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ABSTRACT The Preisach model, which is formulated as a weighted superposition of hysteresis kernels,
has been widely used for hysteresis modeling, especially in smart-material-based actuators. However, in the
classical Preisach model, a trade-off is always required between the model accuracy and the number of
the hysteresis kernels. To deal with this problem, a model order reduction technique based on the discrete
empirical interpolation method (DEIM) has recently been proposed. The method can largely reduce the
number of the hysteresis kernels while barely losing the model accuracy. It is noted that the kernel weight in
the reduced DEIM-based model can be both positive and negative, which means that the monotonicity of the
Preisach model could be lost. The monotonicity is a very important property especially when constructing
the inverse Preisach model. Furthermore, the loss of the monotonicity can also deteriorate the model
predictability. In the current paper, a modification strategy is proposed. In the modified reduced Preisach
model, the DEIM is only employed to select the dominant hysteresis kernels while the corresponding
weights of the selected hysteresis kernels are re-identified by solving a constraint optimization problem.
Systematic simulation studies and experimental validation are carried out to demonstrate the effectiveness
of the proposed strategy.

INDEX TERMS Discrete empirical interpolation method (DEIM), hysteresis nonlinearity, monotonicity,
reduced Preisach model, smart-material-based actuator.

I. INTRODUCTION
Due to their intrinsic multi-physics coupling effects and
excellent properties, smart materials and structures have
been widely employed for engineering applications, such
as different smart-material-based actuators, sensors, energy
harvesters and vibration dampers [1]–[8]. However, severe
hysteresis nonlinearity is a common phenomenon present
in the input-output response of these smart-material-based
devices. The hysteresis nonlinearity can significantly affect
the device performance and may even induce oscillations and
instabilities [9], [10]. To compensate the negative influence
of the hysteresis nonlinearity, and to analyze, control as well
as optimize these smart-material-based devices, a hysteresis
model should be developed at first [11]–[13]. Among the
existing hysteresis models, the Preisach model has received
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considerable attention, because it can capture the basic fea-
tures of the hysteresis phenomenon in a conceptually sim-
ple and mathematically elegant manner. The Preisach model
has been successfully used for describing hysteresis non-
linearity in many different smart materials and structures,
especially in various smart-material-based actuators, such
as piezoelectric, magnetostrictive and shape memory alloy
actuators [14]–[18].

The Preisach model was firstly proposed by a Ger-
man physicist Preisach in 1935. The original physics-based
model was then extended by a Russian mathematician
Krasnosel’skii, who separated the physical meaning from the
original Preisach model and reformulated it as a pure mathe-
matical model. As a phenomenological model, the Preisach
model can capture various types of hysteresis nonlinear-
ity. The continuous Preisach model is formulated as a
double integral with respect to the two switching thresh-
olds of the underlined hysteresis kernels. To facilitate the
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implementation in real-world applications, the continuous
form model needs to be discretized and the accuracy of
the discrete Preisach model relies on the discretization
level, which determines the number of the hysteresis ker-
nels [19], [20]. A higher model accuracy requires a larger
number of hysteresis kernels, which in turn leads to a heav-
ier computational cost. To deal with this trade-off problem
between the model accuracy and the number of the hysteresis
kernels, different methods have been proposed in the litera-
ture. J. Zhang et al. proposed an optimal compression method
based on the Kullback-Leibler (KL) divergence, which was
utilized to measure the information loss in discretizing the
Preisach model [21]. In the original work, the optimization
was realized by an exhaustive search due to the particular
setting of the Preisach plane. And an enhanced work based
on dynamic programing was proposed for the generalized
Prandtl–Ishlinskii model [22]. Recently, based on the discrete
empirical interpolation method (DEIM), Z. Li et al. proposed
a model order reduction strategy for the Preisach model [20].
The strategy can reduce the number of the hysteresis kernels
to less than 5% of that of the original full-order model while
barely losing the model accuracy [20], [23]. However, it is
noted that the re-constructed weights corresponding to the
selected dominant hysteresis kernels in the reduced Preisach
model using the DEIM can be both positive and negative,
which means that the monotonicity of the Preisach model
could be lost.

