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ABSTRACT Constraint Programming (CP) is an efficient technique for solving combinatorial (optimization)
problems. In modern constraint solver, a CP Model is defined over reversible variables that take values in
domains and propagators which filter the domains of the variables. Constraint propagation scheme schedules
the propagators. A reasonable constraint propagation algorithm can improve the efficiency of solving CP
problems. In this paper, we propose two efficient parallel propagation schemes based on multi-thread
technique for table constraint. First, we give the formal definition of the parallel consistency and prove that
the parallel propagation scheme is equivalent to the classic serial propagation scheme. Then, we propose
two parallel propagation schemes: static submission and dynamic submission, which exploit work stealing
thread pool and atomic operations to parallelize the classic propagation of table constraint. Finally, extensive
experiments on various types of problems show that the two parallel schemes outperform their original serial
version on a large number of instances. The results demonstrate the competitiveness of parallel propagation
algorithms on solving extensional constraints.

INDEX TERMS Constraint programming, constraint satisfaction problem, parallel constraint propagation,
parallel generalized arc consistency, simple tabular reduction.

I. INTRODUCTION
Constraint Programming (CP) is an efficient technique for
solving combinatorial (optimization) problems. It is widely
used for solving real-world and academic problems such
as routing, configuring, scheduling, car sequencing, etc [1].
Theoretically, a CP problem is defined by variables and con-
straints. Each variable is associated with a domain containing
its possible values and each constraint contains properties
that must be satisfied by a set of variables. Backtracking
search is a complete approach that guarantees systematic
exploration of the search space of a CP instance. In this
process, the search tree grows to find a solution or prove that
no solution exists [2]. In practical applications, the model-
ing and solving of a CP problem is completed through CP
solvers [3]–[5]. There are manymodules in modern CP solver
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to implement the two above procedures, such as variables,
propagators, propagation schedule methods, search engine,
etc. Variable is typically implemented as a special data struc-
ture of set, which allows adding or removing elements, chang-
ing the range by some intentional constraints, and reversing or
cloning for backtracking search. Constraint can be considered
as a class of sub-problems with restriction rules. It is typically
implemented as a subclass of propagator [16], which provides
a mechanism called filtering to remove the values that do
not belong to any solution of the sub-problem. Propagation
schedule scheme is a process that iterates each propagator to
reduce the domains of the variables. Search engine provides
a series of search methods to traverse the solution space
of CP problem. These methods include backtracking search
(BS), branch-and-bound search (BAB), local search (LS), etc.
Besides, branching and learning are also essential compo-
nents inmodern CP solver. Branching determines which deci-
sions to take and how to find a solution, and learning collects

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 167823

https://orcid.org/0000-0001-6839-6054
https://orcid.org/0000-0001-9745-4372


Z. Li et al.: Novel Multi-Thread Parallel Constraint Propagation Scheme

information during search so as to facilitate the subsequent
search process. Each of these components has many possible
implementations. The improvement of such solver tools has
been an active topic in the CP community for a long time.

Table constraints, also called extension(al) constraints,
play an important role in constraint programming because
they are configured easily and explicitly by listing all allowed
(or disallowed) combination of values for each constraint.
Table constraints naturally arise in many application areas,
such as configuration and data mining. In addition, they
can be viewed as a general mechanism for representing any
constraints. For decades, many filtering algorithms have been
proposed for enforcing Generalized Arc Consistency (GAC)
on table constraints [7]–[12]. Among them, STRbit [11],
Compact-Table [12] and its extensions [13]–[15] are con-
sidered to be the state-of-the-art algorithms. In modern con-
straint solver, enforcing GAC on a constraint model is a
schedule scheme for the filter function of propagators. To
simplify the description, we use c.propagate() to denote
enforcing GAC on certain propagator c.

As shown in [17], the problem of establishing arc consis-
tency is P-complete, which is not inherently parallelizable
under the usual complexity assumptions. That is to say, in the
worst case, we cannot establish arc consistency polynomially
faster with a polynomial number of processors [18]. Paral-
lel constraint programming can be roughly divided into the
following main categories: parallel propagators and propaga-
tion; search-space splitting; portfolio algorithms; distributed
CSPs; problem decomposition. For decades, due to the syn-
chronization issues of the domains, there are only a few
studies on the parallelization of the propagation mechanism.

The pfall algorithm [34] combines multiple local consis-
tencies (such as AC and other consistencies stronger than
AC) in the inference process. It is mainly used to solve the
binary constraint problems. A stronger pruning capability is
obtained without high additional time overhead.

In [25] and [26], Rolf and Kuchcinski presented a parallel
propagation scheme (depicted in Figure 1). Parallel propa-
gation interleaves with backtracking search, which is done
by waking the consistency threads available to the constraint
checking. These threads will then retrieve work from Q
(the queue of constraints) whose scope variables have been
changed. Once all tasks in Q have been processed in paral-
lel, all prunings are committed to the solver. If there were
no changes to any variable, a fixed point has been reached
and the solver continues to search. If an inconsistency is
detected in some threads, it will inform other threads and
they all enter the waiting state, after that the solver needs
to backtrack. To avoid serious data conflict, the clipping of
domains (update model operation) is postponed until the syn-
chronization caused by thread barrier. However, the method
still has some shortcomings. First of all, it lacks a formal
definition of parallel propagation and a clear theoretical proof
of the equivalence to the serial propagation. Then, during its
propagation, it needs a block to synchronize updates, which
seriously affects the computational throughput. Finally, only

FIGURE 1. The execution model for parallel consistency.

a few instances are tested in the experiment, which
makes it difficult to illustrate the scalability of the
algorithm.

