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ABSTRACT Industrial Control Systems (ICS) play a very important role in national critical infrastructures.
However, the growing interaction between the modern ICS and the Internet has made ICS more vulnerable
to cyber attacks. In order to protect ICS from malicious attacks, intrusion detection technology emerges.
By analyzing the network meta data or the industrial process data, Intrusion Detection Systems (IDS)
can identify attacks that violate communication protocols or system specifications. However, the existing
intrusion detection technology is not omnipotent, which opens up a back door for some more advanced
attacks. In this work, we design an enhanced multi-stage semantic attack against ICS, which is undetectable
by existing IDS. By hijacking the communication channels between the Human Machine Interface (HMI)
and the remote Programmable Logic Controllers (PLCs), the attacker can manipulate the measurement
data and control instructions simultaneously. The fake measurement data deceives the human operator into
making wrong decisions. Furthermore, the attacker can strategically manipulate the semantic meaning of
control instructions according to system state transition rules. In the meanwhile, a fake view of measurement
data is presented to the HMI to conceal the on-going malicious attack. This attack is totally stealthy since
the message sizes and timing, the command sequences, and the system state values are all legitimate.
Consequently, this attack can secretly bring the system into critical states. Experimental results have verified
the strong attack ability of the proposed attack.

INDEX TERMS Industrial control systems, multi-stage semantic attacks, state transition, stealthy attacks.

I. INTRODUCTION
Nowadays, Industrial control systems (ICS) [1] play a quite
important role in a variety of industrial processes, such as
manufacturing, public facilities (e.g., buildings and airports),
power generation and distribution [2]–[4], chemical process-
ing [5], water treatment [6], oil and gas transportation [7],
or large-scale communication [8]. The rapid development of
Internet Technology (IT) facilitates ICS to realize remote
process control and intelligent decision making. However,
high exposure to open networks has made ICS an attrac-
tive target for malicious attackers [9], [10]. The summer
of 2010 was a landmark to ICS security. By that time the
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core control program of the Natanz uranium enrichment
base in Iran was infected by an unprecedented sophisticated
cyber worm called ‘‘Stuxnet’’. The centrifuge for uranium
enrichment was forced to accelerate unconventionally and
was eventually damaged, which caused a huge loss to the
entire nuclear plant. In 2015, the notorious Trojan malware
‘‘BlackEnergy3’’ attacked the Ukrainian power grid. False
commands sent to relays triggered unconventional circuit dis-
connections, immediately followed by a large-scale blackout.
At Black Hat 2017 [11], Dr. Staggs pointed out that cyber
and physical attacks can invade the programmable automa-
tion controllers and OPC (OLE for Process Control) servers
easily by exploiting the wind farm design and implementation
flaws. Additionally, they designed corresponding attack tools
to launch attacks on actual wind farms. So many ICS security
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incidents indicate that ICS security has become a critical
global issue [12], [13].

Intrusion Detection Systems (IDS) provide a promising
solution for protecting ICS [14], [15]. IDS are a type of
software designed to find indications that information sys-
tems have been compromised. Traditional intrusion detec-
tion technology is mainly classified into two categories,
signature-based and anomaly-based. Signature-based IDS,
also called misuse-based, build a blacklist containing the sig-
natures of known attacks, and raise alarms when the system
behavior matches any of these signatures. Anomaly-based
IDS are mainly used to detect anomalies that violate the nor-
mal behavior patterns of a target system. Therefore, a normal
behavior model of the target system should be constructed.
Model parameters can be learnt from unaffected system
operating data. While applying intrusion detection to ICS,
the industrial process data (e.g., measurement data and con-
trol instructions) is another important factor to consider [16].
If the value of a process variable is outside its normal range
or breaks the fundamental laws of nature, an alarm should be
raised.

Exiting intrusion detection technology is proved to be
useful but not omnipotent. Recently, Kleinmann et al. [17]
have proposed a multi-stage semantic attack against ICS.
This attacker can drive the target system to a critical state
by reversing the semantic meaning of control instructions
and presenting a fake view of measurement data to the
system operator at the same time. However, the attacker
cannot guarantee to realize the attack goal, since it just ran-
domly chooses some instructions to reverse. In this work,
we design an enhanced and strategic multi-stage semantic
attack against ICS, which relies on the system state transition
rules to precisely decide which control instructions to reverse.
The enhanced semantic attack can significantly improve the
attack success rate while maintaining its stealthiness.

