ i ≤ t. Let
O = {o1, . . . , oK} be the optimal solution. We prove that
the following lemma holds.

Lemma 1: The optimal solutionO = {o1, . . . , oK} can be
ordered asO =

⋃t

i=1 J
′
i such that̺ J′

i
(Si−1) ≤ ̺Ji

(Si−1),
whereJ ′

1, . . . , J
′
t is a partition ofO and |J ′

i | = k for 1 ≤
i ≤ t. Furthermore, ifJ ′

i ⊆ O ∩ S, thenJ ′
i = Ji.

Proof: Similar to the proof in [11], we will prove this
lemma by backward induction oni for i = t, t−1, . . . , 1. As-
sume thatJ ′

l satisfies the inequality̺J′

l
(Sl−1) ≤ ̺Jl

(Sl−1)
for l > i, and letOi = O \

⋃

l>i J
′
l . Consider the setsSi−1

and Oi. By definition, |Si−1| = (i − 1)k and |Oi| = ik.
Using the augmentation property of a general matroid, we
have that there exists one elementoi1 ∈ Oi \ Si−1 such
that Si−1 ∪ {oi1} ∈ I. Next considerSi−1 ∪ {oi1} and
Oi. Using the augmentation property again, there exists one
elementoi2 ∈ Oi \Si−1\{oi1} such thatSi−1∪{oi1 , oi2} ∈
I. Similar to the process above, using the augmentation
property(k−2) more times, finally we have that there exists
J ′
i = {oi1 , . . . , oik} ⊆ Oi \ Si−1 such thatSi−1 ∪ J ′

i ∈ I.
By the k-batch greedy strategy, we have that̺J′

i
(Si−1) ≤

̺Ji
(Si−1). Furthermore, ifJi ⊆ Oi, we can setJ ′

i = Ji.
The following two theorems present our performance

bounds in terms of the total curvatureαk for the k-batch
greedy strategy under a general matroid constraint and a
uniform matroid, respectively.

Theorem 3: Assume thatf is a nondecreasing submodular
set function withf(∅) = 0, the pair (X, I) is a general
matroid, andk divides the cardinalityK of the maximal set
in I. Then thek-batch greedy strategyS =

⋃t

i=1 Ji satisfies

f(S) ≥
1

1 + αk

f(O). (5)

Proof: By Lemma 1, we have that the optimal solution
O can be ordered asO =

⋃t

i=1 J
′
i such that̺ J′

i
(Si−1) ≤

̺Ji
(Si−1), where{J ′

l}
t
l=1 is a partition ofO and |J ′

l | = k
for 1 ≤ l ≤ t.

By Proposition 2, we have

f(O) ≤ ᾱk

∑

i:Ji⊆S\O

̺Ji
(Si−1) +

∑

i:Ji⊆O∩S

̺Ji
(Si−1)

+
∑

i:J′

i
⊆O\S

̺J′

i
(S).

By inequality (2), we have

̺J′

i
(S) ≤ ̺J′

i
(Si−1) ≤ ̺Ji

(Si−1).

Then

f(O) ≤ ᾱk

∑

i:Ji⊆S\O

̺Ji
(Si−1) +

∑

i:Ji⊆O∩S

̺Ji
(Si−1)

+
∑

i:J′

i
⊆O\S

̺Ji
(Si−1)

≤ αkf(S) + f(S),

which implies thatf(S) ≥ 1
1+αk

f(O).

Remarks

• The harmonic bound1/(1+αk) for thek-batch greedy
strategy holds forany matroid. However, for uniform
matroids, a better bound is given in Theorem 4.

• The functiong(x) = 1/(1 + x) is nonincreasing inx
on the interval[0, 1].

Theorem 4: Assume thatf is a nondecreasing submodular
set function withf(∅) = 0, the pair (X, I) is a uniform
matroid with rankK, and k dividesK. Then thek-batch
greedy solutionSK =

⋃t

i=1 Ji satisfies

f(SK) ≥
1

αk

(

1− (1−
αk

t
)t
)

f(OK)

≥
1

αk

(1− e−αk)f(OK). (6)

Proof: Taking T to be the optimal solutionOK and
S to be the setSj generated by thek-batch greedy strategy
over the firstj stages in Proposition 1 results in

f(OK ∪ Sj) ≤ f(Sj) +
∑

i:Ti⊆OK\Sj

̺Ti
(Sj),

where|Ti| = k.
By the k-batch greedy strategy, we have that forTi ⊆

OK \ Sj,
̺Ti

(Sj) ≤ ̺Jj+1(S
j),

which implies that

f(OK ∪ Sj) ≤ f(Sj) + t̺Jj+1(S
j). (7)

By the definition ofα̂k, we have

f(OK) + (1− α̂k)f(S
j) ≤ f(OK ∪ Sj).