Monotonicity is a vital important property associated with
the Preisach model. Due to the absence of an analytical
inversion, most existing inverse Preisach models, which are
employed for feedforward control in smart-material-based
actuators, are constructed numerically based on the mono-
tonicity of the Preisach model [24]–[26]. Besides, the loss of
the monotonicity may also deteriorate the model predictabil-
ity. To preserve the monotonicity in the reduced model,
a modified reduced Preisach model beyond the DEIM is
proposed in the current paper. Firstly, the DEIM is employed
to select the dominant hysteresis kernels. As for the weights
corresponding to the selected dominant hysteresis kernels,
instead of being constructed directly by the DEIM, they are
re-identified by solving a constraint optimization problem.
The nonnegative property of the kernel weights is guaranteed
through the constraint adopted in the optimization process.
The superiority of the proposed model will be demonstrated
by a systematic comparison with the reduced model proposed
by Z. Li et al.

The current paper is organized as follows. A brief intro-
duction to the Preisach model is given in Section II, where
a detailed discussion regarding the relationship between
the monotonicity and the Preisach density function is car-
ried out. Section III reviews the reduced Preisach model
using the DEIM that was proposed by Z. Li et al. Besides,
a detailed analysis of the problems associated with the
reduced model using the DEIM and a modification strategy
are also presented in Section III. Systematic simulation stud-
ies and experimental validation are respectively provided in

Section IV and Section V. Section VI summarizes the results
of the current paper.

II. PREISACH MODEL
The classical Preisach model is formulated as a weighted
superposition of hysteresis kernels with different switching
thresholds:

y (t) =
∫∫

T
µ (r, s)

[
Rs−r,s+r (u)

]
(t) drds, (1)

where u (t) denotes the input and y (t) the output. w (t) =[
Rs−r,s+r (u)

]
(t) is a multivalued relay-type hysteresis ker-

nel defined as:

w (t) =


+1, if u (t) > s+ r
−1, if u (t) < s− r
w
(
t−
)
, if s− r ≤ u (t) ≤ s+ r,

(2)

where r and s are values that determine the switching thresh-
olds, and t− = lim

%→0,%>0
(t − %) represents the previous time.

µ (r, s) is the density function of the Preisach model, which
is defined on the Preisach plane T =: {(r, s) ∈ T |r − � <

s < −r +�, r ≥ 0} with a constant � > 0.
The output evolution of the Preisach model is well under-

stood via the Preisach plane. At each time t , the Preisach
plane T consists of the subsets, T+ (t) and T− (t), where
T± (t) =:

{
(r, s) ∈ T±| (r, s) ∈ T ,Rs−r,s+r = ±1

}
. Sup-

pose that the input is increased from the negative limit −�,
where all the hysteresis kernels on the Preisach plane retain
output −1, monotonically to a value u1. The hysteresis ker-
nels Rs−r,s+r with s + r < u1 switch from −1 to +1,
while those with s + r > u1 retain output −1, as illustrated
in Fig. 1(a). If the input is then decreased monotonically from
u1 to u2, the hysteresis kernels with s − r > u2 switches
back from +1 to −1, as shown in Fig. 1(b). A staircase-
like curve that separates the region T+ from T− can be
obtained with a piecewise-monotone input. As illustrated in
Fig. 1(c), if the input takes a small variation+1u1 (or−1u2),
the output variation can be expressed as: +2

∫∫
1T1

µ (r, s)
(or−2

∫∫
1T2

µ (r, s)). It is noted that the monotonicity of the
Preisachmodel is determined by the signs of the integration of
the density functionµ (r, s) on the small incremental regions.
With a nonnegative µ (r, s), the integration is always non-
negative and the monotonicity of the model is automatically
guaranteed. On the other hand, the monotonicity could be lost
when the sign of the density function is indetermined.
In (1), the output of the Preisach model is expressed as a

double integral with respect to r and s. To implement it in real-
world applications, the double integral needs to be approxi-
mated through a numerical cubature technique. Generally, a
discrete Preisach model can be formulated as:

y (t) =
∑∑

µij
[
Rij (u)

]
(t) risj, (3)

where µij and
[
Rij (u)

]
(t) are respectively the values of

µ (r, s) and
[
Rs−r,s+r (u)

]
(t) at the discretization points,

and ri and sj denote the weights of numerical integration.
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FIGURE 1. Illustration of the output evolution of the Preisach model via the Preiasch plane. (a) The input monotonically increases from the
negative limit to u1. (b) The input monotonically decreases from u1 to u2. (c) The input takes small variations at u(t).