The key contributions of this work are summarized as
follows:

• We analyze the relationships between system states and
control instructions, and build a system state transi-
tion graph that can accurately characterize the dynamic
behavior of ICS.

• We design an enhanced multi-stage semantic attack
against ICS. By exploiting system state transition
rules, the attacker can develop accurate attack strate-
gies, which can increase the attack success rate
significantly.

• We launch the enhancedmulti-stage semantic attack on a
simulated industrial control system to verify its stronger
attack ability compared to the existing semantic attack.

The rest of the paper is organized as follows. We introduce
the research literature about intrusion detection in Section II.
Some preliminaries of the enhanced semantic attack are pre-
sented in Section III. In Section IV, we elaborate on the prin-
ciples of the enhanced multi-stage semantic attack against
ICS. Experiments are conducted in Section V to verify the

stronger attack ability of the enhanced multi-stage semantic
attack. Finally, a conclusion is drawn in Section VI.

II. RELATED WORK
Due to the growing openness of ICS, cyber attacks against
traditional information systems also threaten the security of
ICS. Traditional intrusion detection technology mainly fall
into two classes: signature-based and anomaly-based. The
former mainly relies on the accurate signatures of malicious
attacks. System behavior that matches any existing attack
signature is considered anomalous. On the contrary, the latter
depends on a normal behavior model. Any system behav-
ior that deviates from this model should be flagged as an
anomaly. Generally speaking, attacks against ICS usually
violate protocol specifications or cause abnormal network
traffics, and the physical constraints of ICS are likely to be
broken during attack. Therefore, we introduce the intrusion
detection technology on ICS from three aspects: network
protocol analysis, network traffic mining, and process data
analysis.

A. NETWORK PROTOCOL ANALYSIS-BASED
INTRUSION DETECTION
Network protocols define a set of rules to specify how net-
work devices should format, transmit and process informa-
tion. Therefore, intrusion detection rules can be extracted
from network protocols. Any system behavior that violates
the detection rules is judged to be abnormal. Some open
protocols are commonly used in ICS communication, e.g.,
ModBus, DNP3, ICCP/TASE.2. These protocols are vulner-
able to a variety of malicious attacks such as eavesdrop-
ping, tampering and counterfeiting, since ICS were designed
to run in relatively closed environments and security was
rarely considered in the design of industrial communication
protocols.

Cheung et al. [18] extracts a normal system behavior
model from the industrial protocol specifications. The model
formalizes legal data values and legal relationships between
different data fields. Furthermore, a set of communication
modes are built according to data transmission ports, trans-
mission directions and security requirements of ICS. Any
behavior that violate the normal behavior model or the
communication modes should be flagged as an anomaly,
so this detection technique also belongs to the anomaly-based
intrusion detection. Morris et al. [19] construct signatures
for ModBus protocol vulnerabilities by exploiting a famous
intrusion detection system—Snort . Communication data that
matches any of these signatures is identified as an anomaly.
Moreover, traditional IDS can be tailored or improved for
intrusion detection on ICS. Lin et al. [20] successfully realize
intrusion detection on ICS by implanting a DNP3 protocol
parser into Bro, a network intrusion detection system devel-
oped by the University of Berkeley.

In addition to open protocols, proprietary protocols also
play an important part in ICS communication. IDS based on
proprietary protocol analysis has emerged. Hong et al. [21]
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extract specifications from the IEC 61850 standards
(e.g., Generic Object Oriented Substation Event (GOOSE)
and Sample Value technology (SV)), based on which to
identify abnormal or malicious behaviors in electric power
substations. In [22], legal and illegal network traffic patterns
are defined based on the protocol specifications of power
systems. These patterns are further converted into Snort rules
for intrusion detection.

As described above, intrusion detection based on network
protocol analysis mainly relies on the accurate definition of
detection rules, and usually yields a high false alarm rate
and incurs a large message-parsing time overhead. Intrusion
detection based on network trafficmining can overcome these
shortcomings to some extent.