According to the characteristics of modern CPU with
multiple cores, we improve the efficiency of existing algo-
rithms through parallelization without changing the comput-
ing device. In this paper, we address those shortcomings
and propose two parallel (a.k.a. multi-thread) propagation
algorithms: static submission and dynamic submission prop-
agation. This is the first attempt to accelerate the paral-
lel propagation of STR style propagators (called STRs for
short) using multithreading schemes. First, we present the
definitions of snapshots and temporary consistency, which
are the theoretical bases for guaranteeing the correctness of
the proposed parallel algorithm in the propagation process.
Next, some thread safe data structures are introduced into the
parallel propagation algorithm, such as AtomicVar , STR style
parallel propagators (called PSTRs for short) and so on. Then,
we propose static submission propagation and dynamic sub-
mission propagation schemes, which exploit work-stealing
thread pool with above improvements, and apply these prop-
agation schemes to the state-of-the-art table constraint reduc-
tion algorithms - STRbit and Compact-Table (CT). We will
show that most of the tabular reduction based on GAC
algorithms can be easily parallelized. Finally, our extensive
experiments on various types of problems show that the two
parallel schemes outperform their original serial version on a
large number of instances. The results demonstrate the com-
petitiveness of parallel propagation algorithms on solving
extensional constraint.

The rest of this paper is organized as follows. After pre-
senting some background in Section 2, we introduce some
definitions and theories for parallel propagation algorithms
in Section 3. In Section 4, we describe our two parallel
propagation schemes: static submission and dynamic sub-
mission. Section 5 compares the parallel schemes in several
parallelism to original serial scheme through experiments
conducted on a large variety of benchmarks. Finally, we con-
clude this paper in Section 6.
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II. BACKGROUND
A constraint satisfaction problem (CSP)P is a tripleP = 〈X ,
D, C〉 where X is a set of n variables, D is a set of domains
of X and C is a set of e constraints.

For each variable x ∈ X , we use D(x) to denote a finite
set of possible values that can be assigned to x, and (x, a) to
denote the value a ∈ D(x). A constraint c consists of two
parts, an ordered set of variables scp(c) = {x1, x2 . . .xr} and
a subset of the Cartesian productD(x1)×D(x2)× . . .×D(xr )
that specifies the allowed combinations of values for scp(c),
denoted by rel(c). Let τ = {a1, a2, . . . , ar } be an r-ary tuple,
and the individual value ai is denoted by τ [xi]. A tuple τ ∈
rel(c) is valid iff ∀x ∈ scp(c), τ [x] ∈ D(x), otherwise τ is
invalid. A tuple τ is a support for (x, a) on c iff τ is valid and
τ [x] = a. Accordingly, a variable x has an ordered set of its
subscription constraints srb(x) = {c ∈ C | x ∈ scp(c)}.
Definition 1 (Generalized Arc Consistency, GAC): Given

a constraint network P = 〈X , D, C〉:
•Aconstraint c is generalized arc consistent iff ∀ x ∈ scp(c)

and ∀ a ∈ D(x), there exists a support for (x, a) on c.
• A constraint network P is generalized arc consistent iff

all constraints in C are generalized arc consistent.
A value (x, a) is generalized arc consistent, or GAC-

consistent iff it has at least one support in each constraint
involving x, and GAC-inconsistent otherwise. It is easy to see
that a GAC-inconsistent value cannot occur in any solution
and will be dropped after enforcing GAC algorithm. At each
level of the search tree, a variable x and a value a ∈ D(x) are
selected and GAC is established by propagating the assign-
ment. A dead-end is reached if the propagation fails, and then
backtracking occurs.
Example 1: Let P = 〈X , D, C〉 be the constraint network

depicted in Figure 2(a), where X= {x1, x2, x3},D = {1, 2, 3}
and C= {c1, c2}. Constraint c1 is x1 = x2 and c2 is x2 < x3.P
is not generalized arc consistent because there are some val-
ues inconsistent with some constraints. Checking constraint
c1 does not permit to remove any value. But when checking
constraint c2, we see that (x2, 3) must be removed because
there is no value greater than it in D(x3). We can also remove
value 1 fromD(x3) because of constraint c2. Removing 3 from
D(x2) causes in turn the removal of value 3 for x1 because of
constraint c1. Now, all remaining values are compatible with
all constraints. Finally, we get a new P after GAC, as shown
in Figure 2(b).

For many constraint solvers, e.g., Gecode, a constraint
problem can be modelled as an object of Gecode home class,

FIGURE 2. A constraint network.

which is constitutive of the array of variables, propagators
(implementation of constraints) and branchers (implementa-
tion of branching). A table constraint, which is an extensional
constraint in Gecode, is a subclass of propagator. A general
constraint solver decomposes the process of enforcing GAC
into two parts: the filtering algorithm that acts as a member
function of propagator and the schedule method that dis-
patches filtering functions.

FIGURE 3. A flow diagram of propagation schedule method.

Figure 3 briefly shows a flow diagram of propagation
schedule method. The schedule method maintains a prop-
agation queue to restore the modified variables. The data
structure of Q can be array or heap. When Q pops a variable
x, the function iteratively calls c.propagate() for all c ∈
srb(x) to prune the GAC-inconsistent values depending on
the remaining tuples of c, detect inconsistency and push the
modified variables to Q.

Some unnecessary work can be avoided by a time-stamp
mechanism. A time-stamp is a value denoting the time at
which certain events occur such as domain and tuples reduc-
tion. Time-stamps enable the progress of algorithms to be
tracked over time. The basic idea of time-stamp is presented
in Figure 4: the algorithm maintains a global time-stamp and
attaches a time-stamp to each variable and constraint object.
The global time-stamp is incrementally changed and it helps
the algorithm update the time-stamp of relevant object when-
ever the above events occur. A constraint c needs updating
iff ∃x ∈ scp(c) s.t. stamp[x] > stamp[c]; a variable x needs
filtering iff x is not assigned and ∃c ∈ srb(x) s.t. stamp[c] >
stamp[x].

