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ABSTRACT The advancement of the Internet of Things (IoT) has allowed for unprecedented data
collection, automation, and remote sensing and actuation, transforming autonomous systems and bringing
smart command and control into numerous cyber physical systems (CPS) that our daily lives depend on.
Simultaneously, dramatic improvements in machine learning and deep neural network architectures have
enabled unprecedented analytical capabilities, which we see in increasingly common applications and
production technologies, such as self-driving vehicles and intelligent mobile applications. Predictably, these
technologies have seen rapid adoption, which has left many implementations vulnerable to threats unforeseen
or undefended against. Moreover, such technologies can be used by malicious actors, and the potential
for cyber threats, attacks, intrusions, and obfuscation that are only just being considered, applied, and
countered. In this paper, we consider the good, the bad, and the ugly use ofmachine learning for cybersecurity
and CPS/IoT. In detail, we consider the numerous benefits (good use) that machine learning has brought,
both in general, and specifically for security and CPS/IoT, such as the improvement of intrusion detection
mechanisms and decision accuracy in CPS/IoT. More pressing, we consider the vulnerabilities of machine
learning (bad use) from the perspectives of security and CPS/IoT, including the ways in which machine
learning systems can be compromised, misled, and subverted at all stages of the machine learning life-cycle
(data collection, pre-processing, training, validation, implementation, etc.). Finally, the most concerning,
a growing trend has been the utilization of machine learning in the execution of cyberattacks and intrusions
(ugly use). Thus, we consider existing mechanisms with the potential to improve target acquisition and
existing threat patterns, as well as those that can enable novel attacks yet to be seen.

INDEX TERMS Security, machine learning, cyber physical systems, Internet of Things, applications,
distributed environments.

I. INTRODUCTION
The development of the Internet has had an extraordinary
influence on the past few decades, globally interconnecting
networked devices such as computers, switches, routers, etc.
Over the rapid development of the Internet, the scope of
Internet connectivity has enabled what is the predominant
method of communication and interaction among humans.
Internet-based applications provide various content and ser-
vices, not only improving the efficiency of commerce, man-
ufacturing, and education, among others, but also redefining
aspects of human life and work. These dramatic changes to
the commercial and living habits of humans depend heavily
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on the development of the Internet and the various kinds of
devices it comprises, most especially, embedded devices that
serve as the backbone of Internet service and remote data
collection. These embedded devices are network connected to
communicate with each other, and have their own character-
istics that distinguish them from other traditional computers
and network devices, such as limited computation capacity
and power supply. Therefore, it is necessary to extend the
Internet to allow the connection and interaction of heteroge-
neous devices.

The Internet of Things (IoT) is clearly the next evolu-
tion and extension of the Internet, massively integrating IoT
devices (sensors, cameras, smartphones, etc.) to communi-
cate across network infrastructures [1], [2]. The fundamental
purpose of IoT is providing a networking platform so that
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data from the physical environment can be captured, shared,
and analyzed to create precise digital models for a variety
of things [3], [4]. These digital models can then be shared
and leveraged to analyze the status of target environments
and predict or simulate real-world events. IoT technologies
and devices are being deployed ever more widely, in many
different industries, and the volume of collected data has
increased prodigiously. Based on such technology and data,
vertical architectures of application, networking, and phys-
ical layers are deployed, denoted as Cyber-Physical Sys-
tems (CPS), and are widely leveraged in different application
domains, including energy, transportation, city infrastructure,
healthcare, manufacturing, and home automation, among oth-
ers [5]–[15]. It is worth noting that CPS are closed-loop
systems that utilize IoT devices to gather data, which is then
analyzed by CPS applications, and the results of which are
used to control the CPS themselves. Specifically, enabled
by IoT, CPS are critical infrastructure systems comprised of
a vertical hierarchy of command and control, networking,
and sensing and actuation nodes. The complex networking
and sensing/actuation systems are enabled and achieved via
IoT [16], while the particular command and control sys-
tems and device architectures are often unique and domain-
specific.

Big data analysis is one of the important keys to enabling
CPS [3], [4], [17], [18]. Because of the development of IoT,
the volume of data is massively increasing, yielding signifi-
cant benefits and challenges. In particular, the data analysis
results can be more informative based on the comprehensive
and large volume of collected data. Nonetheless, the huge
data collection poses formidable pressure in the data training
process, where not all data is reliable, timely, or valuable.
Therefore, machine learning, as a powerful yet complex data
analysis tool, is critical to CPS. Furthermore, big data analysis
plays a key role in achieving automation for CPS, enabling
CPS to automatically adapt to new situations according to the
results of big data analysis that is based on machine learning.

However, utilizing machine learning in CPS creates uncer-
tainties, especially in the realms of security and privacy.
As a persistent concern in all computing systems, security is
critical for continued reliability, confidentiality, integrity, and
availability [19].Most pressing is the critical, unforeseen, and
unheeded vulnerabilities in machine learning and CPS/IoT
systems in use today. For instance, in machine learning,
a variety of adversarial techniques have been demonstrated
repeatedly for thwarting the inference of trained models, such
as attacks that modify input [20] and attacks that learn to
produce edge cases and induce incorrect evaluations [21].
Likewise, in IoT/CPS, weak and exploitable software imple-
mentation coupled with limited device resources make IoT
nodes easy targets that can be compromised on a global
scale [22]–[24].

Focusing on the benefits and challenges of introducing
machine learning techniques into cybersecurity and CPS,
we categorize the use of machine learning in cybersecurity
and CPS by its attributes and roles, namely as: the Good,

the Bad, and the Ugly. Using CPS as an example, the ‘‘Good’’
represents the improvements and benefits brought by lever-
aging machine learning to assist CPS. The ‘‘Bad’’ repre-
sents the adversarial attacks against machine learning itself
to maliciously deceive the training process and induce erro-
neous results. Finally, the ‘‘Ugly’’ represents the utilization
of machine learning as tools to attack generic systems, such
as CPS. Based on the three defined roles, we discuss the
impacts of introducing machine learning into cybersecurity
and CPS. In this work, we survey the spectrum of research at
the intersection of machine learning, CPS, and cybersecurity,
and attempt to elicit potential solutions and best practices.

Specifically, our contributions are summarized as follows:

• We consider the application of machine learning in
cybersecurity and CPS contexts. We assess good, bad,
and ugly uses ofmachine learning. Concretely, we assess
the use of machine learning to achieve positive goals
(good), attacks against machine learning systems and
life-cycles (bad), and the use of machine learning to
conduct or aid in attacks (ugly). Note that the last two
cases are of particular importance as numerous machine
learning systems are already deployed in production sys-
tems and applications, and defending against intelligent
machine learning based attacks is unprecedented.

• We identify areas in need of further research in each
category (good, bad, and ugly) of use, particularly
toward the improvement of CPS and cybersecurity.
Necessary developments include the improvement of
mature machine learning to be more efficient, transfer-
able, and auditable; the improvement of defensive tech-
niques against adversarial attacks and the ex-filtration of
trained data; and techniques to segment and containerize
machine learning processes to resist attacks. The matu-
rity of research and real-world use of machine learning
systems have not mitigated the concerning weaknesses
of machine learning systems to attack, nor generated
defenses against the novel and emerging use of machine
learning in aiding attacks.

The remainder of this paper is as follows. In Section II,
we outline our analytical framework for the study of machine
learning in cybersecurity and CPS. In Section III, we consider
machine learning for good in cybersecurity and CPS, as well
as providing a brief overview of machine learning techniques.
In Section IV, we present flaws and vulnerabilities inmachine
learning in the context of cybersecurity and CPS. Further-
more, we survey the existing adversarial learning techniques
and provide a vision for protecting the machine learning
process. In Section V, we study how adversaries utilize
machine learning as tools to launch and achieve attacks.
Finally, we provide some concluding remarks in Section VI.

II. PROBLEM SPACE AND OVERVIEW OF MACHINE
LEARNING TECHNOLOGIES
In this section, we first outline the problem space of apply-
ing machine learning techniques for cybersecurity and CPS.
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FIGURE 1. A Framework for analyzing the interrelationships of Machine
Learning use in Cybersecurity and CPS.

We then provide an overview of the dimensions of machine
learning schemes.

A. PROBLEM SPACE
Considering the diverse applications of machine learning
paradigm, this paper primarily focuses on the ramifications
for two areas, namely Cybersecurity and CPS. Here, we con-
sider systems to be any generic ubiquitous networks or
Internet connected systems (smart home, smart watch, smart-
phone, etc.), as well as CPS enabled by IoT technologies.
In the case of the Cybersecurity domain, we seek to broadly
address machine learning applications for security issues
as applied in the Internet and intranet scenarios. As shown
in Fig. 1, we assess the use of machine learning schemes in
the three main categories: good, bad, and ugly.

To be specific, the ‘‘good’’ use of machine learning indi-
cates that the benign or positive application of machine
learning for the improvement of task-specific performance or
the implementation of beneficial applications. Example cases
include improving medical diagnostics, progressing the state-
of-the-art in computer vision and speech services, and oth-
ers [25]–[29]. Likewise, the ‘‘bad’’ use of machine learning
is deemed as the potential risks in the process of machine
learning, such as data collection, preprocessing, training,
implementation, and decision-making, as well as training
processes (i.e., training, testing, validation, and implemen-
tation) that are vulnerable to subversion and exploitation,
leading the output of machine learning models and the result-
ing decision-making to be incorrect or wholly unreliable.
Finally, we define the ‘‘ugly’’ use of machine learning as
malicious uses of machine learning for negative or detrimen-
tal applications or software, such as in improving the effi-
cacy of malware, and aiding in the subversion of automated
computer systems and security detectionmechanisms, among
others.