Combining the inequality above and (7), we have

f(Sj+1) ≥
1

t
f(OK) + (1 −

α̂k

t
)f(Sj). (8)

Taking j = 0, 1, . . . , t− 1 in (8), we have

f(SK) = f(St) ≥
1

t
f(OK) + (1−

α̂k

t
)f(St−1)

≥
1

t
f(OK)

t−1
∑

l=0

(1 −
α̂k

t
)

=
1

α̂k

(

1− (1−
α̂k

t
)t
)

f(OK),

which implies

f(SK) ≥
1

αk

(

1− (1−
αk

t
)t
)

f(OK)

≥
1

αk

(1− e−αk)f(OK).

Remarks

• Whenαk = 1, the bound(1−(1−αk/t)
t)/αk becomes

1− (1− 1/t)t, which is the bound in [11] whenp = 0.
• Let h(x, y) = (1− (1− x/y)y)/x. The function

h(x, y) is nonincreasing inx on the interval[0, 1] for



any positive integery. Also h(x, y) is nonincreasing in
y whenx is a constant on the interval[0, 1].

• The functionl(x) = (1−e−x)/x is nonincreasing inx,
so (1− e−αk)/αk ∈ [1− e−1, 1].

• The monotoneiety ofg(x) and h(x, y) implies that
the k-batch greedy strategy has better harmonic and
exponential bounds than the1-batch greedy strategy if
αk ≤ α .

The following theorem establishes that indeedαk ≤ α.
Theorem 5: Assume thatf is a nondecreasing submodular

set function satisfyingf(∅) = 0. Thenαk ≤ α.
Proof: By the definition ofαk, we have

αk = max
Jk⊆X̂

{

1−
̺Jk

(X \ Jk)

̺Jk
(∅)

}

= 1− min
Jk⊆X̂



















k
∑

l=1

̺jl(X \ Jl)

k
∑

l=1

̺jl(Jl−1)



















,

whereJl = {j1, . . . , jl} for 1 ≤ l ≤ k.
By the assumption thatf is a submodular set function, we

have, for1 ≤ l ≤ k,

̺jl(X \ Jl) ≥ ̺jl(X \ {jl}) and̺jl(Jl−1) ≤ ̺jl(∅),

which imply that

k
∑

l=1

̺jl(X \ Jl)

k
∑

l=1

̺jl(Jl−1)

≥

k
∑

l=1

̺jl(X \ {jl})

k
∑

l=1

̺jl(∅)

.

Then, we have

αk ≤ 1− min
j1,...,jk∈X̂



















k
∑

l=1

̺jl(X \ {jl})

k
∑

l=1

̺jl(∅)



















. (9)

By the definition ofα, we have for1 ≤ l ≤ k,

̺jl(X \ {jl}) ≥ (1− α)̺jl(∅).

Combining the inequality above and (9), we have

αk ≤ 1− (1− α) = α.

The following theorem states that ifk1 dividesk, then the
total curvatureαk for thek-batch greedy is smaller than the
total curvatureαk1 for the k1-batch greedy strategy.

Theorem 6: Assume thatf is a submodular set function
satisfyingf(∅) = 0. Thenαk ≤ αk1 whenk1 dividesk.

Proof: Suppose thatk = k1k2 (k1 andk2 are integers).
Write

̺Jk
(X \ Jk) =

k2
∑

l=1

̺Jlk1
\J(l−1)k1

(X \ Jlk1 )

and

̺Jk
(∅) =

k2
∑

l=1

̺Jlk1
\J(l−1)k1

(J(l−1)k1
).

By inequality (2), we have for1 ≤ l ≤ k2,

̺Jlk1
\J(l−1)k1

(X \ Jlk1) ≥

̺Jlk1
\J(l−1)k1

(X \ (Jlk1 \ J(l−1)k1
))

and

̺Jlk1
\J(l−1)k1

(J(l−1)k1
) ≤ ̺Jlk1

\J(l−1)k1
(∅).