FIGURE 4. The time-stamp mechanism.
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Algorithm 1 CLASS STR PROPAGATOR

1 Method updateTable():
2 . . .

3 Method filterDomains():
4 . . .

5 Method initial():
6 /*initialization of Ssup, Sval and lastSize*/

7 Method propagate():
8 initial();
9 updateTable();

10 if TWO is detected then
11 return false

12 filterDomains();
13 if DWO is detected then
14 return false

Algorithm 1 gives a general description of STRs (for more
detailed versions, see [12]). The entry function of propagator
is propagate(), which is an abstract function that must be
overridden by all its subclasses. After initializing some class
fields at line 5 (for more detail, see section 4 or [12]), there are
two main tasks to be executed. First, function updateTable()
(deleteInvalidTuple() in STRbit [11]) is called to remove
invalid tuples based on the current domain of scope variables.
And then, in function filterDomains() (searchSupport() in
STRbit [11]), the domains need filtering according to valid
tuples. The propagate() returns false if it detects that all tuples
become invalid (TWO, for short, at line 10) or the domain of
some variable is wiped out (DWO, for short, at line 13).

III. THEORIES FOR PARALLEL PROPAGATION
ALGORITHMS
In this section wewill introduce some definitions and theories
for parallel propagation algorithms.

A. FIXED POINT
We know that the change in the domain of a variable causes
constraint propagation. In constraint propagation, a fixed
point includes the following two cases:
• If all constraints have been checked and no new changes
to the domain have been triggered, the propagation is
successful.

• If DWO or TWO is detected, the propagation fails.
To enforce GAC on P , if the constraint propagation is

successful, no matter what kind of scheduling algorithm is
adopted, the filtering of the variable domain is equivalent,
but not the converse. For example, the propagator that causes
the failure of constraint propagation may be different. This
may affect some heuristics (wdeg [23], ABS [24] etc.) for
recording failure information and thus may affect the search
tree.

B. THREAD POOL
A thread pool is a parallel computing model for implement-
ing concurrent execution. It manages a group of threads to
process a large number of tasks. Since multiple threads can
be executed in parallel, this approach may be very efficient
regarding the overall program performance on many com-
puter systems. By restricting the number of threads and the
reuse of threads resources are saved and additionally the
system stability is increased.

The implementations of thread pools are mainly in major
languages. Java introduces thread pools since JDK5. Other
programming languages also implement multiple types of
thread pools, such as TBB, Cpp-taskflow, etc. In our imple-
mentation, we use the work stealing thread pool, which is
an efficient type of thread pool. Our parallel propagation
schemes create all the tasks (i.e. propagate()) simultaneously
and dispatch them to a thread pool with a fixed number of
threads. The number of threads in a thread pool is called the
capacity of pool. If one thread has finished its works, it can
‘‘steal’’ work from others. Therefore, the load-balancing is
improved. For ease of description, we abstract some common
methods of thread pool as follows:

• pool.submit(c): Submits a propagator c to pool.
• pool.batchSubmit(b): Submits the given propagators b
to pool.

• pool.awaitQuiescence(): Waits and/or attempts to assist
performing tasks until this pool is Quiescence.

A pool reachesQuiescencewhen all worker threads in pool
are idle. An idle worker is unable to obtain an executable
task because none is available to steal from other threads, and
there are no pending submissions to the pool. In this article,
we exploit awaitQuiescence() method to synchronize various
data.

C. GLOBAL DOMAIN AND SNAPSHOTS OF VARIABLE
In [25], Rolf and Kuchcinski present shared intermediate
domains to synchronize the changes of domains, and present
local thread intermediate domains to cache the changes made
by the local thread. We will improve these two intermediate
domains and put forward definitions of global domain and
snapshot.

At the beginning of propagate() in PSTRs, it will cache
the domains of scope variables. The subsequent propagation
only depends on the cached domains, without accessing the
original domains. At the end of propagation, the propagator
submits cached domains back to original domains, that is,
intersecting the original domains with cached domains. We
call the cached domain of a variable x in a propagator c as a
snapshot, denoted by 6c(x), and the original domain as the
global domain, denoted by D(x).
During parallel propagation, a variable x may have differ-

ent snapshots in different propagators at different time. How-
ever, when parallel constraint propagation reaches a fixed
point, if the constraint propagation succeeds, all snapshots are
submitted to their global domainand and no value is removed.
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Otherwise, the snapshot is not necessarily the same as its
global domain, because DWO or TWO is detected by another
propagator.

Recalling that the core idea of using the time-stamp is
to mark the changes of each variable and constraint. In the
serial algorithm, these changes occur serially, and the last
change must be the latest state. But parallel algorithms are
not necessarily the case. For example, if two workers modify
the variable x concurrently, worker1 deletes the value (x, a)
andworker2 deletes the value (x, b), thenworker1 thinks that
(x, b) is still valid and worker2 thinks that (x, a) is still valid,
that is, neither of their snapshots of x is up to date. Therefore,
time-stamp needs improving to handle such situation.

In addition, there is another way to avoid redundant vali-
dation, which uses the lastSize data structure in some STRs.
This kind of methods compares the domain size of variables
in the previous propagation, which is recorded in lastSize,
with current domain size to determine which variables have
been changed. However, the lastSize is a one-dimensional
record and doesn’t work in the above example. Therefore,
we introduce the concept of snapshot to directly record the
domain in a two-dimensional vector. So in the initialization,
our PSTRs need to get the snapshots from scope variables.
During the subsequent propagation, the table is updated
according to the snapshots instead of the global domains
and then the snapshots are filtered. All modified snapshots
are submitted to the global domain at last. The disadvantage
of the snapshot mechanism is that it does not immediately
inform the propagator of changes to the global domain, which
increases the number of calls to the method propagate(). But
the correctness of the parallel program is guaranteed.