B. NETWORK TRAFFIC MINING-BASED
INTRUSION DETECTION
Most ICS have fixed business logics, static and simple net-
work topologies, and a small number of programs. There-
fore, traffics in industrial networks are stable in most cases.
Unusual traffic patterns generally indicate the occurrence of
an anomaly, which is the main motivation of the network
traffic mining-based intrusion detection.

Traditional IDS based on network traffic mining [23]
mainly rely on the analysis of network meta data, includ-
ing IP addresses (i.e., source IP address for outbound
packets and destination IP address for inbound packets),
transmission ports, traffic durations, and packet intervals.
Applying data mining techniques to network meta data
can identify system anomalies effectively. Supervised [24]
and semi-supervised [25] clustering, single-class [26] or
multi-class [27] support vector machine, mixed Gaussian
model [28], fuzzy logic [29]–[31], neural network [32], [33]
and deep learning [34] are commonly used techniques for
traffic mining. These techniques aim to model the non-linear
relationships between network traffics and system behaviors.
The relationship model and real-time traffic data are used to
investigate the current status of the system, and then detect
malicious attacks timely. However, analyzing a large number
of traffic features undoubtedly incurs a high computational
overhead. Therefore, techniques like principal component
analysis [35] and ant colony optimization [36] are used to
remove redundant traffic features, thus to reduce computa-
tional overhead.

Intrusion detection techniques based on protocol analysis
and traffic mining are borrowed from the traditional network
intrusion detection domain. They are mainly designed for
conventional information systems. A big difference between
ICS and the traditional information systems (i.e., ICS are
closely related to the physical world) makes these techniques
difficult to identify attacks against physical processes, since
these attacks may not violate network protocol specifica-
tions or cause abnormal network traffics. Hence, the intru-
sion detection technology based on process data analysis has
emerged.

C. PROCESS DATA ANALYSIS-BASED
INTRUSION DETECTION
Industrial process data is another important information
source for intrusion detection on ICS. It is likely for a system
operator to make wrong decisions [37] if the process data is
secretly counterfeited or tampered with, and eventually cause
lethal damage to ICS. Generally, the deviation between the
observed and expected process values can determine whether
an attack has occurred [38]. In [39], all process variables are
divided into three classes: constants, enumeration, and con-
tinuous values. Each process variable has a normal behavior
pattern. Once the monitored value of a process variable does
not conform to its normal behavior pattern, an alarm is raised.
In [40], system states are denoted by measurement data
reported by a group of remote sensors, and a corresponding
state distance measurement method is presented. Anomalies
can be detected by inspecting the distance between the current
state and the critical states.

Time series forecasting provides another potential solution
for intrusion detection on ICS. This technology can precisely
predict the future outputs of ICS, which are then compared
with the monitored outputs to generate residuals. By applying
proper statistical techniques to the residuals, IDS can detect
malicious attacks effectively. In general, the residual series
conforms to a Gaussian distribution during normal operation
of ICS. If an attack occurs, therewill be a significant deviation
between the actual and expected system behaviors, i.e., the
residuals deviate from 0 notably [41]. Two kinds of intrusion
detection techniques based on residual analysis are summa-
rized in [42]: sequential detection and change detection. The
first technique can identify anomalies as quickly as possible.
In other words, it determines the shortest residual sequence
based on which IDS can make a judgement. The second
technique identifies an anomaly if the residual [43] or the
cumulative residual [16] exceeds a predefined threshold at a
certain time point.

Recently, Kleinmann et al. [17] propose a multi-stage
semantic attack against ICS by tampering with the mea-
surement data and the control instructions simultaneously.
They state that the Modbus protocol has no security protec-
tion mechanism or message integrity protection mechanism,
which opens up a back door for malicious attackers. This
vulnerability enables the adversary to reverse the semantic
meaning of control instructions and present a fake view of
measurement data to the HMI at the same time. However,
this attack is sometimes futile, because it cannot exactly
decide which control instructions to manipulate. Randomly
reversing some instructions cannot guarantee to realize the
attack goal. In this work, we design an enhanced multi-stage
semantic attacks against ICS, which makes full use of the
system state transition rules and strategically decides which
control instructions to reverse, thus to bring the target system
into dangerous situations precisely. The enhanced semantic
attack is totally undetectable by traditional IDS because all
process values are legal during this attack. Additionally, it can
improve the attack success rate significantly when compared
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FIGURE 1. The Electricity Distribution Subsystem (Following [17]).

to the existing instruction-reversing semantic attack proposed
in [17].