Recent works have highlighted the vulnerabilities of over-
all machine learning systems, as well as machine learning
models at all levels. Of particular note, the implementation

of machine learning models provides users with the ability to
apply input and retrieve output, enabling users to potentially
infer model operation given enough time and effort. Such
mechanisms allow users to determine, through trial and error,
where edge cases exist and for what cases is the model not
well suited. Nonetheless, models can be duplicated, extracted,
and attacked during the processes of all levels. While signif-
icant efforts have been devoted for ‘‘good’’ uses of machine
learning, the ‘‘bad’’ and ‘‘ugly’’ cases are emerging, becom-
ing more sophisticated and applicable to models in produc-
tion software systems that deserve more attention.

B. DIMENSIONS OF MACHINE LEARNING SCHEMES
As a number of existing works have discussed in thorough
detail the various machine learning schemes, we only present
a brief categorical review. The typical learning methods are
supervised learning, unsupervised learning, and reinforce-
ment learning schemes. Based on the outcome of learn-
ing tasks, we categorize different dimensions of machine
learning algorithms by classification, regression, dimension-
ality reduction, clustering, and density estimation, among
others [30].

1) SUPERVISED LEARNING
Typical supervised learning algorithms learn a func-
tion/model that maps inputs to outputs based on labeled
training input-output pairs. They analyze the training data
and infer a function that can be used for mapping new
data samples. Based on whether target labels are discrete or
numeric, the learning process is defined as classification and
regression, respectively.

• Classification:The output of the classification is a finite
set of categorical classes. These classes can be binary
(two classes), such as anomaly detection, or multitudi-
nous, such as handwritten number recognition and oth-
ers.

• Regression: The output of regression tasks is continu-
ous values for the examined instances. Example results
might include a 97% probability that the object is mal-
ware, and a 3% probability it is not.

2) UNSUPERVISED LEARNING
The main difference between supervised learning and unsu-
pervised learning is the availability of class labels. In unsu-
pervised learning, all input samples are unlabeled, and the
evaluation of the trainedmodel will not necessarily rely on the
accuracy of mapping input to output classes, but on achieving
some broader goal. This category includes the learning tasks
of dimensionality reduction, clustering, and density estima-
tion, among others.

• Dimensionality reduction: In this case, the target is
discriminant analysis. Typically, dimensionality reduc-
tion can be utilized in auto-encoders and reduce the
dimensionality of the input data. In addition, they can
be used to reduce noise or redundant data in video [31].

158128 VOLUME 7, 2019



F. Liang et al.: Machine Learning for Security and the IoT

• Clustering: This is generally utilized to group
data using mathematical, probabilistic, or statisti-
cal means. This is performed through alternatively
selecting cluster centroids and cluster membership.
Examples include real-time image registration using
Self-Orienting Feature Maps (SOFMS) [32], and the
combination of TSK-DBN fuzzy learning (i.e., Takagi-
Sugeno-Kang(TSK) system with Deep Belief Network
(DBN)) [33].

• Density estimation: This is basically the statistical
extraction or approximation of a target data distribu-
tion. Some examples of density estimation include noise
reduction of binaural assisted listening devices [34] and
utilizing CNNs to estimate the traffic density of inter-
sections through analyzing heterogeneous distributed
video [35].

3) REINFORCEMENT LEARNING
Reinforcement learning is considered to be somewhere
between supervised and unsupervised learning, as the input of
reinforcement learning has no label information, but instead
is associated with a reward value, such that each execu-
tion improves the decision-making of the overall model, and
typically by maximizing the rewards. This can be repre-
sented by the perception-action-learning loop. The two major
reinforcement methods are policy search and value function
approximation.
• Policy search: This is the search for an optimal pol-
icy using gradient-based or gradient-free methods. For
example, Google’s Alpha Go is based on policy search,
and can learn without any human intervention or inter-
action and still achieves superiority [36].

• Value function approximation: This method estimates
the expected rewards of actions and attempts to reach an
optimized learning process and results. The key com-
ponent of the value function is the state-action value
function, known as the quality function [37].

III. POSITIVE MACHINE LEARNING: GOOD USE
Modern machine learning, and deep learning techniques,
powered by deep, convolutional, and recursive neural net-
works, have developed rapidly with the availability of
increased computational power and large collections of data,
and have been leveraged in a variety of predictive and ana-
lytic applications for commercial and consumer use, such
as self-driving vehicle systems, natural language assistants
and interpreters, and others [38], [39]. These applications are
transformative, enabling truly smart systems and advancing
the state-of-the-art in a variety of areas. As discussed in
Section I, the development of IoT and CPS enable smart
applications through the collection, storage, and analysis of
massively large, distributed datasets. In this section, we focus
on the leveraging of machine learning technologies for pos-
itive uses in Cybersecurity and CPS. We first study the
approaches of utilizing machine learning to detect network
attacks and improve network security. Then, we illustrate the
benefits of utilizing machine learning techniques in CPS.

A. MACHINE LEARNING IN CYBERSECURITY
Machine learning models, while requiring significant time
and efforts to train and test, can be easily deployed to
conduct basic inference. Moreover, machine learning mod-
els are significantly improved by training on larger, more
representative datasets. As an area of particular need for
active analysis and discovery, intrusion detection is required
to maintain secure systems and to notify system users
and administrators of unintended access so that further
actions (attribution, mitigation and removal) can be carried
out. In the following, we investigate the details of using
different machine learning techniques to detect intrusion
attacks.

The Intrusion Detection System (IDS) is a typical sys-
tem designed to monitor protected networks and systems
for malicious activities, and is an important approach
to protecting cyber infrastructures and enforcing system
security [40]–[42]. With the increasing development of
machine learning, the integration of machine learning has
improved the performance of IDS and enabled the detection
of unforeseen intrusions. We now discuss the utilization of
various machine learning techniques in both misuse detection
and anomaly detection.

1) MISUSE DETECTION
In the conventional IDS, misuse detection compares the cur-
rent activities against large databases of attack signatures.
Essentially, misuse detection utilizes existing attack records
to detect anomalies. There have been a number machine
learning techniques developed for this process [43]–[46].
For example, Hodo et al. [44] integrated Artificial Neu-
ral Networks (ANNs) for misuse detection, primarily using
supervised and unsupervised procedures to improve the per-
formance of IDS. In the supervised learning procedure,
the learning model is trained based on a labeled training
dataset. In the unsupervised learning procedure, an unla-
beled dataset is used to train the learning model, and the
model utilizes the Self-Organizing Map (SOM) to final-
ize the results without human intervention. Furthermore,
an ANN model with three layers and two learning algo-
rithms were proposed. Their evaluation results showed that,
based on the ANN model, their IDS performance reached
99.4% (as compared with 96.3% without ANN). In addition,
Lin et al. [43] proposed a cluster center and nearest neigh-
bor (CANN) approach to combine multiple learning tech-
niques and improve detection performance. Specifically, their
developed approach focused on extracting representative fea-
tures of the attack by computing two metrics. The first metric
is the distance from the data sample to its cluster center.
The second metric is the distance from the data to the near-
est neighbor within the cluster. Furthermore, the approach
rebuilds the data features by using the distances, and formats
the data features as a k-Nearest Neighbor (k-NN) classi-
fier. Based on the experimental results, the CANN classifier
performed better than the k-NN classifier on the KDD-Cup
99 dataset.
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In addition, there are a number of studies that have focused
on reducing the learning cost to optimize the performance of
misuse detection [47]–[49]. For instance, Subba et al. [47]
proposed an ANN-based misuse detection technique that
integrates an intelligent agent in the system. The intelligent
agent can identify the underlying patterns in both abnormal
and normal data, and simplifies the learning process into
new and unseen audit records. The proposed approach could
achieve better performance than other intrusion detection
models based on SVM, Naive Bayes, and C4.5 algorithms.
Likewise, Alheeti et al. [49] proposed an ANN-based misuse
detection approach to protect vehicular ad hoc networking
(VANET). Since the VANET is dynamic, open, wireless, and
has no fixed security infrastructure, it is more vulnerable
to attacks. The proposed misuse detection approach iden-
tifies abnormal system behaviors by tracking key features
in various files and by training on a dataset of abnormal
features. Moreover, the extracted features from the trace files
are auditable data, and the method can increase the detection
speed.

2) ANOMALY DETECTION
In the case of anomaly detection, a number of existing
research efforts have demonstrated the successful use of a
variety of machine learning techniques [50]–[53]. For exam-
ple, Jiang et al. [50] leveraged a deep learning technique
to carry out the detection of virtual MAC spoofing attacks.
Bontemps et al. [51] investigated a Long-Short Term Mem-
ory (LSTM) model to detect abnormal activities in the cyber
environment. Specifically, while a number of previous studies
carried out anomaly detection by training on normal and
anomalous behaviors, their study focused on designing a
mechanism that considers or recalls recent detection results
in continuous data. As a solution to enabling continuous
anomaly detection, the LSTM RNN-based detection method
was designed to use time series data to train the model and
adopt a circular array to detect collective anomalies. The
method leverages the average error of the circular array as
a threshold. If the predicted error is greater than the thresh-
old and increases continuously, this indicates a collective
anomaly.

In addition, Bivens et al. [54] proposed a comprehensive
IDS which includes a preprocessing stage, clustering of nor-
mal traffic, normalization, an ANN training stage, and an
ANN decision stage. In the training stage, it utilizes the
Self-Organizing Map (SOM), in order to train the model
by time period. After the learning process, the model can
be used to identify abnormal activities. Meanwhile, a new
SOM starts to learn a new traffic pattern and train a new
multilayer feed-forward perceptron (MLP) attack classifier.
The evaluation results reported 100% successful identifica-
tion of normal behaviors and 76% successful identification
of abnormal behaviors. Likewise, Yin et al [52] proposed
a recurrent neural network IDS (RNN-IDS) to increase the
identification rate. They deeply studied the performance of
using binary classification and multi-class classification for

the RNN model. By identifying the number of RNN lay-
ers and neurons, the proposed RNN used binary classifi-
cation to increase the identification rate of the anomaly
detection. Also, Tian et al. [53] designed a distributed deep
learning-based detection scheme that can be deployed on
edge devices to deal with web attack detection.