D. TEMPORARY GENERALIZED ARC CONSISTENCY
Parallel propagation has not been well formalized since it
was proposed. In the following, we present the definition of
temporary generalized arc consistency and its equivalence
to generalized arc consistency at the fixed point is proved
theoretically. To distinguish it from the existing temporal
consistency [29], we call it temporary consistency.

A tuple τ ∈ rel(c) is temporary valid iff ∀x ∈ scp(c),
τ [x] ∈ 6c(x), otherwise τ is invalid. A tuple τ is a temporary
support for (x, a) on c iff τ is temporary valid and τ [x] = a.
Definition 2: (Temporary Generalized Arc Consistency,

TGAC): Given a constraint network P = 〈X , D, C〉:
• A constraint c is temporary generalized arc consistent iff
∀ x ∈ scp(c) and ∀ a ∈ 6c(x), there exists a temporary support
for (x, a) on c.
• A constraint network P is temporary generalized arc

consistent iff all constraints in C are temporary generalized
arc consistent.
Proposition 1: When the parallel constraint propagation

reaches a fixed point, TGAC is equal to GAC.
Proof: According to the definition of the fixed point,

when the parallel propagation is successful, i.e., P is tempo-
rary generalized arc consistent, every variable domain is the
same as its snapshots, that is, ∀x ∈ X , ∀c ∈ srb(x), we have

6c(x) = D(x). Therefore, all constraints are checked based
on the global domains. At the moment, P is generalized arc
consistent.

Otherwise, when the parallel propagation fails, ∃x ∈
X , ∃c ∈ srb(x), we submit 6c(x) to D(x), and we get D(x) =
∅. P is not generalized arc consistent at the moment. And
then, we get ∃c′ ∈ srb(x), 6c′ (x) = ∅ when it accesses the
global domain. That is, P is not temporary generalized arc
consistent.

Hence, the proposition is proved.

IV. PARALLEL PROPAGATION SCHEME
In this section, we present a variety of data structures
for implementing parallel propagation algorithms. First,
we introduce some reversible thread-safe variable classes
used in our algorithms. Then, we propose a static submission
algorithm, which improves the original scheme presented
in [25] in the following aspects: using the atomic operation
to improve the synchronization efficiency, using the new
time-stamp mechanism to reduce the redundancy computa-
tion and using work-stealing thread pool to accelerate the par-
allel scheduling. In order to adapt static propagation scheme,
we propose PSTRss as the underlying filtering algorithm for
table constraint. Finally, we further optimize the static sub-
mission scheme and propose a dynamic submission scheme,
which removes the thread barrier in the original scheme.
It allows propagator PSTRds, an improvement for PSTRss,
to dynamically submit the new tasks to the thread pool.
Hence, it improves the throughput of the computation. Please
note that, PSTRs maintain TGAC, so when the propagation
reaches the fixed point, the two parallel schemes maintain
GAC.

A. REVERSIBLE THREAD-SAFE VARIABLE CLASSES
We use SafeVar as the basic class for reversible thread-safe
variable classes, and present the following additional abstract
methods for implementing the SafeVar class:

• getSnapshot(): Takes a snapshot from the current vari-
able before a constraint check starts.

• submit(b): Submits the snapshot b to the global variable
domain. The values that are absent in b will be deleted
in the global domain, i.e., D(x) = D(x) ∩6(x).

In CP solvers, the representation of variable domains is
an important design choice, which has a significant impact
on the performance. The paper [22] discusses the usage of
sparse sets in integer domain implementation and compre-
hensively compares the space-time complexity of various
implementations. In fact, these implementations can also be
modified to thread-safe version. In this paper, we choose the
atomic bit vector as the basic implementation of thread-safe
variable. This is mainly based on the following three
considerations:

• The method based on bit representation is efficient on
most problems. So far, many CP solvers have adopted
bit vector as the default implementation.
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• With bit-level parallelism and atomic operations pro-
vided by programming languages, the atomic bit vector
makes it easy to implement non-blocking parallel algo-
rithm.

• The assignment and flipping of bit vectors is
lightweight, so propagators can easily access the
snapshots.

To facilitate amore abstract expression, nomatter how long
the bit length of a word (natural data units of the computer
architecture) is, we abstract the bit vector (an array of Integer
or Long) into a BitSet class. A BitSet is an array data structure
that compactly stores bits. Here we use it as the basic data
structure to represent the domain and snapshot. If a variable
has 120 values, then the length of its BitSet is 120.

As the name implies, AtomicBitSet is an atomically oper-
able BitSet class. The implementation of BitSet varies in
different programming languages. Mainstream programming
languages may not implement the AtomicBitSet class. But
most of them provide atomic basic data types and methods,
such as atomic integer and atomic long.

The following are the primary methods of class
AtomicBitSet . Most of them provide atomic and non-atomic
versions, and atomic versions are followed by ∗. Here we
assume that a is an instantiated object of AtomicBitSet .
• a.Set(): Sets all bits of a to 1.
• a.Set(pos): Sets the bit at position pos to 1.
• a.Reset(): Sets all bits of a to 0.
• a.Reset(pos): Sets the bit at position pos to 0.
• a.And(b): Sets the bits of a to the bitwise AND result of
a with b.

• a.Or(b): Sets the bits of a to the bitwise OR result of a
with b.

• a.And&Get∗(b): Atomically sets the bits of a to the
bitwise AND result of a with b and returns this result.
This method only provides an atomic implementation.

