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Abstract— Given a network, we would like to determine
which subset of nodes should be measured by limited sensing
facilities to maximize information about the entire network. The
optimal choice corresponds to the configuration that returns the
highest value of a measure of observability of the system. Here,
the determinant of the inverse of the observability Gramian is
used to evaluate the degree of observability. Additionally, the
effects of changes in the topology of the corresponding graph of
a network on the observability of the network are investigated.
The theory is illustrated on the problem of detection of an
epidemic disease in a community. The purpose here is to find the
smallest number of people who must be examined to predict the
number of infected people in an arbitrary community. Results
are demonstrated in simulation.

I. INTRODUCTION

Analysing complex interconnected systems, such as the In-
ternet, social networks, and biological networks has been the
subject of increasing research attention in recent years. A key
characteristic of system analysis is being able to determine
information about the system state using measurement data.
This observability analysis, as applied to a network, aims
to predict the behaviour of each individual in the network
based on a set of measured properties and on the local rules
governing the state of individual vertices. Observability-
based design of a multi-agent network can be found in some
recent works such as [1], [2]. In these works, the objective is
to find the structure of the communication graph to guarantee
observability (unobservability) in [1] ( [2]). The authors of
these works studied the effect of different topologies of the
communication graph and of the communication weights
between nodes in a network on the rank of the observability
matrix.

Social networks have the longest history in the field of
study of real-world networks where studying interactions
in human behaviour has received significant attention. For
instance, it is of interest to consider the process of decision-
making in a group of people [3] or to study the process
of creating different colonies in a human group based on
the level of trust between the individuals in that group [4].
In these studies, data collection is usually carried out by
querying a subset of participants in the network directly
using questionnaires or interviews. Such methods are labour-
intensive, and the size of the network that can be observed is
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limited. Therefore the problem of optimal choice of nodes to
be observed is critical. Another application of high relevance
is electric power grid management. An electric power grid is
a network of interconnected high-voltage transmission lines
spanning a country or a portion of a country. Identification
of abnormal patterns of behaviour in power distribution
networks is very important and has been the subject of many
studies recently, e.g. [5] and [6]. Finally, some biological
systems can be represented as networks. Genetic regulatory
networks, blood vessel networks, and neural networks are
classes of biological network systems have been receiving
recent attention in the research literature.

In recent works, observability criteria have been used to
find the best sensor location [7]–[9]. In many cases, tests
of observability can reveal useful information about system
structure that can be leveraged to design more effective
or more efficient estimators. For example, some choices of
sensor placement may lead to faster estimator convergence
times in nonlinear systems [10]. However, nonlinear observ-
ability analysis is computationally expensive. The concept of
using computational rather than analytical methods is first
introduced in [11] to evaluate the observability Gramian of
a nonlinear system. The empirical observabiltiy Gramian has
been used successfully in a number of contexts for design
of improved sensing [9], [10], [12]. In order to perform an
optimization based on the observability Gramian matrix, a
scalar function of the matrix must be chosen. The smallest
singular value [7], [12], the determinant [9], [10], [13], the
trace [10], and the spectral norm [10] of the observability
Gramian are some of the criteria that have been used for
observability-based optimization problems. The measure of
observability used in this paper is the determinant of the
inverse of the empirical observability Gramian.

The focus of this paper is studying a type of biological
network called a virus spreading network. The purpose is
to detect the spread of an epidemic disease in an arbitrary
community by observing the infected/healthy status of a
small number of people in that community. We show that if
the graph of interaction between individuals in a network is
connected, we do not need to examine every single individual
to detect their states. Instead we can allocate sensing facilities
on a few nodes, which are obtained from an optimization
problem introduced here, and reconstruct the states of the
entire network.

The rest of the paper is structured as follows. In Section II,
we give notation and definitions. The model under study is
introduced in Section III. The observability-based optimal
selection of observing nodes is presented in Section IV. The
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numerical simulations for the problem of disease spreading
in an arbitrary community are given in Section V, and
Section VI concludes the paper.