Other studies have focused on designing efficient and flex-
ible learning approaches to handle different situations. For
instance, Javaid et al. [55] proposed a Self-Taught Learn-
ing (STL)-based deep learning network to handle unfore-
seen and unpredictable attacks. Based on the experimental
results, the investigated approach could outperform Sup-
port Vector Machines, Naive-Bayes, Random Forests, and
Self-Organized Maps. Our prior work [56] focused on iden-
tifying the correlation and dependency in time series data,
aiming at carrying out anomaly detection. Also, we developed
a joint optimization framework, which aimed at optimizing
the Variational Auto Encoder, the Deep Belief Network, and
the Gaussian mixture model together, leading to detection
performance improvement [57].

3) MALWARE DETECTION
Furthermore, smartphones are a critical source of data associ-
ated with users and businesses, making up the bulk of current
contributions, yet security and privacy issues are dramatically
dire in mobile devices [58], [59]. To combat such threats,
a number of research efforts have been carried out. For exam-
ple, Booz et al. [60] designed a mechanism to optimize deep
learning model so that the accurate detection Android mal-
ware can be realized. Also, Comar et al. [61] combined both
supervised and unsupervised learning schemes to detect mal-
ware. Additionally, McGiff et al. [62] designed a multi-input
multimodal detection scheme based, leveraging both permis-
sion and hardware feature data to improve malware detection
accuracy. Similarly, Yuan et al. [63] developed a deep learn-
ing framework based on DBN to detect malware in Android
apps, and achieved approximately 96.5% detection accuracy.

Considering other types of devices, Ding et al. [64] pro-
posed a scheme to extract opcode sequences from Windows
PE files in order to detect malware via DBN, illustrating
the ability of DBNs to conduct classification tasks. Uwag-
bole et al. [65] designed a system that utilizes static and
dynamic deep learning mechanisms to deal with SQL injec-
tion attacks. Their system utilized logistic regression to train
the learning model and obtain the attack features. Meanwhile,
Kim et al. [66] focused on leveraging the LSTM neural
network model as a component in an IDS, which achieved
better performance in network attack detection than other
comparablemethods, as applied to DoS attacks. As evidenced
by these diverse research methods and techniques, enabling
the detection of ongoing attacks such that response and miti-
gation are possible in real time is critical and challenging.

B. MACHINE LEARNING IN CPS
Besides being applied to cybersecurity, machine learning can
be applied to address control, networking, and computing
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challenges in CPS. In this subsection, we first review existing
studies that leverage machine learning for CPS, and then
introduce challenges and future research directions.

1) SOLVING SECURITY ISSUES IN CPS
Security and privacy are major concerns in CPS systems
and applications. Industry 4.0, smart homes, smart grids,
and many other smart-world applications necessarily require
capable and resilient security mechanisms, given the nature
of the critical infrastructures that they monitor and con-
trol [23]. Moreover, cyber-attacks that target CPS typically
display common features, such as false data injection attacks,
also known as data integrity attacks, which aim to mislead
the targeted CPS, such as smart grid, and smart transporta-
tion, among others, by manipulating or injecting erroneous
data [67]–[77]. Using the smart grid as an example, false
data injection attacks have been shown to greatly impact
key functional components in the power grid, such as state
estimation [68], [69], optimal power flow [71], and energy
price [72], [78], along others. Given the explosion in scale
of data collection and distribution in CPS, malicious data
samples will inevitably be collected. Machine learning tech-
nologies, with unprecedented analytical abilities, have the
potential to analyze large input datasets and improve security
in CPS.

Specifically, we can leverage malicious data or identified
features as inputs to train machine learning models to detect
cyberattacks. For instance, data integrity attacks are critical
threats in power grid systems, which are typical energy CPS.
As a mechanism to detect data integrity attacks in the AC
power grid, An et al. [79] proposed a deep reinforcement
learning-based scheme. Their study focused on leveraging
deep-Q-network detection (DQND) in the main network and
a target network so that the model can be adjusted to optimize
the defensive strategy. To seek efficiency of learning process,
a quantification of the observation space sliding window
was utilized. Their experimental results demonstrated that
the accuracy of the proposed scheme in several IEEE bus
systems was better than some existing detection schemes.
Similarly, He et al. [80] focused on detecting data integrity
attacks. They proposed an optimized model to capture the
behavior of one type of false data injection attack in the
power grid system. In detail, they leveraged the Conditional
Deep Belief Network (CDBN) to learn the historical behav-
ior patterns of false data injection attacks. Distinguishing
their work from other applications of CDBN, their proposed
mechanism was designed as a classifier, while other CDBN
mechanisms were designed for time-series data. Moreover,
to reduce the complexity of training, the proposed CDBN uti-
lized the Conditional Gaussian-Bernoulli RBM (CGBRBM)
technique applied to the first hidden layer. Finally, the exper-
imental results demonstrated the superiority of their scheme
in the IEEE 118-bus test system.

Additionally, machine learning technologies have their
own privacy issues, especially in distributed machine learn-
ing systems [81], [82]. The transmission of data and

parameters between distributed computing nodes and central
server poses serious privacy implications. Related to this
issue, Shokri and Shmatikov [82] proposed a solution to deal
with issues of privacy protection in distributed learning mod-
els. Their solution aims to enable the transmission of parame-
ters while maintaining privacy and accuracy. Zhang et al. [81]
developed a privacy-preserving scheme that enables multiple
users to conduct collaborative deep model training. Also,
Yu et al. [83] proposed a differentially private approach that
optimized both privacy loss and model accuracy.

2) CHALLENGES OF LEVERAGING MACHINE LEARNING FOR
CPS SECURITY
Despite the solutions described above, challenges still persist
in regard to security issues in CPS. We now discuss the chal-
lenges of leveraging machine learning to solve such security
issues.

• In general, there are several prerequisites for establish-
ing an effective machine learning model. It is necessary
to balance high detection capabilities against resource
consumption. Additionally, machine learning models
need to be supplied with relevant and timely data of high
quality in order to obtain accurate results. Moreover,
data streams supply continuous input to enable real-time
detection, but are difficult to verify on-the-fly.

• The diversity and rapid evolution of malware and mali-
cious code increase the difficulties of identification and
detection. Malware exist that can be copied to 3 million
new samples in an hour, and some new attacks are able
to bypass end-point detection and can be launched at
variable rates [84]. At the same time, the training process
of machine learning is generally tedious, and while it is
possible to detect new malware in the wild, this is only
possible with a trained model. Moreover, such detec-
tion is obviously unforeseen, and often adversaries use
malware detection systems to test their malware against.
Simply put, the evolution of malware is continuous, and
how to develop and update well-trained machine learn-
ing models to enable effective detection is a challenging
problem.

Towards solving some of the aforementioned issues,
potential solutions include using high-dimensional data
and incremental learning for non-stationary data. Using
high-dimensional data can increase model complexity,
accuracy, and diversity of the features for malware fin-
gerprinting. Nonetheless, processing the high-dimensional
data is computationally expensive. Related to this issue,
Chen et al. [85] proposed marginalized stacked denoising
autoencoders (mSDAs) for this purpose. Their mSDAs have
two key parameters with which to control the dimensionality
of the data, namely the amount of noise and the number
of layers, which simplify the training process and reduce
training time.

Meanwhile, to increase training speed and handle incre-
mental learning, online learning strategies have been
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proposed [86], [87]. For example, Liang et al. [86] investi-
gated an online learning strategy that utilized slices of con-
tinuous data to update machine learning models in order to
fit the new datasets dynamically. Likewise, Zhou et al. [87]
proposed an online learning algorithm that implements the
denoising autoencoder, and proved that the proposed algo-
rithm could increase the convergence rate by using incremen-
tal datasets. In addition, distributed learning platforms can
extend computation capabilities, offering another potential
solution.

3) IMPROVING THE PERFORMANCE OF CPS
Recall that machine learning has demonstrated an impressive
capacity for data analysis and for obtaining unprecedented
insights and intelligence. Clearly, machine learning has the
potential to be utilized in a variety of systems for a diverse
array of applications, including natural language analysis,
image and video recognition, smart transportation, smart grid,
wireless networks, and others [28], [39], [88]. In addition,
machine learning can be leveraged for control and network
systems to promote system automation [39], [89].

A number of existing studies have sought to utilize
machine learning in CPS [90]–[94]. One particular focus
has been on optimizing network scheduling. To this end,
Jiang et al. [90] investigated existing machine learn-
ing techniques and leveraged a variety of learning tech-
niques to improve network performance in IoT systems.
Specifically, they utilized machine learning to optimize
scheduling for the IoT network. Also, Zhu et al. [91]
proposed aQ-learning based network scheduling algorithm to
select appropriate operations and leverage multi-channel net-
work resources to optimize system throughput. In addition,
Lopez-Martin et al. [92] proposed a scheme to classify net-
work traffics, leveraging machine learning to analyze pack-
age headers, and then classify traffic into different groups so
that high priority groups can prioritize network resources.

Another research direction is the optimization of
computing resource management [95]. One way to optimize
computing resources is to design and deploy distributed
platforms and algorithms [96]. For example, Liu et al. [97]
utilized deep reinforcement learning to solve the resource
allocation problem adaptively in the cloud computing sys-
tem. Their mechanism considers the problem of minimizing
power consumption management through effective dynamic
power management via machine learning implementation.
He et al. [98] focused on improving Quality of Experi-
ence (QoE) by optimizing computing resource allocation.
Specifically, they denoted the optimized computing resources
as ‘‘green resources’’, achieving their goal through the pro-
posed deep learning based green resource selector, which
selects best-fit resources.

In addition, there are a number of more machine learn-
ing applications that assist CPS operations, such as the
co-design or integration of networking and control compo-
nents in industrial IoT, in the field of energy generation
and monitoring, and traffic congestion prevention, among

others [99]–[107]. For instance, Xu et al. [99] designed
reinforcement learning based technique that could enable
the automatic configuration of control and networking com-
ponents in manufacturing CPS. Liang et al. [101] investi-
gated an edge computing based machine learning technique
that enables the automatic recognition of components in the
manufacturing process so that industry automation can be
supported.