• a.Count(): Returns the number of bits that are set to 1.
In addition, we list some common methods for atomic

integer as follows. Here, we assume that a is an instantiated
object of atomic integer.
• a.Set∗(b): Atomically sets a to the given value b.
• a.Try&Set∗(expected, updated): Atomically sets a to
the given updated value if a = expected and returns
true. Otherwise, doesn’t change the value of a and
returns false.

• a.Get&Inc∗(): Atomically increments the value of a by
one and returns original value.

In algorithm 2, we present two additional methods
of class AtomicBitVar , which uses bitDoms, an array of
AtomicBitSet , to represent the reversible global domain of
variable. The bitDoms[0] represents the initial domain and
bitDoms[currentLevel] represents the current domain.

Method getSnapshot∗() is used to get the snapshot
of the variable atomically. Method submit∗(b) submits
AtomicBitSet b to the global domain and returns the
result.

Algorithm 2 Class AtomicBitVar
Data: bitDoms:Array of AtomicBitSet
currentLevel: current level of search

1 Method getSnapshot∗():
2 return bitDoms[currentLevel];

3 Method submit∗(b : AtomicBitSet):
4 return bitDoms[currentLevel].And&Get∗(b);

Algorithm 3 STATIC SUBMISSION PROPAGATION

Data: Xevt : set of modified variables
Cevt : set of propagators to be executed
consistent: global Boolean
pool: global thread pool
stamp: time-stamp of variables
time: global time-stamp

1 consistent ←− true;
2 foreach x ∈ Xevt do
3 stamp[x]←− time;

4 repeat
5 Cevt ←− {c ∈ C|∃x ∈ scp(c) ∧ stamp[x] = time};
6 time←− time+ 1;
7 pool.batchSubmit(Cevt );
8 pool.awaitQuiescence();
9 until Cevt = ∅ ∨ ¬consistent;

B. STATIC SUBMISSION PROPAGATION SCHEME
We first introduce the static submission propagation in algo-
rithm 3, which iteratively submits a set of propagators to the
thread pool pool. The algorithm 3 has the following fields:
The Xevt is a set of variables whose domain has been changed.
The Cevt is a set of propagators that need propagating. The
consistent is a global Boolean value used to mark whether the
current network is GAC. The time is a global time-stamp and
is incremented by one in each iteration of propagation. The
stamp is used to mark a variable that has just been changed.
If the domain of a variable x is changed, the stamp[x] is set
to the time. The pool is a global thread pool for scheduling
the propagators. Algorithm 3 first sets consistent to true,
and then sets the stamp of each variable in Xevt to time.
Lines 4-9 is the loop used to concurrently propagate until the
Cevt is empty or inconsistency is detected. Line 5 obtains the
set of propagators whose at least one scope variable is just
modified, i.e., ∃x ∈ scp(c), stamp[x] = time. Next, time
is incremented by 1 at line 6. And then Cevt is submitted
to the pool for parallel propagation at line 7. Line 8 is the
synchronization point where the main program waits for all
propagation tasks to complete.

The algorithm 4 is the framework of PSTRss, which is
called at line 7 of algorithm 3. To show the extensibility of
the algorithm, we omit the same part as STRs. If we want to
parallelize Compact-Table in this way, we just need to fill the
omitted part with the corresponding code of Compact-Table.
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Algorithm 4 CLASS PSTRss PROPAGATOR
Data: scp: array of scope variables
Sval , Ssup: temporary sets of variables
6: array of local snapshots
6̀: array of last snapshots

1 Method initial():
2 remove all elements in Sval and Ssup;
3 foreach x ∈ scp and consistent do
4 6(x)←− x.GetSnapshot();
5 if 6̀(x) 6= 6(x) then
6 6̀(x)←− 6(x);
7 Sval ←− Sval ∪ {x};

8 if x is unbind then
9 Ssup←− Ssup ∪ {x};

10 Method updateTable():
11 foreach x ∈ Sval and consistent do
12 update table according to 6(x);

13 /*detect inconsistent*/
14 if TWO detected then
15 consistent ←− false;
16 return;

17 Method filterDomains():
18 foreach x ∈ Ssup and consistent do
19 filter 6(x) according to the updated table;
20 /*submit snapshots*/
21 tmp←− x.Submit∗(6(x));
22 /*detect inconsistent*/
23 if DWO detected then
24 consistent ←− false;
25 return;

26 6̀(x)←− 6(x);
27 /*if global domain is changed*/
28 if tmp 6= 6(x) then
29 stamp[x]←− time;

30 Method propagate():
31 initial();
32 updateTable();
33 filterDomains();

And STRbit can be parallelized in the same way. The entry to
the algorithm is the method propagate(), which is called by
the worker thread of the pool. Similar to STRs, the method
propagate() calls three methods (i.e., initial(), updateTable()
and filterDomains()) in turn, and exits if TWO or DWO
occurs. PSTRss also has some same fields to STRs. The
array scp represents the scope variables of c. The set Sval

contains variables whose domain has been reduced since
the previous invocation of the filtering algorithm on c. The
set Ssup contains unbind variables (from the scope of the

constraint c) whose domain contains each at least one value
for which a support has not been found. These two sets
enable us to restrict loops on variables to relevant ones. Next,
we introduce two additional fields of PSTRs: local snapshots
(6) and last snapshots (6̀). Unlike STRs that record the
domain size of each modified variable x by lastSize, we use
6̀ to record the last snapshot right after the execution on c.
The algorithm obtains a local snapshot of each variable at
line 4. If the last snapshot and the local snapshot are not
equal at line 5, the variable x has been changed. Therefore,
x is added to Sval , and the last snapshot needs updating.
The method updateTable() filters the tuples according to the
local snapshots. And in turn, the method filterDomains()
filters the local snapshots according to the tuples. At line 21,
PSTRss submits the snapshot to the global domain and gets
the updated snapshot atomically. Line 26 updates the last
snapshots. Variables whose domain has been changed will
mark its stamp to time at line 29 so that algorithm 3 can rec-
ognize the modified variables (line 5, algorithm 3)in the next
iteration. Besides, it needs to set the global vairable consistent
to false and returns when TWO (line 14) or DWO (line 23) is
detected. Then other propagators detect consistent = false in
iteration, algorithm 4 immediately exits and returns to algo-
rithm 3. After the jobs of the thread pool are all ended (line 8,
algorithm 3), the propagation exits (line 9, algorithm 3).
The parallelism of the thread pool is less than that of
the CPU, so task preemption generally does not occur in
theory.