III. PRELIMINARIES
In this section, we present some preliminaries of the enhanced
semantic attack, including the communication mechanism
of Modbus, the architecture of the electrical distribution
system—a typical industrial system, and the underlying
adversary model.

A. MODBUS
ModBus is a de facto application layer protocol for ICS.
This protocol supports a master-slave communication mode
between different control devices, even if they are within
different types of buses or networks. Most Modbus sys-
tems use TCP as the communication layer protocol. A Mod-
bus/TCP message is embedded in TCP segments and TCP
port 502 is reserved for Modbus communications. In Mod-
bus communications, usually the HMI acts as the unique
master and the remote PLCs act as slaves. In a trans-
action, the master requests process data from the slaves
or issues control instructions to the slaves. The slaves
respond by sending the requested data to the master or
by performing the control instructions. The request mes-
sage from the master contains a unique transaction ID,
which should be contained in the corresponding response
message.

AModbus Protocol DataUnit (PDU) consists of two fields:
a single-byte Function code and a variable-size Payload (lim-
ited to 252 bytes). The Function code specifies the operation
to be taken, and the Payload contains parameters required
by the function invocation. For example, the Payload of a
read request consists of two fields, a reference number and
a bit/word count. The former specifies the starting memory
address for reading. The latter specifies the number of mem-
ory object units to be read. The payload of the corresponding
response message is comprised of two parts: byte count and
data, which respectively record the length of data in bytes and
the data contents that were read. In addition to the starting

memory address, the payload of a write message has another
field that specifies the data to be written.

Unfortunately, Modbus has little ability to defend itself
against malicious attacks, e.g., data tampering or counterfeit-
ing. Moveover, Modbus only uses TCP sequence numbers to
provide simple session semantics, but cannot ensure message
integrity or long-term session semantics. Therefore, TCP
session hijacking becomes quite straightforward.

B. ELECTRICITY DISTRIBUTION SYSTEM
An electricity supply chain is typically comprised of
three subsystems: generation, transmission, and distribution,
as illustrated in Fig. 1. The transmission network connects
the generation system with the distribution system. Elec-
tricity is transmitted from generation sites to remote dis-
tribution substations along high-voltage transmission lines.
The high voltage (138 kV to 765 kV) is then converted to
medium-voltage (600V to 35kV) by substation transform-
ers. A group of medium-voltage circuits fan out from the
substation. The medium voltage is further stepped down to
the low voltage (commonly 120/240V) by the distribution
transformers close to end users. In this work, we mainly
discuss the distribution subsystem between the substations
and distribution transformers, which is the target system of
the ‘‘BlackEnergy" cyber-attack.

In order to improve reliability, distribution circuits are usu-
ally equipped with ‘‘tie switches’’ (also called switchgears,
which are normally disconnected) to other circuits. If one
of the circuits encounter an unintentional fault, it will be
connected to another circuit by an adjacent switchgear. Thus,
electricity flows into the faulted circuit and some necessary
services are restored. The switchgears can be operated auto-
matically or manually from the HMI. A simplified model
of the subsystem is shown in Fig. 2. Two medium-voltage
circuits fan out from the substation. There are six PLCs
(i.e., PLC01 ∼ PLC06) along the top circuit and four PLCs
(i.e., PLC08 ∼ PLC11) along the bottom circuit. Addi-
tionally, the two distribution lines are interconnected by a
normally open switchgear that is controlled by PLC07.
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FIGURE 2. The Electricity Distribution Subsystem.

C. ADVERSARY MODEL
In the adversary model, we suppose that the attacker can
penetrate into the control network and launch a Man-In-The-
Middle (MITM) attack between the HMI and remote PLCs.
On the hijacked communication link, all network packets can
be eavesdropped, replayed, delayed or deleted before reach-
ing their destinations. Furthermore, the attacker can modify
the packet contents and even take over the HMI to fabricate
malicious control instructions. The goal of the adversary is to
disrupt the normal operation of ICS and cause fatal damages
to the physical system.