Here, the Preisach plane is evenly discretized into L intervals
along the s + r and s − r directions, which leads to a total
discretization number n = L(L+1)

2 . Employing the midpoint
rule, the discrete Preisach model can be reconstructed as:

y (t) =
∑L

i=1

∑i

j=1
µij
[
Rij (u)

]
(t)
(
2�2

L2

)
. (4)

To facilitate the identification of the Preisach density function
µ (r, s) in real-world applications, the output of the discrete
Preisach model is further reformulated as:

y (t) =
∑n

k=1
akwk = aTw, (5)

where a = [a1, a2, · · · , an]T = 2�2

L2
[µ11, µ21, · · · , µLL]T

is the combined weight vector, which includes the influ-
ence of the weight 2�2

L2
, and w = [w1,w2, · · · ,wn]T =

[R11,R21, · · · ,RLL]T is the output vector of the hysteresis
kernels at the corresponding discretization points.

III. REDUCED PREISACH MODEL
In the above discrete Preisach model employing numeri-
cal technique with evenly-distributed discretization points,
the model prediction accuracy depends on the total discretiza-
tion number n, namely, the total number of the hysteresis
kernels. Only a large enough n can guarantee a sufficient
model accuracy. However, on the other hand, a larger n
also means a heavier computational cost. A trade-off needs
to be made between the discretization number n and the
model accuracy. As mentioned above, a reduced Preisach
model based on the DEIM was proposed by Z. Li et al.
to deal with this trade-off problem. m (m � n) dominant
discretization points are selected from the original n points
and the corresponding weights are constructed through the
DEIM. Compared with the discrete Preisach model with m
evenly-distributed discretization points, the proposed model
can predict the nonlinear hysteresis more smoothly and accu-
rately. In the following subsection, the method will be briefly
reviewed at first.

A. REDUCED MODEL USING THE DEIM (RM-DEIM)
The DEIM is one of the most effective model order reduction
techniques, and was originally developed to solve complex
large-scale ordinary differential equation systems [27], [28].
DEIM approximates a nonlinear function by constructing a
subspace through singular value decomposition (SVD) on a
snapshot matrix of the nonlinear function and selecting inter-
polation indices through a recursive interpolation-based pro-
jection process. Due to its excellent performance, the DEIM
has already been employed for model order reduction in
numerous applications [29]–[31].

To employ the DEIM for model order reduction in the
classical Preisach model, (5) is firstly reformulated as:

y (t) = [1, 1, · · · , 1] · f (t) = [1, 1, · · · , 1] ·


a1w1 (t)
a2w2 (t)

...

anwn (t)

 ,
(6)

where the nonlinear vector function f (t) ∈ Rn×1 will be
approximated by the DEIM. DEIM constructs an interpola-
tion approximation function f̂ (t) ∈ Rn×1 of the original
function by projecting it onto an m dimensional subspace as:

f (t) ≈ Umc (t) = f̂ (t) , (7)

where Um = [u1,u2, · · · ,um] ∈ Rn×m is the m dimensional
projection basis matrix and c (t) ∈ Rm×1 the interpolation
coefficient vector.

The projection basis matrix Um is obtained through SVD
on a snapshot matrix of f (t). The snapshot matrix can be
constructed as:

Y =


a1w1 [u] (t1) a1w1 [u] (t2)
a2w2 [u] (t1) a2w2 [u] (t2)

· · · a1w1 [u] (tM )
· · · a2w2 [u] (tM )

...
...

anwn [u] (t1) anwn [u] (t2)

. . .
...