A number of distinct deep learning models have been
proposed to predict peak electricity usage and related envi-
ronmental factors, and provide reasonable recommendations
for the power suppliers [100], [102], [103], [105], [108]. For
example, Yu et al. [102] designed a statistics-based technique
to understand the statistical distribution of energy usage. The
authors also leveraged machine learning techniques to carry
out energy usage forecasting. Also, in the field of smart
transportation, Lv et al. [106] leveraged machine learning to
predict traffic congestion, while Ma et al. [107] proposed a
CNN model to analyze traffic congestion using images of
real-time traffic conditions.

4) CHALLENGES OF LEVERAGING MACHINE LEARNING FOR
CPS
Similar to applyingmachine learning for cybersecurity, issues
persist in leveraging machine learning for applications in
CPS. First, a single machine learning model alone may
not fit all tasks in one or many situations that need to be
addressed. Generally speaking, one particular machine learn-
ing model is trained for a specific problem, or at most can be
retrained to another similar task. Moreover, CPS are them-
selves diverse [109], making it difficult to generalize one
machine learningmodel to cover all situations. Thus, a variety
of models and diverse data are necessary for system-wide
solutions.

Second, the deep neural network training process is gen-
erally a black box process [110], through which we obtain
output from input without knowing how exactly the model
obtains the results, though we do know the parameters and
weights manipulated in the training process. Indeed, for dis-
tinctly complex models, the tracking of each input’s contri-
bution to each neuron’s updates is generally infeasible, as the
parameter transmission from one layer to another layer is
complex. In CPS, data is often in the form of data streams,
dynamically generated in real-time to be stored, examined,
analyzed, and eventually trained upon by learning models.
Thus, how to dynamically adjust parameters in neural net-
works is a challenge.

Third, edge computing technologies provide flexibility and
redundancy for CPS, and enable critical real-time decision-
making and actuation [111]. Nonetheless, edge computing
nodes may not be able to support the deep learning train-
ing process due to their limited computation power in com-
parison with cloud infrastructures. Thus, how to optimize
deep learning models and systems to reduce computation
requirements and increase efficiency in distributed learn-
ing are key challenges that are currently being investigated.

158132 VOLUME 7, 2019



F. Liang et al.: Machine Learning for Security and the IoT

Furthermore, the stability of deep learning models in edge
computing infrastructures is particularly important, and thus,
it is necessary to develop error recovery schemes for dis-
tributed machine learning.

Finally, machine learning models have strict requirements
for the sizes, shapes, and types of input data. Even though
CPS collect massive data, the quality of such data may not
be guaranteed, especially as the lifetime of newly created
IoT hardware will be unverified. The input data for machine
learning must be transformed from raw data into some partic-
ular data format, a process that incurs massive computation
costs, or the machine learning systems must be able to cope
with such raw data and noise inherently. As discussed, data
in CPS systems is continuously collected by a variety of
heterogeneous sensors, and how to handle the raw data is an
enormous challenge.

C. SUMMARY AND FUTURE DIRECTIONS
Based on the study and discussion in this section, machine
learning techniques can significantly improve the perfor-
mance of cybersecurity and CPS. Specifically, utilizing
machine learning techniques can improve intrusion detection
performance (detection speed, accuracy, flexibility, etc.) by
training on historical intrusion datasets. Likewise, in CPS,
machine learning techniques are not only able to improve the
security of the system, but are also able to assist the system
to achieve automation.

Nonetheless, there are a number of unresolved challenges.

• First, the training process is time and computationally
expensive and traditional machine learning cannot han-
dle dynamic systems. For example, intrusion detection
systems are dynamic systems, in which new training
data are continuously generated. Training on the new
data continuously takes significant time, is mostly inef-
ficient, and may degrade in performance. Similarly,
CPS are also dynamic systems, and while some studies
have leveraged machine learning techniques to address
problems in CPS, the effectiveness and efficiency of
machine learning in dynamic CPS environments are
still unknown. Especially, given the rapid speed of
data updates and low latency response requirements,
the overhead of retraining on new datasets cannot be
spared by the system.

• Second, applying one well-trained machine learning
model to multiple scenarios is a challenging issue. Gen-
erally speaking, one particular machine learning model
is trained for a specific problem and cannot be easily
applied to another case without retraining and reconfig-
uration. Thus, the retraining process cannot be avoided
when applying a model to other datasets. Considering
that cybersystems and CPS are designed for specific
scenarios, and that the systems are unique and diverse,
applying one well-trained machine learning model for
all the different systems is a critical problem.

• Third, machine learning is a black-box process, and
backtracking through specific training steps is difficult,

if not impossible. Potentially, the machine learning pro-
cess in action cannot be fully explained and audited.
Finally, since cybersystems and CPS are dynamic sys-
tems, responding to rapidly changing situations is a
challenging issue, because models cannot dynamically
adjust parameters to correct for changes to a system.

Considering the challenges outlined above, we now discuss
possible future research directions, both from the perspective
of advances to machine learning practices and mechanism,
as well as the perspective of cybersecurity/CPS scenarios.

• First, from the machine learning perspective, the opti-
mization of machine learning algorithms to better fit
cybersecurity and CPS scenarios is key. In order to more
feasibly leverage machine learning for cybersecurity
and CPS scenarios, the reduction of training time and
the increase in reusability of models are critical, and
should be addressed in immediate future research. Some
studies have illustrated the ability of online learning
and distributed learning to increase training speeds and
mitigate problems in response times. Thus, online and
distributed learning approaches are feasible, particularly
for dynamic systems. Specifically, in dynamic systems,
online learning can update a model by retraining on
slices of new data, instead of on the entire dataset, clearly
increasing the training speed. Additionally, distributed
learning deploys machine learning algorithms to cloud
or edge computing nodes, which dramatically improves
computation capabilities and, in the case of edge nodes,
reduces network latency. In addition, machine learning
is a black-box process, and explaining how results are
achieved through the training process is an open prob-
lem. Explainable machine learning is indeed an impor-
tant topic, as it enables auditable machine learning, and
the evaluation of models to determine whether they were
properly or improperly trained and fit to data. More-
over, the development of explainable machine learn-
ing could further benefit machine learning development
and implementation, providing unforeseen insights into
optimal machine learning implementations and guiding
machine learning practitioners. Thus, the development
of explainable machine learning theories, mathematical
models, and tools, can enable further advances in the
field and improve usability. Most especially, determin-
ing appropriate model shapes and layers can be opti-
mized automatically, but this process is extremely time
consuming, a problem that compounds the difficulty of
long training times. Being able to rapidly define opti-
mal model parameters is an important goal that could
increase usability and reduce development time.

• Second, considering cybersecurity and CPS scenarios,
how to deploy machine learning algorithms and allocate
computation resources efficiently and in a scalable way
are critical issues that need additional research. Clearly,
as cyberspace and CPS are dynamic heterogeneous sys-
tems, distributing machine learning to make use of the
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available capacity for computing is an ideal solution
to reduce training time and expand system capabilities.
Thus, how to deploy machine learning to heterogeneous
and remote computation nodes, and how to select the
most efficient computation resources, are critical bar-
riers for system optimization and improved capacity.
While many resource allocation algorithms exist, they
are not necessarily designed for cybersecurity and CPS
scenarios and may not be effective or even viable in
this case, and thus, further work is needed. Additionally,
in CPS, networking systems transmit data and control
signals, which often have requirements of high-speed
communication for real time or near real time execu-
tion. In this case, transmitting large amounts of data is
expensive and can overload the network infrastructure,
posing additional demands on machine learning training
in terms of preprocessing and local processing to avoid
data transmission. Data normalization, discretization,
and sampling could be appropriate solutions, but these
solutions are not satisfactory in computation-limited
devices in collaboration for time-sensitive CPS require-
ments. Therefore, mechanisms to reduce the size of
collected and stored data in constrained CPS devices are
another possible research direction.

IV. ADVERSARIAL WEAKNESS IN MACHINE LEARNING:
BAD USE
As a particularly novel attack paradigm, the use of machine
learning mechanisms to subvert benign machine learning
based software and products is a particularly virulent threat,
especially considering the widespread nature of machine
learning software and development [112], [113]. While some
comfort rests in the potential to use these same adversarial
methods to improve the original models against subversion,
unfortunately, some of these attacks have no satisfactory
solution as of yet [114], [115]. Typical examples include the
use of machine learning to subvert ReCaptcha human-user
verification systems [116], [117], GANs for the subversion
of benign deep learning systems [118], the ability to extract
information related to training and testing datasets based on
the trained models [119], and the duplication of an existing
model [120], among others. This is a critical problem for both
academic and industry groups that spend untold hours ofwork
and money to develop production-ready machine learning
models.

Clearly, attacks against machine learning models have the
potential to degrade system performance when such models
are used as critical components, inducing serious malfunc-
tions and errors in cybersystems and CPS, since the attacks
significantly reduce the accuracy of learning results. Toward
a thorough consideration of such attacks, Wei et al. [121]
provided a general formulation and categorization of adver-
sarial examples. Additionally, the authors provided the basic
principles for the design adversarial attack algorithms. Thus,
thoughtful consideration for attacks on machine learning is
necessary, and should include evaluation and defense against

attacks on training (black box attack) and on the model itself
(white box attack) to mitigate risks. In the following, we first
provide an overview of adversarial learning, and then intro-
duce the impacts of launching adversarial machine learning
in cybersecurity and CPS contexts.

A. OVERVIEW OF ADVERSARIAL LEARNING
Adversarial learning can be applied in different learning
stages, and we classify adversarial attacks based on these
learning phases.

1) ATTACKS ON DATA COLLECTION
Generally speaking, we can consider generic attacks that
could tamper with the system during the data collection and
pre-processing stages, as follows:

• Evasion attacks: In an evasion attack [122], an adver-
sary can attempt to escape inspection in the system
test process by manipulating test samples. This kind
of attack can affect the machine learning model at the
creation phase and induces the model to output incorrect
results. Because evasion attacks do not touch any train-
ing data and do not participate in the training process,
it is easy to deceive the system and escape inspection.