Furthermore, suppose that the adversary has gained suffi-
cient knowledge of the ICS architecture, the industrial pro-
cess and the way to manipulate the target system. Here,
we use a somewhat weaker type of attack model: the attacker
can penetrate into the control network, and launch MITM
attacks on one or more HMI-PLC communication links
simultaneously. However, this model is assumed to be state-
less, i.e., it does not tamper with TCP sequence numbers.
Therefore, this model cannot delete existing messages or
inject fake ones. It can only manipulate the contents of exist-
ing packets.

IV. ENHANCED MULTI-STAGE SEMANTIC ATTACK
In this section, we elaborate on the strategy of the enhanced
multi-stage semantic attack against ICS.

A. DEFINITION OF SYSTEM STATES
Suppose that an electricity distribution subsystem involves
a set of configurable state variables that is denoted by
{x1, x2, . . ., xN }, whereN is the total number of state variables,
and xi ∈ {1,−1} (1 ≤ i ≤ N ) is the ith state variable, which
denotes the status (closed or open) of the ith switchgear.
Hence, a state vector x can be used to represent the status
of the entire system at a certain time point:

x = (x1, x2, . . . , xN ), (1)

All possible values of the state vector x constitute a set X .
In the electricity distribution subsystem, X is comprised of
three mutually exclusive subsets, a normal state setN , a fault
state set F and a critical state set C. The normal states in N
indicate that the system is operating normally. If there occur

some unavoidable disturbance or system faults, the system
enters a fault state contained in F to restore some necessary
services and finally return to the normal state. However, if the
system encounters some malicious attacks, it will be brought
into some dangerous or unwanted situations (i.e., critical
states), like large-scale blackouts.

The normal state set N of the electricity distribution sys-
tem is formalized as follows:

N = {xNor1 , xNor2 , . . . , xNorL }, (2)

where N ⊂ X , L is the total number of the normal state
vectors, and xNorl (1 ≤ l ≤ L) is the lth normal state vector,
which consists of the values of N state variables:

xNorl = (xNorl1 , xNorl2 , . . . , xNorlN ). (3)

Analogously, the fault state set and critical state set are
defined by:

F = {xFau1 , xFau2 , . . . , xFauK }, (4)

and

C = {xCri1 , xCri2 , . . . , xCriM }, (5)

where F and C are two subsets of X (i.e., F ⊂ X ,
C ⊂ X ), K andM are the numbers of fault states and critical
states, respectively. Furthermore, the fault state vector and the
critical state vector are defined by:

xFauk = (xFauk1 , xFauk2 , . . . , xFaukN ), (6)

and

xCrim = (xCrim1 , xCrim2 , . . . , xCrimN ). (7)

where xFauki (1 ≤ k ≤ K and 1 ≤ i ≤ N ) denotes the ith
entry of the kth fault state vector, and xCrimj (1 ≤ m ≤ M
and 1 ≤ j ≤ N ) denotes the jth entry of the mth critical state
vector. The three subsets N , F and C are mutually exclusive
and together constitute the entire state set X , i.e., N ∩ F =
N ∩ C = F ∩ C = ∅ and N ∪ F ∪ C = X .

B. SYSTEM STATE TRANSITION
Based on the definition of system states, we now define the
state transition rules. Suppose that the system operator can
configure the target system manually, i.e., issue the ‘‘open’’
or ‘‘close’’ instructions to change the status of switchgears.
Therefore, we use a variable a ∈ {−1, 1, 0} to denote differ-
ent operations the system operator can take on a switchgear.
The values −1, 1, and 0 represent the ‘‘open’’, ‘‘close’’ and
no action, respectively. Suppose that there are N operable
switchgears in the system, corresponding to N configurable
state variables mentioned above. A N -tuple vector a =
(a1, a2, . . . , aN ) is used to represent all operations taken
by the system operator at a certain time point. Each entry
ai ∈ {−1, 1, 0} denotes the operation taken on the ith state
variable xi.

State transition rules describe how the system behavior
changes over time. We use xi(t) and xi(t + 1) to denote
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FIGURE 3. The System State Transition Graph.

the current state and the next state of the ith switchgear,
respectively. An operation ai(t) can drive xi(t) to xi(t + 1),
so we formalize the state transition of a swithgear as
follows:

xi(t + 1) = xi(t)⊗ ai(t), (8)

where the operator ⊗ defines the following rule:

xi(t + 1) =

{
ai(t), if ai(t) 6= 0,
xi(t), otherwise.