· · · anwn [u] (tM )

 ,
(8)
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TABLE 1. Algorithm [27].

where u (t1), u (t2), · · · , u (tM ) is an excitation signal
sequence. By applying SVD on the matrix Y , one obtains:

Y = USVT , (9)

where U ∈ Rn×n contains the left singular vectors, S ∈
Rn×M is a diagonal matrix with the singular values listed on
the diagonal in a descending order, and V ∈ RM×M contains
the right singular vectors. The first m dominant singular
vectors in matrix U make up the projection basis matrix Um.
Clearly, the empirically derived projection basis through SVD
on the snapshot matrix Y depends on the selection of the
excitation signal sequence, which needs to be sufficiently
abundant.

To give a proper expression for the coefficient vector c (t),
a matrix P =

[
eξ1 , eξ2 , . . . , eξm

]
∈ Rn×m is firstly derived

from a recursive algorithm as shown in Table 1. eξl is the ξl th
column of the identity matrix E ∈ Rn×n. At each iteration,
the algorithm selects the index ξl corresponding to the entry
of the residual vector r = ul−U lcl with the largest magnitude
to limit growth of the error bound [27]. At the lth iteration, all
the ξith (i = 1, 2, · · · , l−1) entry of the residual vector r are
guaranteed to be 0. For more details about the algorithm, [27]
can be referred to. Multiplying PT on both sides of (7) leads
to:

PT f (t) ≈ PTUmc (t) . (10)

As PTUm is nonsingular, which has been proved in [27], c (t)
is deduced as:

c (t) ≈
(
PTUm

)−1
PT f (t) , (11)

where the last two terms PT f (t) = f m (t) =

[aξ1wξ1 (t) , aξ2wξ2 (t) , · · · , aξmwξm (t)]
T together represent

the selected m elements from f (t). In this way, the interpola-
tion approximation function f̂ (t) can be formulated as:

f̂ (t)≈Um

(
PTUm

)−1
f m (t) , (12)

where only the selected m elements from the original non-
linear vector function f (t) are needed. Given that the output
of the discrete Preisach model is exactly the sum of all the
elements in f (t) or f̂ (t), it is obvious that in the RM-DEIM
only m hysteresis kernels corresponding to the selected m
elements are effective. Therefore, the total kernel number

employed in the reduced Preisach model has been reduced
from n to m. Assuming

Um

(
PTUm

)−1
=


λ11 λ12
λ21 λ22

· · · λ1m
· · · λ2m

...
...

λn1 λn2

. . .
...

· · · λnm

 , (13)

the output of the RM-DEIM can be expressed as:

ŷ (t) = [1, 1, · · · , 1] · f̂ (t)

=

∑m

j=1

∑n

i=1
λijaξjwξj (t) =

∑m

j=1
αξjwξj (t), (14)

where αξj =
∑n

i=1 λijaξj denotes the corresponding weight
for the selected hysteresis kernel wξj (t). For more details
regarding the RM-DEIM, the interested readers can con-
sult [20].

B. PROBLEMS WITH RM-DEIM AND
A MODIFICATION STRATEGY
The RM-DEIM reviewed above can predict the nonlinear
hysteresis with a largely reduced computational cost while
barely losing the model accuracy, which has been illustrated
through systematic simulation studies and experimental vali-
dation in [20]. However, in the RM-DEIM, the weight αξj =∑n

i=1 λijaξj calculated from the interpolation projection pro-
cess can be negative, which means that the monotonicity of
the original full-order Preisach model (FM) could be lost.
To give an illustration, a numerical simulation is carried out.
As in [20], a factorized-Lorentzian density function:

µ (r, s) = 9

[
1+

(
r − δ
σδ

)2
]−1 [

1+
(
s+ δ
σδ

)2
]−1
, (15)

is employed for constructing the FM. Besides, 9 = 2,
δ = 1 and σ = 1 are respectively adopted. The bound �
is kept as 4 and the total discretization number n is selected
as 161×(161+1)