II. BACKGROUND

A. Graph Theory

A network is a set of items, which we call nodes, with
connections between them, called edges. The interaction
between agents in a network is represented by a graph
G = (V,E). Each agent in a network is denoted as a node,
and the edges represent interaction links between agents. The
number of nodes is assumed to be N , and the number of
edges to be M . The node set, V , consists of all nodes in
the network. The edge set, E, is comprised of pairs of nodes
{i, j}, where nodes i and j are adjacent. The neighbourhood
set, Ni, of node i is composed of all agents in V adjacent to
node i. The edges are encoded through the index mapping
σ such that l = σ(i, j), if and only if edge l connects nodes
i and j. The adjacency matrix is an N × N symmetric
matrix with Aij = 1 when {i, j} ∈ E, and Aij = 0,
otherwise. Here, we assume an undirected graph structure
where {i, j} ∈ E ⇒ {j, i} ∈ E.

B. System Dynamics and Observability

In this work, we desire to maximize the amount of infor-
mation we can gather about all the agents in the network by
observing a small number of agents. Specifically, we would
like to maximize the observability of the overall network by
sharing limited information between the agents. To facilitate
our study of network observability, specifically in the context
of nonlinear process or measurement dynamics, we present a
brief review of the relevant aspects of nonlinear observability
that will be utilized here.

Consider a nonlinear system

Σ :

{
ẋ = f(x), x ∈ Rn,
y = h(x), y ∈ Rm.

(1)

Given the nonlinear system, Σ, one can linearize the non-
linear system about a given nominal trajectory, x̃(t). The
linearization of this system is given by

δẋ = F (t)δx, δy = H(t)δx, (2)

where
F (t) =

∂f

∂x

∣∣∣∣
x=x̃

, H(t) =
∂h

∂x

∣∣∣∣
x=x̃

. (3)

One approach for evaluating observability of nonlinear sys-
tems is to use the observability Gramian of a linearization
of the system. If Φ(t) is the state transition matrix of the
linearized system, then the local observability Gramian is

WO(x̃) =

∫ tf

0

ΦT (t)HT (t)H(t)Φ(t)dt . (4)

This formulation requires computation of Jacobian matrices.
Furthermore, the Gramian of the linearized system will not
always result in a good description of the behaviour of
the original nonlinear system, specifically on wide operating

ranges. To address these issues, we use the empirical local
observability Gramian [7]. This tool provides an accurate
description of a nonlinear system’s observability, while it is
much less computationally expensive than some other tools
such as Lie algebra based approaches.

The concept of the empirical observability Gramian is
related to the concept of output energy. Given a small
perturbation ε > 0 of the state, let x±i(0) = x(0) ± εei
and h±i(t) be the corresponding output, where, ei is the ith

unit vector in Rn. The empirical local observability Gramian
at x(0) is the n× n matrix, WO, whose (i, j) component is

1

4ε2

∫ tf

0

(
h+i(t)− h−i(t)

)T (
h+j(t)− h−j(t)

)
dt.

It can be shown that if the system is smooth, then the
empirical local observability Gramian converges to the local
observability Gramian as ε→ 0. Note that the perturbation,
ε, should always be chosen such that system stays in the
region of attraction of the equilibrium point. As suggested
by the authors of [7], if the size of each state coordinate is
of order one, then a reasonable choice of ε is order 0.01 or
0.001.

III. PROBLEM DEFINITION

A. Problem Statement

We assume a system of N agents. Measurement of node
i is given by

yi = xi , i = 1, . . . , N. (5)

Now, let us assume there is a group of agents called observ-
ing nodes, V̄ , from which we want to maximize information
measured from the network. Therefore, we have a subset of
nodes V̄ ⊂ V for which we want to maximize a measure
of observability. Define a binary variable ζ ∈ RN such
that ζi = 1 if Vi ∈ V̄ and ζi = 0 otherwise. Then, the
measurement is given by

y =
[
ζ1y

1 ζ2y
2 · · · ζNy

N
]T

. (6)

Here, the objective is to determine a set of r < N nodes
such that if we observe those r nodes, then we would be
able to reconstruct the state of all nodes in the network.
In order to find these nodes, we maximize the determinant
of the observability Gramian by varying the location of the
observing nodes in the network. Maximizing the determinant
of the observability Gramian corresponds to a maximization
of independence between outputs [13]. The problem can be
formulated mathematically as:

maximize
ζ1,ζ2,··· ,ζN

det(WO) . (7)

Suppose the observation is partitioned into multiple sub-
vectors from a number of individual sensors (similar to
(6)), then the total observability Gramian is the sum of the
separate observability Gramian matrices, each obtained from
having each individual sensor separately [7]. Therefore,

WO =

N∑
i=1

ζiWO,i , (8)



where WO,i is the observability Gramian assuming the ob-
servation to be y = xi, i.e. we have a single sensor located on
node i. Knowing this property of the observability Gramian
matrix, the problem can be rewritten as a minimization
problem, termed D-optimal design in [14]:

minimize
ζ

log

det

(
N∑
i=1

ζiWO,i

)−1
subject to

N∑
i=1

ζi ≤ r

ζi ∈ {0, 1},

(9)

where, WO,i is the observability Gramian obtained from
measuring node i.