From the inequalities above and by the definition ofαk,
we have

αk = max
Jk⊆X̂

{

1−
̺Jk

(X \ Jk)

̺Jk
(∅)

}

= 1− min
Jk⊆X̂



















k2
∑

l=1

̺Jlk1
\J(l−1)k1

(X \ Jlk1)

k2
∑

l=1

̺Jlk1
\J(l−1)k1

(J(l−1)k1
)



















≤ 1− min
Jk⊆X̂



















k2
∑

l=1

̺Jlk1
\J(l−1)k1

(X \ (Jlk1 \ J(l−1)k1
))

k2
∑

l=1

̺Jlk1
\J(l−1)k1

(∅)



















.

By the definition ofαk1 , we have for1 ≤ l ≤ k2,

̺Jlk1
\J(l−1)k1

(X \ (Jlk1 \ J(l−1)k1
))

≥ (1 − αk1)̺Jlk1
\J(l−1)k1

(∅).

Using the inequalities above, we have

αk ≤ 1− (1− αk1) = αk1 .

One would also expect the following generalization of
Theorem 6 to hold: ifk1 ≤ k, thenαk ≤ αk1 , leading to
better bounds for thek-batch greedy strategy than for thek1-
batch greedy strategy. We have a proof for this claim using
Lemmas 1.1 and 1.2 in [18], but the proof is more involved
and is omitted for the sake of brevity. We will illustrate the
validity of this claim in Section IV.

IV. A PPLICATION: TASK ASSIGNMENT

In this section, we consider a task assignment problem
to demonstrate that thek-batch greedy strategy has better
performance than thek1-batch greedy strategy whenf is a
nondecreasing submodular set function.

As a canonical example for problem (1), we consider
the task assignment problem posed in [1], which was also
analyzed in [16] and [17]. In this problem, there aren
subtasks and a setX of N agentsaj (j = 1, . . . , N).
At each stage, a subtaski is assigned to an agentaj ,
who accomplishes the task with probabilitypi(aj). Let
Xi(a1, a2, . . . , ak) denote the random variable that describes



whether or not subtaski has been accomplished after
performing the sequence of actionsa1, a2, . . . , ak over k
stages. Then1

n

∑n

i=1 Xi(a1, a2, . . . , ak) is the fraction of
subtasks accomplished afterk stages by employing agents
a1, a2, . . . , ak. The objective functionf for this problem is
the expected value of this fraction, which can be written as

f({a1, . . . , ak}) =
1

n

n
∑

i=1



1−
k
∏

j=1

(1− pi(aj))



 .

Assume thatpi(a) > 0 for any a ∈ X . Then it is easy to
check thatf is nondecreasing. Therefore, whenI = {S ⊆
X : |S| ≤ K}, the solution to this problem should be of
lengthK. Also, it is easy to check thatf has the diminishing-
return property.

For convenience, we only consider the special casen = 1;
our analysis can be generalized to anyn ≥ 2. For n = 1,
we have

f({a1, . . . , ak}) = 1−
k
∏

j=1

(1− p(aj))

wherep(·) = p1(·).
Assume that0 < p(a1) ≤ p(a2) ≤ · · · ≤ p(aN ) ≤ 1.

Then by the definition of the total curvatureαk, we have

αk = max
j1,...,jk∈X

{

1−
f(X)− f(X \ {j1, . . . , jk})

f({j1, . . . , jk})− f(∅)

}

= 1−
K
∏

l=k+1

(1 − p(al)).

From the form ofαk, we haveαk ∈ [0, 1], which is con-
sistent with our conclusion that whenf is a nondecreasing
submodular set function, thenαk ∈ [0, 1]. Also we have
αk ≤ αk1 whenk1 dividesk. Even if k1 does not dividek,
we still haveαk ≤ αk1 in this example, which is consistent
with our claim.

V. CONCLUSION

In this paper, we derived performance bounds for thek-
batch greedy strategy,k ≥ 1, in terms of a total curva-
ture αk. We showed that when the objective function is
nondecreasing and submodular, thek-batch greedy strategy
satisfies a harmonic bound1/(1+αk) for a general matroid
and an exponential bound(1 − e−αk)/αk for a uniform
matroid, wherek divides the cardinality of the maximal set
in the general matroid and the rank of the uniform matroid,
respectively. We proved that, for a submodular objective
function, αk ≤ αk1 when k1 divides k. Consequently, for
a nondecreasing submodular objective function, thek-batch
greedy strategy has better performance bounds than thek1-
batch greedy strategy in such a case. This is true even
when k1 ≤ k does not dividek, but it follows a more
involved proof that we have left out. We demonstrated our
results by considering a task-assignment problem, which also
corroborated our claim that ifk1 ≤ k, thenαk ≤ αk1 even
if k1 does not dividek.
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