(9)

This equation indicates that the next state xi(t + 1) is deter-
mined jointly by the current state xi(t) and the current opera-
tion ai(t). If no operation is taken (i.e., ai(t) = 0), xi(t + 1) is
set equal to xi(t). Otherwise, xi(t + 1) is set equal to ai(t).
Therefore, the state transition of the entire system can be
formalized by:

x(t + 1) = x(t)⊗ a(t), (10)

where the state transition of each element of the state vector x
follows Eq. 8. The state transition graph is illustrated in Fig. 3.
A normal state transits to a fault state if some unavoidable
disturbances or faults occur. A fault state can return to a nor-
mal state after the necessary services are restored. However,
if the target system encounters a malicious attack, it is likely
to enter a critical state from a normal state or a fault state.

C. ATTACK STRATEGY
With the definition of system states and state transition rules,
we now describe the strategy of the enhanced multi-stage
semantic attack against ICS. The attack strategy mainly con-
sists of measurement data deception and control instruction
manipulation. During measurement data deception, a fake
view of process data is presented to the HMI, thus to induce
the system operator to take some unnecessary operations.
Afterwards, the issued instructions are tampered with by the
attacker to achieve specific attack goals. Below we elaborate
on the two attack steps.

1) MEASUREMENT DATA DECEPTION
During measurement data deception, the attacker can change
the measurement data, e.g., current and voltage values
reported by victim PLCs, to any legitimate value, thus to
bypass IDS. Suppose that the victim PLCs are those con-
trolling the top line in Fig. 2 (i.e., PLC01 to PLC06). The
left graph in Fig. 4 shows the actual values of the current
and voltage reported by PLC01. The right graph depicts the
fake values of the same measurement data presented to the
HMI. When the system is attacked (from 240s to 270s), zero
current and zero voltage are presented to the HMI. The fake
view simulates a natural fault on the top line, so it is not
regarded as a malicious attack. In other words, the attack is
totally stealthy. The fake view misleads the system operator
into taking uncessary remediation measures, which may be
costly and harmful. Furthermore, it provides the attacker
a good opportunity to manipulate the control instructions
maliciously.

2) CONTROL INSTRUCTION MANIPULATION
Once the system operator observes the zero current and zero
voltage reported by remote PLCs for a period of time, he will
drive the system to a fault state by issuing specific control
instructions. Suppose that a set of control instructions that is
denoted by anl→fk is issued to change the status of one ormore
switchgears. At this moment, the attacker can change the vec-
tor anl→fk to a malicious one anl→cm before the instructions
reach their destinations, thus bringing the system into a crit-
ical state. Here, anl→fk and anl→cm are the operation vectors
that can drive the system from the normal state to a fault state
and a critical state, respectively. In order to bypass intrusion
detection, the tampered instructions should meet the follow-
ing two conditions: 1) |anl→fk | = |anl→cm | and 2) anl→fk 6=

anl→cm , where |a| = (|ak |)1≤k≤N denotes the vector of
absolute values of a’s elements. Thus, no existing instruction
is dropped and no fabricated instruction is injected. Addition-
ally, all instruction values remain legitimate in the tampered
messages, so the attack is totally stealthy.

If the attacker fails to manipulate the instructions in this
step, he has another chance. When the system has restored
the necessary services, it should return to the normal state
from the fault state once the system operator issues the cor-
responding instructions afk→nl . At this moment, the attacker
can rewrite afk→nl into a malicious vector afk→cm , in order
to bring the system into a critical state. Analogously, afk→cm

should satisfy |afk→nl | = |afk→cm | and afk→nl 6= afk→cm .
Once the system enters a critical state, the attack goal is
achieved.

The entire procedure of the Enhanced Multi-Stage Seman-
tic Attack (EM2SA for short) is summarized in Algorithm 1.
The normal, fault and critical system state sets are used
as inputs to the algorithm. The output of the algorithm is
a boolean variable flag that indicates whether the seman-
tic attack is successful or not. The initial value of flag
is set to false, as shown in line 1. Lines 2 and 3 make
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FIGURE 4. Measurement Data Deception Attack.