C. DYNAMIC SUBMISSION PROPAGATION SCHEME
In the previous section, we introduce the static submission
propagation. It uses the snapshot mechanism to guarantee
the correctness of concurrent execution. The use of atomic
operations avoids blocking the access to the variable domain.
However, this algorithm still needs a block after submitting
Cevt in the loop. This is just like a faucet that is frequently
switched and does not always keep the maximum flow, which
reduces the efficiency of water storage. An obvious opti-
mization is removing the frequent switching to maintain the
maximum flow.

Therefore, we propose dynamic submission propagation
in algorithm 5, which removes the block between iterations.
Unlike algorithm 3, this algorithm only submits propagators
to the thread pool once at the beginning of the constraint
propagation. During the parallel propagation, one propaga-
tor can dynamically submit other propagators depending on
modified variables. The dynamic submission scheme also
needs to preserve a block for synchronization at line 8. After
this, the propagation is completed and the solver returns to
the backtracking search algorithm.

The dynamic submission scheme needs to call PSTRds (as
shown in algorithm 6), which is an improvement of PSTRss.
The entry method in PSTRds is propagate(). Instead of
blocking the program for synchronization between iterations,
PSTRds calls method submitOthers() at line 30 to dynami-
cally submits other propagators based on modified variables.
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Algorithm 5 DYNAMIC SUBMISSION PROPAGATION

Data: Xevt : set of modified variables
pool: global thread pool

1 consistent ←− true;
2 foreach x ∈ Xevt do
3 foreach propagator c ∈ srb(x) do
4 if ¬consistent then
5 return;

6 if c.numReq.get&Inc∗() = 0 then
7 pool.submit(c);

8 pool.awaitQuiescence();

This is obviously different from the static submission, which
submits propagators only by itself.

We introduce two additional data structures in PSTRds.
Yevt is used to record the modified variables. numReq is used
to record the number of propagation requirement and pre-
vent a propagator from being executed by multiple workers
at the same time. Initially, numReq is set to 0, indicating
that the propagator does not have an execution request. If
the propagator c needs submitting to the pool, the value of
c.numReq is obtained and then increased by 1 via method
numReq.get&Inc∗() (line 6 in algorithm 5 and line 22 in algo-
rithm 6). If the original value is 0, c can be submitted to pool.
Otherwise, c is executed and does not need resubmitting. If c
is successfully submitted, at the end of its propagation (line
30 in algorithm 6), PSTRds attempts to modify the value of
numReq by calling method numReq.Try&Set∗(1, 0). If the
original value of c.numReq is 1, the only execution request
has been completed. Then c.numReq is set to 0 atomically.
The statement Try&Set∗(1, 0) returns true, and the loop exits.
Otherwise, the value of c.numReq is greater than 1 and the
statement Try&Set∗(1, 0) returns false. The reason is that c
receives other execution requests during propagation, which
causes c.numReq to be greater than 1. And if consistent
is true, the propagation continues. To reduce the value of
c.numReq, PSTRds atomically sets the numReq to 1 at line 26.
This indicates that no matter how many execution requests
were received before, the propagator starts to respond.

In short, if a new execution request is received during
propagation, it will be processed in the next loop. Hence,
the correctness of the data is guaranteed.

D. DISCUSS
1) PARALLEL PROPAGATION HYPERACTIVITY
In parallel propagation, while a task is waiting in the queue,
concurrent modification generated by other executing tasks
accumulates. The more worker threads, the more computing
resources are available to execute the propagators. This may
result in the propagation task being executed as soon as it is
submitted, without acquiring more modifications. So prop-
agators are scheduled to execute more frequently. We call

Algorithm 6 CLASS PSTRds PROPAGATOR
Data: Same as PSTRss

Additional data structures:
Yevt : set of domain changed Variables
pool: global thread pool
numReq: atomic integer

1 Method initial():
2 /*same as PSTRss*/

3 Method updateTable():
4 /*same as PSTRss*/

5 Method filterDomains():
6 foreach x ∈ Ssup and consistent do
7 filter 6(x) according to the updated table;
8 /*submit snapshots*/
9 tmp←− x.Submit∗(6(x));

10 /*detect inconsistent*/
11 if DWO detected then
12 consistent ←− false;
13 return;

14 6̀(x)←− 6(x);
15 /*if global domain is changed*/
16 if tmp 6= 6(x) then
17 Yevt ←− Yevt ∪ x;

18 Method submitOthers():
19 foreach x ∈ Yevt and consistent do
20 foreach propagator c ∈ srb(x) do
21 if c 6= this then
22 if numReq.get&Inc∗() = 0 then
23 pool.submit(c);

24 Method propagate():
25 repeat
26 numReq.set∗(1);
27 initial();
28 updateTable();
29 filterDomains();
30 submitOthers();
31 until numReq.Try&Set∗(1, 0) ∨ ¬consistent;

this phenomenon as Parallel Propagation Hyperactivity. For
example, let c ∈ C is a constraint of P and scp(c) = {x, y, z}.
In a serial parallel scheme, (x, a), (y, b) and (z, d) have been
deleted by other propagators while c is waiting in the queue.
At this point, if c starts to propagate, the filtering algo-
rithm considers these three values. However, in the parallel
scheme, since computing resources are easier to obtain, c
may be propagated after deleting only two values (x, a) and
(y, b). Therefore, c should be propagated again after deleting
(z, d). Hence, the number of propagator executions generally
increases as the computing resources increase.
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2) COMPLEXITY
In paper [30], the worst-case time complexity of serial
propagation excluding propagate() (i.e. ignoring the calls
to propagate()) is given as O(erd), which is the number of
c-values in P . e, r and d are the number of constraints,
the largest constraint arity and the greatest domain size,
respectively. This indicates that all c-values needs to be prop-
agated in the worst case. Since our improvements are for most
of the STR algorithms and their worst-case time complexity
varies, we assume that the worst-case time complexity of the
STRs is O(T ). Therefore, the worst-case time complexity of
the serial propagation embedded STRs is O(erdT ).