• Poisoning attacks: In this case, an adversary attempts to
inject carefully designed training data samples that can-
not be distinguished by domain experts and that affect
the machine learning model. The manipulated data is
injected into the training phase in order to contaminate
the training process. Obviously, the contaminated data
negatively affect the accuracy of the results. As an adver-
sarial example, Demontis et al. [123] discussed the two
major factors of such an attack, the first being the adver-
sarial vulnerability of the target model, and the second
being the complexity of the surrogate model. Utilizing
these two major factors, the authors then proposed a
model that could successfully attack the target machine
learning model.

• Exploratory attacks: In exploratory attack scenar-
ios [124], an adversary focuses on detecting the learning
algorithms and structures of the target machine learning
models. In this way, the adversary can manipulate the
parameter passing in the models to achieve their attack
goals.

2) ATTACKS ON THE TRAINING PHASE
These attacks directly target the training process by either
injecting carefully modified data into the training datasets or
by manipulating the training logics so that the training results
can be affected. This is the most straightforward attack on the
machine learning process. In detail, the following two attack
strategies can be considered to target the training phase.

• Data modification and injection: Assuming an adver-
sary cannot obtain the machine learning algorithms
and configurations of the target model, the train-
ing data could instead be assessed by the adversary.

158134 VOLUME 7, 2019



F. Liang et al.: Machine Learning for Security and the IoT

Thus, modification of the data and false data injec-
tion prior to the training process (during the data
pre-processing phase) will affect the final results as
desired.

• Logic manipulation: In this case, an adversary attacks
the machine learning model by controlling the logic of
the model to tamper with the learning results. This is
considered one of the highest threats to the machine
learning process.

3) ATTACKS ON THE TESTING PHASE
These attacks are distinguished from attacks in the training
phase, in that attacks in the training phase attempt to utilize
modified or altered datasets to impact the machine learning
training process, while attacks in the testing phase attempt
to induce the model to output incorrect results after training
has been completed. The attacks on the testing phase can be
done in either a white-box or black-box manner. We consider
the formal definition of the training process of a learning
model as proposed by Chakraborty et al. [125], which is
denoted by θ ← f (X, y, r), where f represents the machine
learning model and θ is the parameter learned in the training
process. Also, r is the randomness of the training process
(random initial weights, dropout, etc.) and (X, y)’s are input
pairs, which are assumed to be independently and identically
sampled from a data distribution µ. We discuss the details of
both white-box and black-box attack in the following.

4) WHITE-BOX ATTACKS
In white-box attack scenarios, an adversary has perfect
knowledge of model parameters θ and the structure of the
target model f , such as the types of neural networks, the num-
ber of the layers and neurons, and the size of the input
tensors, among others. Furthermore, the adversary obtains the
learning algorithms (linear regression, classification, etc.) in
the training process and is able to access the training datasets
µ. Having complete information of the training procedure and
trained model, an adversary can inspect the vulnerabilities of
the target model and launch attacks that modify the parame-
ters of the model or the internal weights and biases directly.
Therefore, the white-box attack is considered a strong and
targeted adversarial method.

• Model inversion attacks: The model inversion attack
has generally been applied to facial recognition models.
For example, Fredrikson et al. [126] focused on a case
of linear classifiers in facial recognition and proposed a
white-box attack by deeply exploring the decision trees
of trained models. Experimental results demonstrated
that an adversary could recover recognizable images
by obtaining labels and learning models. Furthermore,
Wu et al. [127] extended those studies and proposed a
game-based methodology inspired by the ‘‘two worlds’’
concept of cryptographic definitions to precisely detect
this attack (i.e., when an adversary has obtained the
structure of the model). The game-based methodology

can also be used in a decision process to evaluate the
robustness of the machine learning model before the
model is released. Additionally, their methodology can
help strengthen models against attacks without degrad-
ing performance by reducing model invertibility and uti-
lizing less noise. Likewise, Hidano et al. [128] proposed
a general inversion framework (GMI) aiming at cases
that have non-sensitive attributes for the adversary to
compromise.

• Privacy inference attacks: Another typical white-box
attack is the privacy inference attack. For example,
Nasr et al. [129] extended membership inference attacks
on machine learning models to white-box attack scenar-
ios. They analyzed the outputs of the activation func-
tions, and proposed a white-box privacy inference attack
which adjusts the parameters of the learned model to
measure privacy leakage. In greater detail, they utilized
the privacy vulnerabilities of the gradient descent algo-
rithm. The results illustrated that even well-trained mod-
els can be affected by the proposed white-box privacy
inference attack.

5) BLACK-BOX ATTACKS
Black-box attacks assume little knowledge of internal
machine learning model. Instead, an adversary must carefully
choose the input datasets and analyze prior input and out-
put information to assess the vulnerabilities of the machine
learning model [130]–[132]. For example, Dong et al. [130]
proposed a black-box attack that leverages momentum-based
iterative algorithms to increase the effectiveness of the attack.
Specifically, in the iteration process, the methods can auto-
matically switch directions and escape detection.

• Non-adaptive attacks: Considering that an adversary
can obtain training datasets (input datasets) X and the
results (output) y. Such an adversary could then create
a machine learning model f ′ and train the model by
utilizing the original training data. By modifying the
parameters and structures of the model, the adversary
forces the output y′ of the model to match the output
y of the target model. The process generally creates a
mirror of the target model and the adversary can launch
white-box attacks on their newly created model to obtain
vulnerabilities that apply to both their copy model and
the original. The discovered vulnerabilities could then
be used in attacks.

• Membership inference attacks: In membership infer-
ence attacks, also known as adaptive attacks, an adver-
sary cannot obtain any information related to the training
input and output of the target model. Nonetheless, they
can obtain the well-trained model that has been pub-
lished for consumer use. The adversary then utilizes a
marked training dataset to train the model. Similar to
launching a non-adaptive attack, the adversary creates a
mirror model and trains the model with datasetX, result-
ing in output y′ equaling y. Finally, the adversary obtains
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the details of the target model and can launch attacks.
Related to this attack category, Shokri et al. [119] inves-
tigated the issue of training an inference model so that
prediction differences between the inference and target
models can be recognized, such as whether particular
inputs were trained on or not. Their results indicate
that classical machine learning models are vulnerable to
membership inference attacks.

Based on the above discussions, we generalize several key
points. In black-box attack scenarios, the adversary does not
obtain the details of the target model, such as the model struc-
ture, parameters θ , and others. Instead, the adversary attacks
the model by utilizing and analyzing the relationship between
input and output datasets, and either creates an agent learning
model to practice the attack action, or directly manipulates
the input datasets to force the target model to obtain incorrect
results.

B. ADVERSARIAL LEARNING IN CYBERSECURITY
As we discussed in Section III-A, the integration of machine
learning with IDS offers an effective approach to improv-
ing cybersecurity, through implementations such as Hidden
Markov Models (HMM) [133], Support Vector Machines
(SVM) [134], Decision Trees [135], N-grams [136], and
Artificial Neural Networks [137], among others. Nonethe-
less, some existing research has indicated that machine
learning based IDS have vulnerabilities to adversarial
attacks [138]–[142]. Specifically, adversaries are able to
launch malicious attacks against the machine learning com-
ponents, in order to inject or manipulate the learning results
and cause the failure of the IDS.

For example, Rubinstein et al. [143] evaluated poisoning
techniques against the training phase of the machine learning
in IDS and developed a defensive scheme. They illustrated
three different poisoning attack approaches, which can sub-
stantially increase the chances of evading IDS detection. Fur-
thermore, they demonstrated that the poisoning attacks can
reduce the efficiency of the target IDS, and proposed a strong
and robust antidote that can detect poisoning attacks against
machine learning in IDS and maintain the efficiency of sys-
tem. One particular problem with the majority of protection
and prevention strategies against data poisoning attacks is that
they are generally only effective when the ratio of poisoned
data is small. Thus, there remains significant vulnerability to
highly poisoned data, even though it may be quite difficult to
add the necessary degree of poisoned data into the original
data. Moreover, while honeypots can be utilized to recognize
suspicious network traffic, adversaries are able to imitate hon-
eypots to inject poisoned data to mislead machine learning
algorithms and attack the IDS [144], [145].

In response to these and other vulnerabilities, some solu-
tions have been developed to deal with adversarial attacks.
For instance, Nelson et al. [146] developed a technique using
the Reject On Negative Impact (RONI) mechanism. In detail,
the proposed approach pre-processes the original data prior
to the training stage, generating different datasets for training

FIGURE 2. An example of the machine learning pipeline.

that add testing data samples. In addition, in the training stage,
a detector is trained simultaneously, which can reject test
samples if some malicious data is detected. Nonetheless, one
limitation of this approach is that it is computationally expen-
sive, especially if the training dataset is large. An additional
technique against data poisoning attacks is robust statistics
and boosting [147]. In this approach, the statistics framework
evaluates the median and median absolute deviation (MAD)
in order to monitor the robustness of machine learning algo-
rithms. Furthermore, boosting can smooth the impact of train-
ing data samples in the machine learning model, and mitigate
the impacts of the poisoned data.

C. ADVERSARIAL LEARNING IN CPS
As the basis of IoT, sensors are able to collect and transmit
data to computing nodes over a variety of network con-
nections. With the increasing deployment of smart devices,
more and more data can be collected, which further ben-
efits the data analysis process and enables more compre-
hensive results. To handle the massive volume of data and
datasets, machine learning is imperative in CPS for analyzing
data, enabling rapid and appropriate decisions, and achieving
automation. Nonetheless, this integration also increases the
risks of attacks against machine learning models and pro-
cesses. The increasing capabilities of adversaries to attack
the machine learning process could directly lead to critical
failures, disruption, and damage. In the following, we discuss
the impacts of using adversarial learning in CPS.

The machine learning process can be simplified and gen-
eralized as a data flow process [148]. This process generally
consists of four stages from input to output: (i) the physical
objectives are captured by sensors, generating datasets that
are then stored locally or remotely, (ii) pre-processing is
performed to transform raw data for input into the specific
machine learning models, (iii) the machine learning models
process input data and generate output based on their internal
algorithms, logic, and training, and (iv) the system takes
actions according to the output from the machine learning
models. As a representative example, we consider the system
pipeline of industrial IoT, as shown in Fig. 2.