B. Virus Spreading Model in Networks

In this paper, we formulate our problem using the setting
proposed in [15] for virus spread in any network with N
nodes. This approach is one of the most popular epidemic
models and is called the Susceptible-Infected-Susceptible
(SIS) model [16]. In this model, each node in the network is
either infected or healthy. An infected node, i, can infect
its neighbours with an infection rate, βi, and it is cured
with curing rate, δi. As a node is cured and healthy, it
is again prone to the virus. The spread is modelled by
an undirected network specified by a symmetric adjacency
matrix, A. The state of each node i is described by the
binary random variable Xi(t) ∈ {H, I}, i.e. the node at
time t in the network has two states: infected with probability
Pr[Xi(t) = I] and healthy with probability Pr[Xi(t) = H].
The evolution of the states is described by a Markov Process.
The two possible state transitions of node i are:

(1) Assume node i is healthy at time t, i.e. Xi(t) = H .
This node can switch to infected state over small time
∆t > 0 with probability: Pr[Xi(t+ ∆t) = I|Xi(t) =
H] =

∑
j∈Ni

AijβiXj(t)∆t+ o(∆t).
(2) Assume node i is infected at time t, i.e. Xi(t) = I . The

probability of being recovered after small time ∆t > 0
is: Pr[Xi(t+ ∆t) = H|Xi(t) = I] = δi∆t+ o(∆t).

Denoting xi(t) = Pr[Xi(t) = I] and considering that
Pr[Xi(t) = H] = 1−xi(t), the Markov differential equation
for node i turns out to be nonlinear, ẋi(t) = fi(x), as
follows:

ẋi(t) = βi

N∑
j=1

Aijxj(t)− xi(t)

βi N∑
j=1

Aijxj(t) + δi

 .

(10)
By defining x =

[
x1 x2 · · · xN

]T
, the differential

equation (10) can be written in matrix form as

ẋ(t) = (BA−D)x(t)−

 N∑
j=1

eje
T
j x(t)eTj

BAx(t) ,

(11)
where B = diag(βj) and D = diag(δj). In this paper, we
assume that λ1 (BA−D) < 0, where λ1(·) is the largest

eigenvalue. It is proved in [17] that the linear dynamics
system ẋ(t) = (BA−D)x(t) is an upper bound for the
nonlinear dynamics system (11). Therefore, the disease-free
equilibrium (x = 0) is stable.

C. Observability Gramian Computation

As it was explained in Section III-B, the model of virus
spreading is a nonlinear dynamics system. The empirical
observability Gramian, considering yk = xk, is an N × N
matrix, WO,k, whose (i, j) component is

1

4ε2

∫ tf

0

(
x+ik (t)− x−ik (t)

)T (
x+jk (t)− x−jk (t)

)
dt. (12)

In this case, the initial condition of the system should be
perturbed in all directions of the states. In the case of a
network with a large number of nodes, we need to solve
the nonlinear differential equation (11) 2N times. When the
number of nodes is large, the computation of the empirical
observability Gramian for all N nodes is computationally
expensive. We would like to be able to detect an epidemic
by knowing only a subset of nodes in the network, termed
the test set. Here, we randomly select s ≤ N nodes, and
perturb the initial condition in these s directions. Then the
observability Gramian, WO, is an s × s matrix. Note that
r � s, and the test set is chosen randomly.

The infection rate of node i, βi, and the recovery rate
of node i, δi, can be changed by allocating preventative
resources such as vaccinations and antidotes on this node. As
the value of either infection rate or recovery rate changes,
the observability Gramian matrices should be updated ac-
cordingly.