In the worst case, the parallel algorithms also need to
propagate erd times. Besides, the parallel propagation does
not specify which thread pool to use, so we assume that
the worst-case time complexity of concurrent scheduling
is O(S). If there are p threads for performing propagation,
we conclude that the worst-case time complexity of parallel
propagation schemes is O(erdTS/p).
We have given the worst-case time complexity, but in

practice, we use another formula to intuitively illustrate the
performance of the algorithms. We assume the actual exe-
cution time of parallel propagation is nTS/p, where n is
the actual number of the calls to propagate() and S is the
time overhead for processing concurrent transactions (such
as waking up thread, switching context and stealing work).
Therefore, the execution time of serial propagation is nT .
For some instances with fewer constraints (resp. smaller table
size of a constraint), the n (resp. T ) is smaller. The parallel
algorithm may lose competitiveness to the serial algorithm
when S is large. In addition, owing to the parallel propagation
hyperactivity, high parallelism may have a larger n and may
lose competitiveness to the low parallelism.

V. EXPERIMENTS
A. EXPERIMENTS ON NON-BINARY TABLE
CONSTRAINT INSTANCES
Datasets. We first evaluate the performances of static sub-
mission and dynamic submission schemes by comparing the
search algorithms embedding serial and parallel propagation
schemes on non-binary table constraint problems. To provide
a comprehensive evaluation, we sample various CSPs from
Lecoutre’s XCSP repository [31] and XCSP3 website [32]
including both synthetic and real-world problems: MODEL

RB, RENAULT, CROSSWORD, CRIL, TRAVELLING SALESMAN

(TSP-20, TSP-25), MDD, LARGE TABLES, DIMACS, etc.
Table 1 shows the sizes of some test instances. For each

group of instances, Table 1 presents the number of vari-
ables (n), the number of constraints (e), and the maximum
arity of constraints (r), the average and maximum size of
variable domain (d(avg/max)) and the average and maximum
number of tuples (#τ (avg/max)). The category of the group
instances is marked on the top left of each grid. By observing
Table 1, we can see that for the instances of MODEL RB and
LARGE TABLE, the difference in size between variables (con-

TABLE 1. The sizes of some test instances.

straints) is not big. For BDD and DIMACS, the size of their
domain is only 2. The average number of tuples of aim and
dubios is less than 10, so these problems are quite small. The
domain of the CROSSWORD is alphabet, so the size of their
domain is 26. In the problems MODIR, TSP and JNH, there is
a large difference between the average and the maximum
number of the tuples, which may affect the efficiency of our
parallel algorithm. This scenario will be analyzed later.

Implementation Details. First, we extend Compact-table
(CT) to PCTss for static submission and PCTds for dynamic
submission. Then, we extend STRbit to PSTRbitss for static
submission and PSTRbitds for dynamic submission. We use
PCTs to represent PCTss and PCTds, and PSTRbits to repre-
sent PSTRbitss and PSTRbitds. Both of PCTs and PSTRbits
are embedded in the backtracking search. All the algorithms
have been implemented in Scala 2.12 and Java 11. We use
the ForkJoinPool [28] as the basic thread scheduling mech-
anism. All codes that can reproduce our experiments are
available at https://github.com/leezear2019/sub1. Our exper-
iments run on a computer with AMD R7 1700 3.2GHz
(8 cores, 16 threads), 16GRAM,Manjaro 18. To highlight the
efficacies of two propagation schemes, we evaluate the search
algorithms using a relatively simple heuristic dom/ddeg.
Other efficient heuristics such as dom/wdeg or ABS are not
chosen because these heuristics record information about
propagation failures, which may be different in serial and
parallel algorithms, affecting the shape of search tree and the
number of search nodes. The advantage of dom/ddeg heuristic
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is that as long as an instance has a solution, all algorithms
have the same number of search nodes, which makes the
comparison experiment more intuitive.

In addition, to show the performance of parallel algorithms
with different parallelism, we set the parallelism (the number
of working threads) of thread pool for the two algorithms to
2,3,5,7,9,13,16. If the parallelism of the thread pool is set to 2,
there are actually two threads handling the propagation tasks.
In fact, we perform a total of 30 tests on each instance: 1 test
for CT, 7 tests for PCTss for different parallelisms, 7 tests for
PCTds, 1 test for STRbit, 7 tests for PSTRbitss and 7 tests
for PSTRbitds. We use ‘‘algorithm name @ parallelism’’ to
express an algorithm with specified parallelism of the thread
pool. For example, PCTds@7 means the PCTds algorithm
with 7 threads.