In CPS, a sensor captures data (such as a camera capturing
an image of a component). Then, the data (digital images)
are pre-processed by computation nodes and transformed for
machine learning input (tensor). The chosen machine learn-
ing model, such as a Convolutional Neural Network (CNN)
for image processing, takes the pre-processed data and cal-
culates generates output based on prior training and design.
Finally, the CPS decides upon some action according to the
results obtained from the model. From this example, attack
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surfaces can be defined based on the different stages of the
pipeline. These surfaces include the data collection and data
transmission stage, the data storage stage (both cloud and
local), the machine learning training and verification stage,
and system decision stage. Since machine learning partici-
pates in the entire loop of CPS, launching attacks against
machine learning itself can cause massive losses for CPS
operations. Also, as we discussed before, adversaries are able
to launch attacks that target machine learning in each of the
different stages.

1) ADVERSARIAL LEARNING IN THE DATA COLLECTION
PHASE
Machine learning mechanisms are data-driven techniques,
and the training results highly depend on the quality of the
raw data. Bad source data can cause unpredictable training
results. In CPS, the data collection phase is the initial stage
of the entire CPS. Additionally, some adversaries are able to
inject fake data to poison the raw datasets, which can obvi-
ously impact the machine learning results. Furthermore, CPS
require multiple datasets collected by different subsystems
and organizations, increasing the complexity of protecting
the source data. For instance, in the smart transportation
system, autopilot systems navigate vehicles automatically
based on traffic and GPS data. Meanwhile, the system also
receives other related information (parking information, gas
station information, etc.) for additional, potentially external
sources. In this phase, malicious adversaries could inject
false data into the original datasets to compromise machine
learning results and further impact the decision-making pro-
cess of CPS. Thus, it is important to have detection, pro-
tection, and prevention methods to ensure the correctness of
source data. In this direction, to prevent false data attacks,
Golle et al. [149] designed a scheme to evaluate the validity
of vehicular ad hoc network (VANET) data. Specifically, their
proposed approach evaluates the network nodes to generate
a score, and then categorizes the nodes into two groups:
safe and risky. By creating a VANET model with complete
information of the nodes in a real VANET, managers can
evaluate the location and physical properties of nodes, and
validate the correctness of the data from a particular node.

As another example, in the smart city, a number of different
kinds of sensors are deployed by different organizations and
owners to provide information through wired and wireless
networks. Nonetheless, the complexity of the network struc-
ture and its management pose high risks for data integrity.
To combat this, Ghafouri et al. [150] proposed an effective
detector for inspecting sensor and communications failures to
ensure data integrity in the smart city. The detector utilizes the
Gaussian processes for optimization, as well as an approach
for computing optimal parameters. Evaluating the proposed
detector on the OpenTripPlanner platform, the results showed
that the detector could reliably increase data integrity in the
smart city. Furthermore, Ghafouri et al. [151] proposed a
general framework that considered attacks on a subset of
sensors in CPS, with specific emphasis on overcoming the

limitations of their prior work [150]. This framework con-
sists of a general anomaly detection module that predicts a
measurement for each sensor and leverages three different
regression models: linear, neural network, and combined.
A Stackelberg game was designed to evaluate the thresholds
for each sensor to balance false alarms. The implemented
framework was demonstrated to be effective without increas-
ing the false alarm rate.

2) ADVERSARIAL LEARNING IN THE TRAINING AND TESTING
PHASE
Adversarial learning in the training and testing phase can
be used to attack machine learning mechanisms directly
by manipulating learning algorithms or injecting malicious
datasets into both training and testing processes. For instance,
in a smart grid system, machine learning techniques are
widely utilized for predicting electrical power usage in order
to balance demand and supply. Thus, attacking the smart grid
by injecting fake electricity consumption data is one potential
approach to attack the smart grid. Nonetheless, the smart grid
is a dynamic system, and compromising the machine learning
results of such a system requires the injection of fake data
continuously, which is not efficient from an attack perspec-
tive. Instead, attacking machine learning modules directly
(e.g., black-box or white-box attacks) can have the maximum
impact. Thus, attacks directly on the training and testing
phases pose serious risks to CPS.

To consider and counter such attacks, Hu and Tan [118]
studied black-box attacks in CPS and proposed a genera-
tive adversarial network (GAN)-based algorithm to thwart
machine learning based attack detection modules. The pro-
posed MalGAN utilizes a substitute detector to fit the target
black-box attack detection module. The substitute detector
can simulate the original attack detection module and is used
to evaluate and modify malware samples to minimize the
detection rate. The implementation results show that Mal-
GAN is capable of reducing the attack detection rate to nearly
zero and negates the original machine learning based attack
detection module. Similarly, Eykholt et al. [152] proposed
an attack mechanism, called Robust Physical Perturbations
(RP2), to maximize the attack impact against CPS. The
proposed RP2 utilizes Deep Neural Networks and attacks
the testing process, fooling the testing process with good fit
results when the fit is actually poor. To detect attacks utilizing
machine learning models, Jones et al. [153] designed an
unsupervised learning algorithm to detect the attacks against
machine learning models. They utilized the signal temporal
logic (STL) formula, which is typically used for early detec-
tion via online monitoring. A simulate train brake systemwas
used as the attack target in their experiments, and the results
demonstrated that the STL can detect attacks with machine
learning models.

D. SUMMARY AND FUTURE DIRECTIONS
In this section, we have reviewed the majority of existing
adversarial learning attacks in different machine learning
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phases for both cybersecurity and CPS. Machine learning
techniques have shown several glaring vulnerabilities that
can be leveraged to launch adversarial attacks. In particu-
lar, adversaries are able to maliciously inject false data or
noise into original datasets to disturb the training results.
For example, adversaries can tamper with IDS training data,
modifying categorical labels or add inaccurate information,
inducing the machine learning algorithms to output incorrect
results. Although there exist some detection and protection
approaches, most approaches have limitations, such as being
too computationally expensive, as well as only being effective
when malicious data make up a small percentage of the
entire dataset. In addition, the complexity of the structure and
management of CPS causes additional risks, which malicious
adversaries can easily manipulate, specifically in training
data and learning processes. For example, data collected by
different sensors may belong to various geo-distributed orga-
nizations. It thus is difficult to ensure the full protection of
all the sensors at all locations and organizations. Thus, there
are still numerous open challenges in detecting adversarial
attacks.

Since machine learning techniques are widely deployed
in cybersecurity and CPS applications, the risks of attacks
against machine learning are massive and increasing. Thus,
as immanently needed research, the discovery of vulnera-
bilities in existing systems, the development of defensive
approaches, and the discovery of vulnerabilities in defensive
strategies are critical.

• First, to detect adversarial learning, it is necessary to
understand and leverage correlations and distinctions
between false and real data [69], as well as to understand
the prominent and state-of-the-art techniques ofmachine
learning [3], as mechanisms to develop and carry out
attacks. Typically, we can consider adversaries to launch
attacks in unpredictable ways with evolutionary meth-
ods, iterating upon detectable attacks to improve sub-
version. For example, adversaries can hide their attack
methods by slowly poisoning data over time, such as
by manipulating sensors and modifying parameters over
a long period to evade detection and remain within a
local statistical range. These adversarial attacks are quite
difficult to detect [132]. To combat such attacks, pro-
posed methods include nonparametric cumulative sum
schemes, as well as distributed detection mechanism.
Nonetheless, there exists no comprehensive strategy for
adversarial detection in either cybersecurity or CPS sce-
narios.

• Second, as we have identified, machine learning mech-
anisms themselves have vulnerabilities and are easy
targets. Indeed, existing research has demonstrated that
adversarial learning can compromise many different
machine learning models, including DNN, CNN, and
RNN, among others. Thus, strengthening the security
of machine learning algorithms and models is another
critical research direction.

• Third, based on our discussion, machine learning tech-
niques are widely used in cybersecurity and CPS sce-
narios, and adversaries will increasingly attack machine
learning models. Thus, a comprehensive defensive strat-
egy is necessary, not only to secure machine learning
techniques, but also to develop appropriate management
and policies to prevent bad practices in machine learning
development. A variety of sensors are geographically
dispersed in complex CPS utilizing distinct protocols
and managed by various organizations and stakeholders.
In this case, it is difficult to unify defense strategies in
deployment, and thus it is necessary to deploy robust
data verification strategies to ensure the correctness of
transmitted data. In addition, to protect machine learn-
ing in the training and testing phases, protection and
redundancymechanisms need to be added to the learning
algorithms, as well as the underlying architectures.

V. MALICIOUS MACHINE LEARNING: UGLY USE
As outlined in the prior sections, machine learning techniques
have become the most popular data analysis methods, and
are being applied in both cybersecurity and CPS to analyze
complex sensor data. As we discussed, machine learning can
not only increase the detection rate of cybersecurity, but also
improve the performance of CPS to achieve automation and
artificial intelligence.Moreover, sincemachine learning tech-
niques embody critical roles in such fields, attacking machine
learning models and algorithms can achieve critical damage
across entire systems. On the other hand, because themachine
learning techniques have powerful data analysis capabilities,
they can also be used by malicious adversaries to analyze
the vulnerabilities of cybersystems and CPS, as well as assist
in successfully delivering attacks. In this section, we discuss
some cases related to utilizing machine learning as attacking
tools against cybersecurity and CPS.

A. OVERVIEW
Machine learning techniques are just starting to be used
by adversaries to improve the effectiveness of their attacks.
Especially against the cybersystems and CPS, adversaries
are able to leverage machine learning to analyze the vul-
nerabilities of cybersystems and CPS, since the cybersys-
tems and CPS widely utilize the data analysis to improve
performance. In the following, we provide an overview of
leveraging machine learning to attack cybersystems and CPS.