The observability Gramian, W , of a linear system,

ẋ = Ax y = Cx (13)

is obtained by solving for W in

ATW +WA+ CTC = 0 . (14)

Therefore,

AT
(
∂W

∂χ

)
+

(
∂W

∂χ

)
A+

(
∂A

∂χ

)T
W +W

(
∂A

∂χ

)
= 0 ,

(15)
where χ is a variable of the dynamic system (A), and does
not affect the observation (C). This equation can be solved

to obtain
(
∂W

∂χ

)
.

Proposition 1. Consider the adjacency matrix, A, of a
connected graph, and two sets of positive numbers {βi}Ni=1

and {δi}Ni=1. Assume x̃ represents the infected/healthy status
of a network at an arbitrary time τ . Define β̃i = (1− x̃i)βi
and B̃ = diag(β̃i). Then the nonlinear system (11) for any x

close to x̃ can be approximated as ẋ(t) =
(
B̃A−D

)
x(t).



Proof. Using the Taylor expansion of fi(x) in (10), the linear
approximation in the vicinity of x̃ is given by

fi(x) = fi(x̃) +

N∑
j=1

∂fi
∂xj

∣∣∣∣∣∣
x̃

(xj − x̃j) + ςi

= β̃i

N∑
j=1

Aijxj − δixi + ςi ,

(16)

where
ςi =

−βi
2

(x− x̃)
T
eia

T
i (x− x̃) , (17)

where ai = Aei. If (x− x̃) → 0, then ςi → 0, and the
dynamic system can be written in matrix form as

ẋ(t) ≈
(
B̃A−D

)
x(t) . (18)

Theorem 1. Consider the adjacency matrix, A, of a con-
nected graph, and two sets of positive numbers {βi}Ni=1 and
{δi}Ni=1 such that λ1 (BA−D) < 0. Define the approxima-
tion error of (18), ς , as

ς = |f(x)−
(
B̃A−D

)
x(t)|1 . (19)

Then, ς < 1
2max{δi}Ni=1‖∆̃‖2, where ∆̃i = |xi − x̃i|.

Proof. Based on the definition of the approximation error, ς ,
we have

ς =

N∑
i=1

|ςi| ≤
1

2

N∑
i=1

βi∆̃i

N∑
j=1

Aij∆̃j =
1

2
∆̃TBA∆̃

≤ 1

2
λ1(BA)‖∆̃‖2 .

(20)

Recall that we assumed λ1 (BA−D) < 0. Thus,

λ1(BA) < max{δi}Ni=1 . (21)

Therefore ς < 1
2max{δi}Ni=1‖∆̃‖2.

Theorem 2. Consider the adjacency matrixA of a connected
graph, and two sets of positive numbers {βi}Ni=1 and {δi}Ni=1

such that λ1 (BA−D) < 0. Then the linearized dynamic
system ẋ(t) =

(
B̃A−D

)
x(t) is asymptotically stable.

Proof. Using the definition of B̃ = diag ((1− x̃i)βi), the
dynamics of node i is given by

ẋi(t) = βi

N∑
j=1

Aijxj(t)−δixi(t)−βix̃i
N∑
j=1

Aijxj(t) . (22)

Since βi, x̃i, xj(t),Aij ≥ 0, then

ẋi(t) ≤ βi
N∑
j=1

Aijxj(t)− δixi(t) . (23)

Since λ1 (BA−D) < 0, then the system

˙̂xi(t) = βi

N∑
j=1

Aij x̂j(t)− δix̂i(t) (24)

is asymptotically stable. Given that ẋi(t) ≤ ˙̂xi(t) ,∀t, we
can conclude that the linearized dynamics system, ẋ(t) =(
B̃A−D

)
x(t), should also be asymptotically stable.

To study the effect of changes in infection and recovery
rates of a node (i.e. , βk or δk) on the observability Gramian,
assume a change occurs at time t = τ where x(τ) = x̃.
Now, by using the result of Proposition 1, the dynamics of
the system can be written as

ẋ(t) ≈
(
B̃A−D

)
x(t) = Ãx(t) . (25)

Proposition 2. Given a positive semi-definite matrix, W ,
and the adjacency matrix, A, of a connected graph, then the
Lyapunov equation

ÃT
(
∂W

∂χ

)
+

(
∂W

∂χ

)
Ã+

(
∂Ã

∂χ

)T
W +W

(
∂Ã

∂χ

)
= 0 ,

(26)
where Ã was defined in (25), has exactly one solution for(
∂W

∂χ

)
.