2 = 13041. To construct the RM-DEIM, m =
600 dominant hysteresis kernels are used. Additional details
about the simulation will be provided in the next section.
As shown in Fig. 2(a), the weight αξj =

∑n
i=1 λijaξj cal-

culated from the DEIM can be both negative and positive.
As a result, it is noted from the zoomed-in plot of Fig. 2(b)
that the monotonicity of the FM has been lost even though
the general model accuracy is acceptable. Monotonicity is a
very important property of the Preiasch model, particularly
when an inverse Preisach model needs to be numerically
constructed for feedforward control design of smart-material-
based actuators [24]–[26]. In addition, monotonicity can also
enhance the model predictability and precision, which will be
demonstrated in the following discussion.

To deal with the problem pointed out above, a modification
strategy is proposed in this subsection. Firstly, m dominant
hysteresis kernels are selected by the DEIM. However, in the
modified model, the weight αξj =

∑n
i=1 λijaξj calculated

from the DEIM is not adopted. Instead, a constraint least
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FIGURE 2. Illustration of the problems associated with the RM-DEIM.
(a) Indetermined kernel weight. (b) Loss of monotonicity in the hysteresis
curves.

square optimization problem is further solved to determine
the new weight:

min
α
‖Wα − y‖2 , s.t. α ≥ 0. (16)

Here

W=


wξ1 [u] (t1) wξ1 [u] (t2)
wξ2 [u] (t1) wξ2 [u] (t2)

· · · wξ1 [u] (tM )
· · · wξ2 [u] (tM )

...
...

wξm [u] (t1) wξm [u] (t2)

. . .
...

· · · wξm [u] (tM )


T

(17)

denotes the response matrix of the selected m hysteresis
kernels to the identification signal sequence u (t1), u (t2), · · · ,
u (tM ), which is selected same to the excitation signal
sequence that is used to construct the snapshot matrix Y .
Further

α =
[
αξ1 , αξ2 , · · · , αξm

]T (18)

gives the optimized weights for the selected hysteresis
kernels, and

y = [y (t1) , y (t2) , · · · , y (tM )]T (19)

is the output vector of the FM or real experimental data. In the
proposed modification strategy, the nonnegative property of
the weight vector α is guaranteed through the constraint

adopted in the optimization process. Therefore, the mono-
tonicity of the Preisach hysteresis model is preserved. Fur-
thermore, the lost information contained in the right singular
vector matrix V in the SVD process is recovered through the
constraint least square optimization process.

As a comparison, another model with weights optimized
through a pure least square optimization algorithm without
any constraint is proposed next. The corresponding optimiza-
tion problem can be formulated as:

min
α
‖Wα − y‖2, (20)

where W , α and y are the same as in (16). In the following
section, the merits and drawbacks of the proposed modified
model will be illustrated through a systematic comparison
with the RM-DEIM, FM and above reference model. For
convenience, the models with weights optimized through
(16) and (20) are respectively denoted as RM-DEIM-M and
RM-DEIM-R.

IV. SIMULATION STUDIES
To give a systematic comparison of the above three different
reduced Preisach models, an FM needs to be constructed
at first. To this end, a factorized-Lorentzian type density
function as in (15) is employed. The model parameters are
selected as: 9 = 2, δ = 1, σ = 1 and � = 4. Besides,
to discretize the Preisach plane T , a total discretization num-
ber n = 13041 is adopted. As for the construction of the
three reduced models, a snapshot matrix Y is formulated
by using a decreasing sinusoidal excitation signal ue (t) =
4e−0.1tsin (2π t). The total length of the signal and the sam-
pling time are respectively taken as 15s and 0.01s, which
means thatM = 1501 sampling points are used. Afterwards,
by applying SVD on the snapshot matrix Y and choosing
an appropriate reduced order m, one obtains the projection
basis matrix Um. Further applying the algorithm as listed
in Table 1 gives the indices of the selected m dominant
hysteresis kernels. The corresponding weights of the selected
m dominant hysteresis kernels for the three different reduced
models are obtained respectively from (14), (16) and (20).