Algorithm 1 EM2SA Algorithm
Input: The normal, fault and critical system state

collections N , F and C
Output: a flag indicating whether the attack is

successful or not
1 flag← false;
2 construct the state transition graph G;
3 Penetrate the control network to get a
Man-In-The-Middle position;

4 launch the measurement data deception attack when
statesystem ∈ N ;

5 while true do
6 tamper with the control instruction anl→fk to

anl→cm , that satisfies |anl→fk | = |anl→cm | and
anl→fk 6= anl→cm ;

7 wait for the system state transition;
8 if statesystem ∈ C then
9 flag← true;

10 break;
11 else
12 launch the measurement data deception

attack;
13 tamper with the new control instruction

afk→nl to afk→cm , that satisfies
|afk→nl | = |afk→cm | and afk→nl 6= afk→cm ;

14 wait for the system state transition;
15 if statesystem ∈ C then
16 flag← true;
17 break;
18 end
19 end
20 end
21 return flag;

some preparations, including building the state transition
graph and getting a Man-In-The-Middle position in the

control network. Lines 4 to 20 are the whole procedure of
the semantic attack. Line 4 launches the measurement data
deception attack when the system operates normally, which
presents a fake view of the measurement data to the HMI.
Afterwards, the attacker tampers with the instructions issued
by the system operator and waits for the system state transi-
tion (lines 6 and 7). If this attack is successful (i.e., the system
enters a critical state: statesystem ∈ C), the output variable flag
is set to true and the attack procedure ends (lines 8 to 10).
Otherwise, the attacker has another chance to manipulate the
control instructions when the system is going back to the
normal state, as shown in lines 11 to 19. If both the two attacks
are unsuccessful, the attacking procedure should be restarted,
and line 20 returns the output variable flag.

V. EXPERIMENTS AND DISCUSSION
In this section, we simulate the above-mentioned electricity
distribution subsystem in Java language and launch two dif-
ferent semantic attacks on the simulated system. The archi-
tecture of the simulated ICS is depicted in Fig. 2, including
a substation and two radial distribution lines, each with a
group of PLCs. One virtual machine is used to simulate
the HMI, which acts as the Modbus master. Other virtual
machines simulate the remote PLCs, which serve as theMod-
bus slaves. On the simulated system, we launch two attacks:
the enhanced multi-stage semantic attack proposed in this
work and the instruction-reversing semantic attack proposed
in [17], and compare the success rate of the two attacks.

We present the normal current values reported by three key
PLCs ( PLC01, PLC07 and PLC11) and the normal voltage
value reported by PLC01 in Fig. 5. The voltage value remains
stable, while the current values measured by PLC01 and
PLC11 vary with the changing loads. The switchgear con-
trolled by PLC07 keeps open when the system operates nor-
mally, so the current reported by PLC07 is zero.

Fig. 6a and Fig. 6b respectively show the fake measure-
ment data presented to the HMI and the actual measurement
data when the system encounters the instruction-reversing
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FIGURE 5. Normal Measurement Data.

FIGURE 6. The Fake and Actual Measurement Data during the Instruction-Reversing Semantic Attack [17].

semantic attack proposed in [17]. As we can see from Fig. 6a,
the measurement data deception starts at 210s. After that,
the system operator observes the zero current and zero voltage

at PLC01 on the HMI. Therefore, the system operator issues
control instructions to open the switchgear controlled by
PLC01 and close the switchgear controlled by PLC07 at 240s.
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FIGURE 7. The Fake and Actual Measurement Data during the Enhanced Semantic Attack that Succeeds by One-Step Instruction Tampering.

Thus the system enters a fault state and the top line begins to
restore necessary services. After 240s, the HMI is still pro-
vided with a fake view of the measurement data: small values
of the current and voltage at PLC01, misleading the system
operator into believing the system is being restored. After
a period of time, the operator issues control instructions to
connect the switchgear controlled by PLC01 and disconnect
the switchgear controlled by PLC07 at 270s, in order to bring
the system back to normal. Afterwards, the attacker shows
the normal current and voltage values to the HMI, presenting
an illusion that the system has returned to normal. However,
the actual status of the system is shown in Fig. 6b. The
attacker reverses each control instruction at 240s and 270s.
In detail, the switchgears controlled by PLC01 and PLC07 are
respectively closed and opened at 240s, and then respectively
opened and closed at 270s. Therefore, the two switchgears
maintain the status quo from 240s to 270s, and the mea-
surement data are normal during this period. From 270s,
the system enters a superfluous fault recovery phase, so the
currents at PLC01 and PLC07 and the voltage at PLC01 are

significantly smaller than their normal values. Therefore,
the attack goal is not achieved since the system does not enter
a critical state.