Proof. The proof is directly derived from the result of Theo-
rem 2, which demonstrates that Ã is stable. Since Ã is stable,
we know that the Lyapunov operator defined by L(P ) =
ÃTP + PÃ is non-singular and for a symmetric matrix, Q,
the equation L(P ) +Q = 0 has exactly one solution for P .

Since

(∂Ã
∂χ

)T
W +W

(
∂Ã

∂χ

) is a symmetric matrix,

thus the Lyapunov equation (26) has a unique solution.

Now, assume WO(β0, δ0) is the empirical observability
Gramian obtained from (12) for the initial values of infec-
tion and recovery rates, {β0

i }Ni=1 and {δ0i }Ni=1 respectively.
Considering Ã =

(
B̃A−D

)
, then

∂Ã

∂βk
= (1− x̃k) eke

T
kA ,

∂Ã

∂δk
= −ekeTk . (27)

In the case of a change in the infection rate of node k
(e.g. , because of vaccination of node k), or a change in the
recovery rate of node k (e.g. , because of allocating antidotes
on node k), we do not need to re-calculate the empirical
observability Gramian, WO. Instead, we can substitute χ =
βk or χ = δk in (26) and use (27) to solve the corresponding
Lyapunov equation. As given by Proposition 2, there is
exactly one solution of this Lyapunov equation which is used
to obtain the updated observability Gramian matrix in the
case of a change in the infection and recovery rates.

IV. OPTIMAL OBSERVING NODES ALLOCATION

The optimization problem (9) is a boolean nonlinear
programming problem. Because of the binary constraint, this
optimization problem is a non-convex problem. A common
method for solving these types of optimization problems is
computing a lower-bound on the optimal value of the non-
convex problem. In general, there are two standard methods
to solve these types of non-convex problems.



The first method is relaxation, in which the non-convex
constraint is replaced with a looser, but convex constraint.
For example, in the case when r is large, a good approximate
solution of (9) can be found by ignoring, or relaxing, the
constraint that the values of ζi are integers [14].

The next method is Lagrangian relaxation, where we need
to solve the convex dual problem. For example, for solving
(9), the boolean constraint can also be reformulated as ζi(ζi−
1) = 0, which is a quadratic equality constraint. Then we
can solve the Lagrange dual of this problem. The optimal
value of the relaxed problem provides a lower bound on the
optimal value of the original optimization problem.

Here, the Outer Approximation technique, given in [18],
is used to solve our optimization problem. The advantage
of this method compared to the two conventional relaxation
methods discussed is that the algorithm converges to an
optimal solution of (9) in a finite number of iterations. The
convergence proof can be found in [18]. This algorithm uses
linearization of the objective function and the constraints at
different points to build a mixed integer linear programming
relaxation of the problem. If F (ζ) refers to the cost function
given in (9), then we have

∇jF (ζ) = −trace

( N∑
i=1

ζiWO,i

)−1
WO,j

 . (28)

A lower bound solution of problem (9) is obtained by solving
a Mixed Integer Linear Programming as follows. For any
given set of points T , we can build a relaxation of (9) as:

minimize
ζ

α

subject to ∇F (ζ − ζ̄) + F (ζ̄) ≤ α, ∀ζ̄ ∈ T
N∑
i=1

ζi ≤ r , ζ ∈ {0, 1} .

(29)

The relaxation (29) results in an iterative algorithm for
solving the original problem (9). This iterative algorithm
basically relies on updating the set of linearization points, T .
The algorithm starts with T = {ζ0}, where ζ0 is a feasible
solution of the original problem (9) or of its continuous
relaxed problem. Each iteration starts by solving (29) to find
a point (αk, ζk) and a lower bound αk on the optimal value
of (9). Now, ζk is added to T . The algorithm stops when the
difference between the lower bound linear approximation and
the actual value of the cost function at that point becomes
negligible. The algorithm is described in Algorithm 1.