Fig. 3 gives a detailed comparison of the modeling perfor-
mance of the three reduced Preisach models when a reduced
order m = 600 is used. As shown in Fig. 3(a), the optimized
weights for RM-DEIM-M are all positive while the weights
for RM-DEIM-R can be both positive and negative, which
agrees with the constraints employed in the optimization
processes. It is noted from Fig. 3(b) that the model accuracy
of all these three reduced models is generally acceptable.

However, from the zoomed-in plot in Fig. 3(b),
RM-DEIM-M and RM-DEIM-R can follow the input-output
response of the FM more precisely, without any local up-
and-down variations. Besides, Fig. 3(c) shows a detailed
comparison of the modeling errors of the three different
reduced models. The modeling error is defined as:

Error (t) =
yrm (t)− yfm (t)

max
(
yfm
)
−min

(
yfm
) , (21)
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FIGURE 3. Comparison of the modeling performance of the three reduced
Preisach models when m = 600. (a) Re-identified kernel weights of
RM-DEIM-M and RM-DEIM-R. (b) Input-output response. (c) Detailed
modeling error.

where yrm (t) and yfm (t) denote the output of the reduced
model and FM respectively, while max (·) and min (·) rep-
resent maximum and minimum functions. Compared with
the RM-DEIM, the modeling errors of RM-DEIM-M and
RM-DEIM-R have been largely reduced. It is also noted
from the zoomed-in plot of Fig. 3(c) that, to some extent,
the modeling errors of the two newmodels coincide with each
other, which would be different when m = 1000 was used.
Detailed explanations for this difference will be given in the
following discussion.

To investigate the influence of the reduced order m on the
modeling performance of the three different reduced Preisach
models, numerical simulations with various reduced order m
(400, 500, 600, 800 and 1000) are carried out. The average

FIGURE 4. Comparison of the modeling performance with different m.
(a) Average modeling error (AME). (b) Detained modeling error when
m = 1000.

modeling errors (AMEs) of the three reduced models with
different reduced order m are demonstrated by a bar chart in
Fig. 4(a). Generally, two observations can be made: 1) the
AMEs of all three reduced models decrease as the reduced
orderm increases; 2) with a constantm, the modeling error of
the RM-DEIM is always the largest while for RM-DEIM-R
it is the smallest. It is noted from Fig. 4(a) that the modeling
errors of the two new models are less than half of that of
the RM-DEIM when m = 400 is used. However, with a
larger m, the modification effect of RM-DEIM-M is not that
obvious, and when m = 1000 is used, the performance is
even worse than that of the RM-DEIM. Besides, Fig. 4(b)
shows a detailed comparison of the modeling errors of the
three different reduced models with m = 1000. As men-
tioned above, it is noted from the zoomed-in plot in Fig. 4(b)
that the modeling error of RM-DEIM-M cannot follow the
trend of RM-DEIM-R any more as in Fig. 3(c). All these
observations can be ascribed to the balance of two distinct
effects. On the one hand, the weight re-identification pro-
cess in RM-DEIM-M and RM-DEIM-R can recover the lost
information contained in the right singular vector matrix V ,
which will improve the model accuracy. On the other hand,
the imposed nonnegative constraint in RM-DEIM-M will
deteriorate the accuracy. With a large reduced order m,
the influence of the nonnegative constraint becomes promi-
nent, which is verified by the non-congruent modeling errors
between the two new models. This results in a poor modeling

155568 VOLUME 7, 2019
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FIGURE 5. Comparison of the prediction ability with different m.
(a) Average prediction error (APE). (b) Input-output response when
m = 1000.