Fig. 7 shows the fake and actual measurement data dur-
ing the enhanced multi-stage semantic attack proposed in
this work. Firstly, we suppose that the first-step instruction
tampering succeeds. Similar to Fig. 6a, Fig. 7a shows that
the measurement data deception starts at 210s. After tam-
pering with the ‘‘fault recovery’’ instructions successfully,
the attacker presents the small current and voltage values
to the HMI after 240s, misleading the system operator into
believing the system is being restored. However, as shown
in Fig. 7b, the attacker manipulates the instructions strate-
gically at 240s according to Algorithm 1, i.e., reversing
the instruction sent to PLC01 while keeping the instruc-
tion sent to PLC07 unchanged, in order to bring the sys-
tem into a critical state. Hence, the actual current and
voltage at PLC01 become zero at 240s, which indicates a
blackout on the top transmission line, so the attack goal is
achieved.
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FIGURE 8. The Fake and Actual Measurement Data during the Enhanced Semantic Attack that Succeeds by Two-Step Instruction Tampering.

If the first-step instruction tampering is unsuccessful,
the attacker has another chance. As depicted in Fig. 8,
the attacker fails to tamper with the control instructions
at 240s, but succeeds to manipulate the instruction sent to
PLC01 at 270s. Therefore, the system enters a critical state
after 270s (both the current and voltage at PLC01 become
zero), as shown in Fig. 8b, but the fake measurement data pre-
sented to the HMI are normal after 270s, as shown in Fig. 8a.
Figs. 7 and 8 indicate that there are two possible paths
from the normal state to a critical state during the enhanced
multi-stage semantic attack, which are represented by the two
red dashed lines in Fig. 9.

Specially, if the attacker can randomly choose one or more
instructions to tamper with during the instruction-reversing
semantic attack proposed in [17], the proposed enhanced
semantic attack is a special case of that kind of attack. Addi-
tionally, suppose that each instruction tampering attack has a
Possibility of Failure (PoF for short). Based on the assump-
tions, we compare the success rate of the two kinds of seman-
tic attacks on the simulated system. The instruction-reversing
semantic attack can randomly choose whether to reverse

FIGURE 9. Two Attack Paths During the Enhanced Semantic Attack.

an eavesdropping instruction, while the enhanced semantic
attack manipulates an instruction strategically according to
Algorithm 1. In this experiment, PoF varies from 0.1 to 0.9,
with a step value of 0.1. For each value of PoF, we conduct
5000 simulations for each attack. The comparison of the two
attacks is illustrated in Fig. 10. Obviously, the success rate
of the enhanced multi-stage semantic attack is significantly
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FIGURE 10. Comparison of Attack Success Rates of Two kinds of Attacks.

higher than that of the instruction-reversing attack, which
verifies the stronger attack ability of the enhanced attack.

VI. CONCLUSION
In this paper, we propose an enhanced multi-stage semantic
attack against ICS. During this attack, a fake view of mea-
surement data is first presented to the HMI to mislead the
system operator into issuing unnecessary control instructions.
Thus, the attacker has chances to manipulate the control
instructions strategically according to system state transition
rules, and precisely bring the target system into a critical
state. In the meanwhile, the measurement data deception
attack should be continued in order to conceal the on-going
attack. Furthermore, this attack is totally stealthy, since the
command sequences, message sizes, and process values all
remain legitimate. To verify the strong attack ability of the
enhanced multi-stage semantic attack, we simulate an elec-
tricity distribution subsystem in Java language. Additionally,
we compare the attack success rate of the enhanced semantic
attack with that of the existing instruction-reversing seman-
tic attack. The experimental results show that the enhanced
semantic attack can significantly improve the attack success
rate. In future research, we will try to investigate the pro-
posed attack on some real-world and large-scale ICS testbeds
and seek for effective countermeasures against this kind of
attacks, e.g., securing the communication channel via crypto-
graphic means, e.g., by adding data integrity protections such
as digital signatures or message authentications to prevent the
attacker from modifying packets.
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