V. APPLICATION: DETECTING EPIDEMIC
DISEASE TRANSMISSION

The problem of containing virus spreading processes in a
network has been studied in the literature, e.g. [19]. This
modelling is an important step toward understanding the
behaviour of spreading a disease in a community. How-
ever, given an arbitrary network, it remains a challenge to
determine the requirements that make the entire network
observable. Here, we consider a network of connected agents,
and find the best selection of nodes which yield the state

ZU := +∞;
ZL := −∞;
ζ0 := optimal solution of (9), replacing the integer
constraint with continuous constraint 0 ≤ ζi ≤ 1;
k := 1;
Choose a convergence tolerance εt;
while ZU − ZL > εt and (29) is feasible do

Let (α̂, ζ̂) be the optimal solution of (29);
ζk := ζ̂;
ZL := α̂;
ZU := min{ZU , F (ζk)};
T := T ∪ {ζk};
k := k + 1;

end
Algorithm 1: Outer approximation algorithm

information of the entire network. In this section, we present
simulation results that demonstrate the effect of graph con-
figurations and demonstrate the corresponding theoretical
analysis.

It is worthy to note here that the optimal value function in
(9) depends on the value of r. If r is small compared to N ,
the optimal solution of (9) is too large. If the optimal solution
is large, we conclude that the determinant of the observability
Gramian of the network with observing nodes obtained from
the optimization problem is very small, which corresponds to
a practically unobservable condition. Therefore, first we need
to find the minimum number of observing nodes required for
observability. Here, to find a minimum number of observing
nodes, we set an upper-bound accepted value for the cost
function, such that the solution of (9) is acceptable only if
the solution is less than the upper-bound accepted value. In
this paper, the upper-bound accepted value is set to zero,
which is equivalent to det(WO) ≥ 1.

Consider a fairly small group of people interacting with
each other. This group is modelled by an undirected graph of
15 nodes (Fig. 1). The nodes in the graph could be students
of a class in an elementary school, and the edges denote
the friendship between the children in this class. This graph
could also be cities in a specific region which are connected
through air transportation.

The initial healthy/infected status of each node and the
infection and recovery rates are chosen randomly. Here, the
purpose is to find a small number of observing nodes, if
possible, such that we obtain the health data of the entire
group. We first try to find a single observing node to obtain
the status of the entire network. In the first example (Fig. 1a),
we have a dense structure. This structure is an example of
a network with many interactions between them. By solving
the optimization problem, one can find that by observing
node 6, the network becomes observable. Now, consider
a network with much less interaction between the nodes
(Fig. 1b). The calculation shows that in this case, we are not
able to attain the state information of the entire network by
observing only a single node. In the case of sparse structure



with one observing node, the observability Gramian is close
to be singular, det(WO) ≈ 0. Therefore, the network is not
observable. By increasing the number of observing nodes to
r = 2, the solution of the optimization problem becomes
feasible, and hence, the network becomes observable.

(a) dense graph (b) sparse graph

Fig. 1: Two different graph topologies of a network of 15
nodes: (a) dense and (b) sparse structures.

VI. CONCLUSIONS

The work in this paper has been concerned with obtaining
the optimal node selection for maximizing an index of
observability for a network. The empirical observability
Gramian has been used as a tool for improving the local
observability of nonlinear systems. The observability index
was chosen to be the determinant of the inverse of the
observability Gramian. We proposed an optimization prob-
lem for obtaining the optimal node selection that provides
the full state observability of a network. The optimization
problem framed as a mixed integer nonlinear programming
problem. The outer approximation algorithm was used as a
relaxation method for solving a convex optimization problem
with integer non-convex constrains. The outer approximation
algorithm solves a relaxed approximation iteratively, and
converges to the optimal value of the original mixed integer
nonlinear problem. We applied the results on a model of the
virus spreading process of a disease in an arbitrary network.
The results show that it is possible to reconstruct the state
of all the nodes by observing a select number of nodes. The
result of this work is applicable on similar problems, such as
the spreading of an idea or rumour through a social network
like Twitter and the problem of a spreading computer virus
through the World Wide Web.

In this paper, we assumed the weights are known and
we do not have control on changing them. An interesting
direction for future research is estimation of the infection
rate and recovery rate of the nodes. Initial results in this
paper indicated that if the structure of interactions between
nodes and the weights of interaction between nodes (here,
βi and δi) are known, then by directly observing a few
number of nodes in a complex network, we are able to
estimate the states of the entire nodes. However, the problem
of states estimation with unknown interaction weights is still
a challenging problem. This analysis is an important problem
when we are dealing with complex real world situations

with unknown interactions (for example trusting interaction
between people in a group) or when we have control on
changing the weights. We are currently investigating adap-
tive optimal graph topologies that, given constraints on the
available sensing resources, provide optimal performance
regarding the observability of the system.
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