performance of RM-DEIM-M. However, when a small m is
selected, the influence of the nonnegative constraint is not that
obvious, and the performance of the two new models almost
coincides with each other. They are much better than that of
the RM-DEIM. In a word, the AME of RM-DEIM-R is closer
to that of RM-DEIM-M when a smaller m is used, while it is
closer to that of the RM-DEIM with a larger m.
To further compare the prediction ability of the

three reduced models, a different signal ut (t) =

1.8sin ((10π/2.8571)t) + 1.2sin(π t + π
/
2) is fed into the

FM and three reduced models. This test signal has been
carefully designed, which can verify the congruent property
of the reduced Preisach models. The length of the signal and
sampling time are respectively taken as 2s and 0.01s. Fig. 5(a)
shows the average prediction errors (APEs) of the three dif-
ferent reduced models with different m. Generally, the APEs
of the three reduced models decrease as the reduced order
m increases. However, this tendency keeps much better for
RM-DEIM-M than for the other two reduced models. In addi-
tion, it is also noted that RM-DEIM-M always retains the best
prediction ability among these three reduced models, which
is different from the case regarding AMEs as demonstrated
in Fig. 4(a), particularly for m = 1000. These observations
can be explained by the fact that the monotonicity of the
original Preisach model is well preserved in RM-DEIM-M.
Fig. 5(b) gives a comparison of the hysteresis curves of the
three reduced models along with the input-output response

FIGURE 6. Comparison of the working performance with a Gauss I
density function. (a). Average modeling error (AME). (b). Average
prediction error (APE).

of the FM when m = 1000. It is noted that within the
boxed area an obvious up-and-down variation exists both
for the RM-DEIM and RM-DEIM-R. However, good mono-
tonicity of RM-DEIM-M keeps its response on track with
the FM. Monotonicity increases the model predictability and
precision!

As in [20], in addition to the factorized-Lorentzian func-
tion, two Gauss-type density functions:

Gauss I

µ (r, s) = 9e
−( r−s2 −δ)

2
/(

2σ 2δ2
)
e
−( r+s2 )

2
/(

2σ 2δ2
)
, (22)

and Gauss II

µ (r, s) = 9
1

2πσζ
e
−
(r−δ)2

2σ2
−

s2

ζ2 , (23)

are further employed to investigate the influence of the den-
sity function on the performance of the three different reduced
models. For Gauss I, the parameters are selected as: 9 = 2,
δ = 0.4 and σ = 1.5; and for Gauss II, the parameters are
as: 9 = 2, σ = 2 and ζ = 2. Fig. 6(a) gives a bar chart of
the AMEs of the three reduced models with different reduced
order m when (22) is employed for model construction.
The corresponding bar chart of the APEs is demonstrated
in Fig. 6(b). Similar observations can be obtained as for the
case with factorized-Lorentzian density function. However, it
is noted that the AME and APE of the RM-DEIM both retain
an abnormal increase when m = 500. This abnormal error
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FIGURE 7. Comparison of the working performance with a Gauss II
density function. (a). Average modeling error (AME). (b). Average
prediction error (APE).

increase can be ascribed to the absence of the monotonicity in
the RM-DEIM. Besides, the corresponding results associated
with Gauss II density function are given in Fig. 7(a)-(b).
It is noted that the APEs of both the RM-DEIM and RM-
DEIM-R retain an abnormal increase whenm = 1000, which
could be ascribed to the loss of monotonicity. Small up-and-
down variations could be present in the input-output response
similar to the case as demonstrated in Fig. 5(b) and will
deteriorate the prediction ability. From the above system-
atic simulation studies, following conclusions can be made:
1) compared with the RM-DEIM, the modeling errors of the
two new reduced models are significantly reduced (with a
smallm, the error is even less than half of that associated with
the RM-DEIM); 2) due to the preserved monotonicity, the
prediction ability of RM-DEIM-M is the best, even better than
that of RM-DEIM-R; 3) due to the preserved monotonicity,
both the AME and APE of RM-DEIM-M decrease strictly as
the reduced order m increases.

V. EXPERIMENTAL VALIDATION
To further verify the above observations, the experimen-
tal data sets from [20] are employed in this section for
model validation. The experimental data was obtained from a
magnetostrictive actuator, which is a typical smart-material-
based actuator. The principle diagram of the experimen-
tal platform is presented in Fig. 8, which consists of a
magnetostrictive actuator, a power amplifier, a capacitive dis-

FIGURE 8. Principle diagram of the experimental platform.