In the cybersystems, machine learning and neural net-
works can be utilized by malicious adversaries to amplify
and enhance some types of existing attacks [154]–[157]. For
example, adversaries are able to utilize machine learning
algorithms to replicate and imitate the regular actions of users
and hide attacking actions. In addition, by applying data
analysis, machine learning and neural networks are able to
aid adversaries to find and detect network system vulnerabil-
ities. Moreover, adversaries can use existing external benign
machine learning systems to improve their attack method-
ologies, such as in the use of malware detection systems
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to improve detection avoidance, as well as to improve their
understanding of a target. For example, adversaries are able
to use machine learning to obtain which attack method is the
most efficient approach against a specific network structure.

Machine learning can also be utilized to attack verification
code systems and gain unauthorized access [158]–[160]. For
example, Rosebrock [160] proposed a CNN model to rec-
ognize verification codes and obtain access authentication.
Furthermore, network attacks have a well-known history of
causing site outages and damage to systems. Just as system
administrators have used machine learning to analyze net-
work traffic for anomalies and intrusions, so too can adver-
saries use machine learning models to analyze network traffic
and predict peaks in network loads. They can then launch
precisely timed strong attacks to damage systems at critical
usage peaks, or apply stealthy attacks that mimic typical
network traffic to remain anonymous or increase network
loads discreetly and cause network failures.

In the following, after a brief overview, we consider mali-
cious machine learning used against generalized cybersys-
tems and CPS. To automatically monitor and control systems
in CPS, distributed sensors are deployed to necessary loca-
tions to enable communication across the CPS via network
facilities. The complexity of the system and the breadth of
devices deployed increase the vulnerabilities and risk for the
system. In particular, there are three components in CPS
that can be targeted by adversaries: computing, control, and
network. Attacks on the network component have already
been mentioned above. We illustrate the attacks which focus
on computing and control components below.

Targeting the computing component, adversaries are able
to use machine learning to analyze computing task loads and
predict the next computing load peaks. With this information,
adversaries could inject additional computing tasks during
peak periods to increase computing time and cause system
errors, especially for time-sensitive systems. For example,
in a distributed computing platform, since the computation
nodes have limited computing power, a computation task is
sent to different computation nodes. Depending on the spe-
cific computation resource selection algorithms, computing
loads may not be balanced in the target time period, meaning
that some computation nodes have higher computing loads
than others. In this case, adversaries are able to use historical
task load datasets for each computation node as training
datasets and train the machine learning models to predict
upcoming computation load peaks. Injecting additional com-
putation tasks during computation load peaks could then
maximize the effect of the attack and cause system errors and
failures.

In the control component, machine learning can create
models that themselves improve the function or performance
of attacks, in order to analyze the effect of an attack. More-
over, it is possible to analyze the control process to obtain key
values to damage the control process itself. For example, in a
typical manufacturing process, a temperature control system
precisely maintains the temperature of industrial processes,

and the control process is precise and time-sensitive. There
are several key actions in this process, including tempera-
ture variations, control signal intervention, and temperature
recovery time. Based on these key values, adversaries are
able to create multiple features for machine learning model
training, and utilizing the trained model, an adversary could
obtain the relationships of those parameters. Furthermore,
by manipulating the control signal intervention time or the
control process, the adversary could then disturb the system
control process and cause system anomalies.

B. CYBERSECURITY
In an era where the malicious use of machine learning is com-
monplace, rapidly developing machine learning techniques
offer huge benefits to cybercriminals [161]. For example,
existing research has shown the ability of Artificial Intel-
ligence to power malware [162]. Utilizing machine learn-
ing techniques, adversaries can configure an agent machine
to automatically coordinate different malware and launch
attacks targeting various vulnerabilities of the network sys-
tem, affording attacks that easily overload a victim’s defen-
sive strategies. For example, Falco et al. [163] utilized arti-
ficial intelligence planning techniques that focused on the
defensive strategies of network systems and that identified
vulnerabilities automatically. Moreover, they proposed an
automated attack generation scheme that can output detailed
attack trees. In the following, we discuss different machine
learning attacks in different malicious uses.

1) MALICIOUS ACCESS
One of the most intuitive malicious uses of machine learning
is to obtain access permission for unauthorized users, which
we call malicious access. We know that machine learning
techniques have shown impressive achievements in machine
vision. These mechanisms have the potential to be used by
malicious adversaries to deceive network authentication sys-
tems. For example, Agarwal et al. [164] proposed a machine
learning based social media analysis framework that utilizes
machine learning to capture and analyze the captcha during
the login process. By comparing and training the huge cap-
tured datasets, machine learning can bypass captcha based
verification systems that are designed to exclude machine
users. Likewise, Stark et al. [165] investigated a CNN based
attacking neural network, which recognizes captcha pho-
tos and subvert the human/machine distinguishing process.
In detail, to increase the correctness of the model, they uti-
lized an active learning approach, which trains a comparably
small slice of training data in the initial phase, and adds new
training data continuously in subsequent training processed.
The evaluation results showed the proposed attacking neural
network achieved a success rate of over 83% in bypassing the
captcha systems.

Furthermore, utilizing machine learning techniques, mali-
cious adversaries are able to effectively leverage leaked
user information, analyzing historical user name and
password data, in order to guess the current user names
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and passwords. Based on the huge size of data and related
information, machine learning can significantly increase the
speed of malicious password cracking [166]. For example,
Lyastani et al. [167] carried out a large-scale investigation
on how password managers could influence the real-world
passwords of users. In addition, Hitaj et al. [168] proposed
an enhanced password analysis tool named passGAN that
utilizes Generative Adversarial Network (GAN) architecture.
Their passGan can autonomously train on leaked passwords
from actual systems and then provide high-quality password
guesses. Their evaluation results demonstrated that passGAN
could achieve better performance than some traditional pass-
word analysis tools, such as ‘‘HashCat’’ and ‘‘John the Rip-
per’’. Other studies focused on leveraging machine learn-
ing to generate fake human voices, fingerprints, and human
faces to deceive authentication systems. These can be used
against network authentication systems that utilize biometric
authorization mechanisms, such as facial recognition and
fingerprint identification. Machine learning techniques can
easily create fake information to bypass such authentication
systems. An example application can clone voices [169] and
is able to deceive authentication systems.

2) EVASIVE ATTACKS
In network security systems, generally speaking, the pro-
cess of creating malicious programs requires particular pro-
gramming tools, whose features are recorded by security
systems such as IDS. The IDS can then detect malicious
features by checking for known malware signatures [170].
Nonetheless, since machine learning techniques can be uti-
lized by malicious adversaries, machine learning can be used
to evolve malicious programs by learning the vulnerabilities
of IDS [171]. Moreover, machine learning techniques are
able to generate computer code and programs automatically
by learning from existing programs [172]. Thus, without
supervision and control, machine learning can make existing
malicious programs more effective and evade detection or
tracking, even by human investigators.

3) PHISHING AND RANSOMWARE
Machine learning can additionally be used to drive ran-
somware attacks [173]. At present, most criminal organi-
zations leverage machine learning to modify well-known
ransomware programs and generate various samples [174].
These cyberattacks are autonomous in selecting targets, infil-
tration, evading detection, and sabotaging the target. Yet,
there still exists significant space for leveraging machine
learning to further improve the efficiency of attacks. For
example, traditional cyberattacks, such as distributed denial
of service (DDoS) attacks, ransomware, and backdoor
attacks, all attack the targets autonomously. Nonetheless,
these rely on predefined configurations. Thus, integrating
machine learning systems to improve the attack process could
complete the entire attacking loop and supervise malicious
programs to carry out complex tasks, possibly evolving mali-
cious programs automatically.

C. CPS
As we discussed before, CPS have three key components,
which are computing, control, and networking. CPS involve
a variety of technologies, such as distributed computing,
machine learning, and artificial intelligence, among others.
The distributed structure and complex techniques raise poten-
tial risks and vulnerabilities for adversaries to exploit. In addi-
tion, increasingly, CPS utilize data collection and analysis to
achieve automation, which also enables a variety of negative
effects. For instance, adversaries are able to utilize machine
learning to analyze data to improve attack effects. As we have
shown above, the application of machine learning for attacks
against human users and traditional systems, while nascent,
demonstrates significant power for disruption. Indeed, even
in CPS, traditional weaknesses remain in a number of cases
(i.e., human users), and limitations of the technologies may
exacerbate or generate newweaknesses (i.e., system scale and
capabilities).

We now discuss some existing research on CPS attacks.
For example, Gerdes et al. [175] described an attack focusing
on degrading the performance of automated vehicular trans-
portation systems. In the target system, vehicle platooning
strategies for motorcades and adaptive cruise control for each
vehicle are key components. Those strategies manage and
control automated vehicles efficiently and safely. In their
study, the authors leveraged a maliciously controlled vehicle
to interfere with the system and force the system to reduce
the speed of vehicles to avoid accidents. Moreover, to achieve
the best attack effect, it is possible to utilize machine learning
models to analyze vehicle platooning datasets and determine
which action causes the worst effects. Then, adversaries
can control malicious vehicles to achieve the desired attack
effects. Likewise, Chen et al. [176] investigated an attack
designed to change the CPS state from the current to a tar-
get state, reducing the probability of being detected by the
defense system, while ensuring the attack effect. Since CPS
typically run in different states, they designed a systemmodel
and formulated a cost function to compute theminimal proba-
bility of being detected by the defense system. In fact, there is
also an approach that utilizes machine learning to analyze the
minimal probability. It remains to be determined if machine
learning systems can subvert these systems in practice. In the
case of traditionally programmed software systems, it like-
wise remains to be seen whether machine learning systems
can circumvent or overcome specifically designed logic.
Especially in CPS, these questions are paramount, as the
number of reachable devices in complex CPS is unprece-
dented, and the resulting disruption may be costly on a scale
yet unforeseen. In the case of Industrial IoT, the damage
could result in the collapse of a business, notwithstanding the
potential for physical harm that could result from subverted
machinery.