FIGURE 9. Experimental validation results I. (a) Average modeling error
(AME). (b) Average prediction error (APE).

placement sensor, a sensor driver and a dSPACE control
board. Following [20], an FM is constructed first as a refer-
ence. The experimental data corresponding to the decreasing
sinusoidal signal ui (t) = 4.5sin (2π t) e−0.2t is adopted for
identification of the density function µ (r, s). Instead of a
specific form density function as given by (15), (22) or (23),
a general form density function is employed for convenience,
which can be easily identified through a nonnegative con-
straint least square optimization algorithm. For construction
of the FM, a discretization number n = 181(181+1)

2 = 16471
and a bound constant� = 4.5 are respectively used. With the
FM constructed and the reduced order number m selected,
the DEIM is further used to choose the m dominant hys-
teresis kernels. The same signal ui (t) = 4.5sin (2π t) e−0.2t

is adopted as the excitation signal to construct the snapshot
matrix Y . As for the weights corresponding to the m dom-
inant hysteresis kernels, they can be obtained respectively
from (14), (16) and (20).

Fig. 9(a) gives a bar chart of the AMEs of the three reduced
models with different reduced orderm. The black dashed line
represents the modeling error of the FM. Generally, the mod-
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FIGURE 10. Experimental validation results II. (a) Input-output response
with m = 300 when ui

(
t
)

is used as the input. (b) Input-output response
with m = 300 when ut1

(
t
)

is used as the input. (c) Input-output response
with m = 300 when ut1

(
t
)

is used as the input.

eling performance of both RM-DEIM-M and RM-DEIM-R
is better than that of the RM-DEIM. It is also noted that the
AMEs of the three reduced models converge to that of the
FM when m > 400. The convergence is more rapid than that
in the above simulation studies. This can be ascribed to the
limited (not sufficiently abundant) information provided by
the experimental data, which only needs to be described by a
much more reduced-order model. As pointed out above, with
a small reduced orderm, the supplementary effect of the non-
negative constraint is not that prominent and the optimized
results of the two new reduced models almost coincide with
each other. Therefore, the AMEs of the two new models are
nearly equal.

Furthermore, the experimental data corresponding to a
sinusoidal signal ut1 (t) = 2sin (2π t) and a triangular
signal ut2 (t) with period 1s and amplitude from −1.5 to
1.5 is employed to test the prediction abilities of the three
reduced models. The bar chart of the APEs is demon-
strated in Fig. 9(b). Due to the preserved monotonicity of
RM-DEIM-M, its prediction error almost coincides with that
of the FM, even when a very small reduced order m = 200 is
used. As pointed out above, within the considered region, the
working performance of RM-DEIM-R coincides with that of
RM-DEIM-M, which gives it a much better result than that
of the RM-DEIM. Besides, Fig. 10(a)-(c) show a detailed
comparison of the input-output responses of these different
hysteresis models and the experimental data when the iden-
tification signal ui (t) and test signals ut1 (t) and ut2 (t) are
respectively employed as the input signal. The reduced order
m is set as 300. The distinction between the hysteresis curves
in Fig. 10(a) can be hardly noticed even from the zoomed-in
plot. However, in Fig. 10(b)-(c), the predicted input-output
response by the RM-DEIM is quite different from the exper-
imental data, while the prediction errors of the two new
models are coincided with that of the FM and is generally
acceptable.

VI. CONCLUSION
In the current paper, a modified reduced Preisach model
beyond DEIM, termed as RM-DEIM-M, has been proposed.
In the modified model, the DEIM is employed first to select
the dominant hysteresis kernels. Then, a constraint optimiza-
tion problem is further solved to re-identify the corresponding
weights of the selected hysteresis kernels. The monotonicity
is well preserved in the modified model through the con-
straint adopted in the weight re-identification process. The
superiority of the modification strategy has been illustrated
through systematic simulation studies and experimental val-
idation. The modeling error of the modified model can be
reduced to less than half of that of the RM-DEIM when
a small reduced order m is used. Besides, the model pre-
dictability has been largely improved due to the preserved
monotonicity.
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