In addition, various critical infrastructures have internal
interdependence which is physical, cyber, geographical, and
logical [177]. Because of these complex relationships, attacks
on each component can propagate through different domains
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and cause secondary and cascading damage [77]. For exam-
ple, adversaries are able to attack a data trading system to
increase the data price, which then prevents a CPS from
obtaining a necessary dataset to execute the computing pro-
cess. Furthermore, leveragingmachine learning technologies,
adversaries are able to counterfeit credentials to obtain access
permission. For instance, machine learning can analyze ver-
ification codes and adversaries can then bypass the verifi-
cation code to access the system. Moreover, machine learn-
ing can synthesize false face identification data to deceive
systems.

D. OTHER MALICIOUS USES OF MACHINE LEARNING
As stated above, we consider the malicious use of machine
learning as the application of machine learning models in the
attack of some target. Understanding that machine learning
provides unprecedented analytical power, it can be utilized
by an adversary as easily as a benign actor. Nonetheless,
we also observe that this particular strategy is quite new,
and few examples exist of this mechanism in research or in
practice. As subsets of machine learning for malicious use,
we first consider targets that are traditional and generic in
scope. These can be human users over Internet or intranet,
as well as autonomous or machine-type systems.

1) ATTACKS ON GAMES AND GAMBLING
Game scenarios are probably the most obvious targets for
machine learning based attacks. Particularly, the optimization
of strategy and the autonomy available in computing systems
make game scenarios ideal targets. Indeed, recent significant
media attention has focused on tangible competitions and
exhibitions that have demonstrated the power of artificial
intelligence in learning and winning complex strategic com-
petitions, such as the games Go, Shogi, and Chess mas-
tered by AlphaZero [178], the AIIDE Starcraft Contest [179],
in which Facebook’s entry took second place [180], one-
on-one and five-on-five Dota2 matches played by OpenAI’s
bot iterations [181], [182], and the online collectible card
game (CCG) Hearthstone [183], [184], among others.

The application of machine learning in this context is par-
ticularly problematic, as it specifically subverts the competi-
tion for undeserved monetary gain. In its extreme, one could
imagine user-programmed machine learning models for use
in online gambling and betting to gain a competitive edge.
Moreover, while this may be banned by the laws or policies
governing such sites, it may be difficult to police, especially
if sophisticated machine learning models are designed and
trained to imitate typical user behavior (e.g., improvement
over time, and skill levels and win frequency within normal
bounds) to subvert detection. Further still, the use of machine
learning directly with software application programmable
interfaces (APIs) provides direct advantages that human com-
petitors simply cannot compete with.

2) AUCTIONS AND COMPETITIONS
In a similar way, we consider the use of machine learning
to learn optimal strategies for auction scenarios that are

sufficiently complex, as well as when human user patterns
can be learned and subverted. For instance, Zhang et al. [185]
used n-gram and LSTM models to predict the end of bidding
in online penny auctions, such as DealDash, with high accu-
racy, and clustered bidders into groups. Assuming that other
such auctions operate at the same time, it is feasible that these
platforms could be subverted by machine learning models.
In a tangentially related work, Chen and Qiu [186] developed
a Q-learning algorithm to be used by secondary users in a
cognitive radio spectrum allocation auction. In a competitive
setting, all tested nodes used the algorithm to learn from
competitors and achieved optimal results for their own needs.
In this case, all users have the same learning capacity and
mechanism, which may be infeasible in reality, and could
be vulnerable to adversarial systems. Moreover, from this
example, we can consider a similar mechanism as applied
against human users who may be severely outmatched in
ability to analyze user patterns and achieve optimal rewards.

3) HUMAN-CENTRIC ATTACKS
Furthermore, human-centric attacks have the capacity to
accelerate and optimize social engineering techniques, which
can fool the general population into incorrect action through
deliberate manipulations. A particularly powerful demon-
stration was offered by Seymour and Tully [187], which
automated and improved the subversion capabilities of spear
phishing attacks via the use of recurrent neural networks.
Their mechanism specifically targeted high-valued users.
Through the analysis of successful attacks, attack efficacy
can be improved. Additionally, Melicher et al. [188] imple-
mented a password strength assessment through machine
learning algorithms, which ultimately over-estimated pass-
word strength. Applied in the opposite direction (i.e.,
against users), such a password assessment system could be
employed to mitigate massive volumes of leaked and sub-
verted passwords and improve intrusion systems.

4) BLACKMAIL AND TARGET DELIVERY
In terms of blackmail and reputation damage, the fabrication
of images, video, and audio recordings [189] can be used
as leverage for adversaries to extort value and actions from
human victims. While these mechanisms are most successful
when they are trained on high-quality images and videos of
the target (most specifically celebrities), this type of data is
becoming more available via purchase or theft from insecure
social media platforms. In the most direct attack yet using
machine learning, a recent attack developed by Kirat [190]
utilizes embedded machine learning software to ensure pay-
load delivery to the target, through methods such as facial
recognition.

E. SUMMARY AND FUTURE DIRECTIONS
In this section, we have illustrated some malicious uses of
machine learning in the cybersecurity and CPS areas. By uti-
lizing machine learning techniques, the malicious adversaries
are able to configure a malicious agent that automatically
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and continuously selects, infiltrates, evades, and even sabo-
tages the target systems. Specifically, in the selection stage,
the malicious agent automatically evaluates the probability of
compromising targets. In the infiltration stage, the malicious
agent can leverage machine learning algorithms to enhance
the effects of attacks by analyzing the attack results. From the
attack results, machine learning can obtain the best means of
attack for a specific system. In the evasion stage, the mali-
cious agent can hide the attack actions by using machine
learning schemes, such as manipulating the system defense
strategy or duplicating legitimate activities.

After the prior three stages, the system may have been
infected by the malicious agent, leading to the sabotage
stage. In this stage, machine learning can deploy viruses, and
control systems and ransomware. Based on the discussions,
leveraging machine learning techniques as a potential mali-
cious attack tool will raise significant risks for cybersecurity
and CPS. Although there are many protection and detection
strategies, these generally focus on traditional attacks, such
as Denial of Service, SSL attacks, and Backdoor attacks,
among others. In addition, malicious use of machine learning
is dangerous, since machine learning techniques are able to
produce falsified photos and video, and there are minimal
detection and defense approaches.

Because of the risks detailed above, we now outline a
number of potential solutions and research directions.

• First, one interesting approach to preventing or limit-
ing machine learning based attacks is by limiting the
abilities of production machine learning systems. For
example, a recent study proposed the use of virtual
machines (VMs) with boundaries for running machine
learning processes to mitigate attack damage and limit
the reach of adversaries [191]. This type of mechanism
can also be used to separate machine learning processes,
and in concert with other techniques such as transfer
learning [192], could be used to separate training and test
data and prevent data theft. In reducing the effectiveness
of attacks, we consider systems that integrate machine
learning with human users, making the final critical
decision. In these cases, examples of which include
smart transportation and smart grids, machine learning
systems can feed information and decision analytics to
human users to implement. In such cases, machine learn-
ing systems must be reliable and trustworthy. Thus, how
to combine the machine learning smoothly with human
decisions is a necessary research direction. In addition,
how to prevent such integrated systems from being sub-
verted is critical. Often, human users are easier targets
to subvert, and thus developing and improving imple-
mentation strategies to mitigate human error are also
necessary.

• Second, another possible approach to thwarting the use
of machine learning based attacks is to accelerate the
testing and deployment of machine learning models
and attacks in simulated environments, or sandboxes,

and systematically studying the attacks, which leverage
machine learning techniques to extract critical finger-
print and process information. By doing so, researchers
can achieve a better understanding and increase the
confidence of detecting and protecting systems against
real-world attacks. In addition, protecting against the
leakage of sensitive data is critical. Machine learning
based attacks often rely on analyzing datasets relevant
to the target, avoiding machine learning attacks requires
comprehensive data protection and secured segrega-
tion of storage. Moreover, enhanced detection meth-
ods are necessary, such as AI against AI. Specifically,
since machine learning is now a tool for malicious
adversaries as well as positive actors, defenders must
employ advanced machine learning techniques as defen-
sive weapons too. This includes machine learning to
detect traditional and non-traditional attacks, machine
learning for advanced authorization, and machine learn-
ing in combination with tested security techniques for
multi-level security and defense.

• Finally, while advanced legal structures are potential
deterrents, we know that these will not prevent bad
actors from developing advanced attack techniques, yet
these legal frameworks should be strengthened nonethe-
less. We need to formulate and optimize related laws to
limit the malicious use of machine learning wherever
possible, and enable recourse for those systems targeted.
As well, it is imperative that government entities and
communities are aware of the deficiencies in technolo-
gies that have been widely deployed, as well as threats
that utilize such technologies to achieve more devas-
tating results. This awareness should lead to actions
to enable regulatory agencies, oversight bodies, and
security agencies to investigate and develop appropriate
responses to such threats in the form of policy positions
and the development of further technologies for public
and private use.

VI. FINAL REMARKS
In this paper, we have developed a broad understanding
of machine learning for positive and negative uses, and
have extolled the vulnerabilities of machine learning systems
against traditional and machine learning based attacks. In the
context of cybersecurity and CPS, we have considered the
good use of machine learning, especially toward improving
system performance and achieving automation.We have like-
wise presented the bad use of machine learning. That is,
how the widespread use of machine learning raises new and
unresolved vulnerabilities in a variety of systems, and the
significant lack of defensive capabilities. Finally, we have
addressed in detail the ugly use of machine learning, or the
weaponization of machine learning toward the subversion
of user confidentiality, system reliability, and service, and
the improvement of intrusion and obfuscation mechanisms.
Of particular concern, the vulnerabilities of existing machine
learning systems provide unprotected attack surfaces, ripe for
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exploitation. At the same time, the use of machine learn-
ing to improve attack success, efficacy, and strength should
raise alarms across all industries and research, as the lack
of defenses against machine learning based attacks make us
all vulnerable. Critical research is necessary to strengthen
detection and defenses against such machine learning based
attacks, especially in critical infrastructure systems with the
potential for massive disruption, destruction, and loss of life.
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