Metrics. The time limit is set to 900 seconds, and the
instance that is not solved within the time limit is called time-
out instance. We remove a small number of known timeout
instances before the experiments, because these instances will
waste a lot of time and we can’t get more useful information.
The average results of the remaining instances are presented
in Table 2. Table 2 shows the average results of original serial
algorithm (serial) and the best parallel algorithm (bestp). In
addition, for each group of instances, we present the aver-
age solve time (cpus), average propagation time (cpup) in
seconds, speed-up ratio of propagation time (ratio) and the
number of the serial/parallel execution of propagators (#prop)
in the millions. The best speed-up ratio of each row is shown
in bold. For the sake of fairness, the timeout instances tested
on either algorithm are also excluded in statistical averaging.
Because parallel algorithms and serial algorithms are equiv-
alent, the number of search nodes per group is the same. To
save space, these numbers are omitted.

CT vs. STRbit. In [33], Schneider and Choueiry first
evaluate CT and STRbit, which are state-of-the-art STR algo-
rithms. They use a different bit vector technology as the pri-
mary acceleration approach. By comparing the experimental
data of STRbit and CT, the STRbit is nearly as efficient
as the CT in some instances, but the CT is faster than the
STRbit in most instances. In general, CT outperforms STRbit
in terms of the size of the current problems. By comparing
CT and STRbit with their respective parallel versions, we can
find that the parallel algorithms achieve a significantly higher
speed-up ratio on STRbit. This demonstrates that the longer
the time of serial propagation, the greater the improvement of
parallel propagation.

STRs vs. PSTRs. We compare all the results of serial
and parallel schemes from a whole perspective. In terms of
solving time, for CT algorithm, its serial scheme performs
best on 8 groups of instances. The static submission scheme
performs best on 1 group. The dynamic submission scheme
performs best on 14 groups. For STRbit algorithm, its serial
scheme performs best on 6 groups. And the static submis-
sion scheme performs best on 1 group. And the dynamic
submission performs best on 16 groups. In general, among
the 23 groups of instances, the serial scheme performs better

on about 1/3 of the total, while the parallel schemes perform
better on the remaining 2/3. From the perspective of details,
the examples with better performance under serial scheme
are concentrated on individual examples such as DIMACS,
RENAULT and so on, which generally have the following
characteristics:

• Fewer constraints. Since our algorithms use propagator
as the basic parallel task, problems with fewer con-
straints (e.g., the rand-10-20-10 has 5 constraints per
instance) do not take more advantage of the improve-
ments brought by parallelism.

• The table size of a constraint is small. For example, some
constraints on DIMACS and RENAULT only contain fewer
than 10 tuples. Obviously, the propagation time of such
constraints is extremely short. Therefore, it is not worth
to parallelize them.

• The domain is small. For example, the domain of SAT
problems: AIM and JNH, is {0, 1}. This may lead to a
shorter propagation time. So it is not worth the paral-
lelize them either.

By observing the number of serial/parallel executions of
propagators (#prop), we find that the #prop of dynamic sub-
mission propagation is the most, followed by static submis-
sion propagation, and serial propagation is the least. This is
because of the parallel propagation hyperactivity (we have
discussed in Section 4).

PCTss vs. PCTds. Figure 5 shows the speed-up ratio of
the solving time for each series. We use the CT algorithm
as the baseline to measure other algorithms. The x-axis rep-
resents the name of each group instances, and the y-axis
represents the acceleration ratio of the solving time. Each
group of instances is arranged from small to large according
to the PCTds@7 speed-up ratio. The PCTds algorithm is
generally superior to the PCTss algorithm and is superior
to CT algorithm on majority of the group instances. Even
on many instances, PCTds achieves more than three times
the acceleration. Typically, the most efficient algorithm is
PCTds@7, which means PCTs have good performance when
the parallelism is set to 7. It also confirms our observation
in the previous paragraph. This is because we have opti-
mized the block used for synchronization in the propagation,
which greatly improves the throughput of parallel computing.
Because the scale of MODEL RB and LARGE TABLE is so large,
in this experiment, we get the best performance when the
parallelism is set to 16.

B. EXPERIMENTS ON BINARY CONSTRAINT INSTANCES
Although the presented parallel propagation schemes are
mainly used to improve the efficiency of solving non-binary
table constraint problems, we still evaluate our algorithms
on some binary constraint problems. Table 3 presents the
experimental results of the CT, PCTds@5 and pfall algo-
rithms on some (series and singleton) binary constraints
instances. In this experiment, we combine two consistency
algorithms: CT and lMaxRPCbit [35] for the pfall algorithm.
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TABLE 2. Results of comparing STRs and the best PSTRs.

Both algorithms are bit-based algorithms, and lMaxRPCbit

has stronger consistency. To be fair, as with PCTds@5,
we also use 5 threads to perform pfall. One thread is the
main thread that executes the backtracking search emended
by CT, one thread executes the lMaxRPCbit synchronously,
and the other three threads execute the lMaxRPCbit

asynchronously.
From Table 3, we find that pfall has the best results on

many instances. There are twomain reasons: On the one hand,
pfall combines the strong consistency algorithm lMaxRPCbit,
which can prompt the main thread to delete the invalid
value and exit from the invalid search subtree. This greatly
improves the pruning ability. Thus the algorithm traverses
fewer nodes. On the other hand, the CT algorithm executed
in the main thread interrupts other threads in time, so that

the whole solving process does not fall into a long-time
inference due to the strong consistencies. This ensures that
the algorithm has an upper bound of the CT algorithm solving
time, so the solving time of the pfall algorithm is typically the
shortest. Due to the above two reasons, the timeout rate of the
pfall algorithm for solving grouped instances is also minimal.
In addition, since CT and PCT have the same consistency,
the number of traversal nodes is the same. Overall, the PCT is
slightly better than CT, but it does not soundmassive. Another
finding is that CT and PCT perform better on the instances
that have similar number of traversal nodes in the three
algorithms, such as rand-2-30-15(-fcd), ewddr2 and scen7.
This is because AC is easier to achieve than lMaxRPC. If the
number of traversal nodes is similar, PCT and CT algorithms
are faster than pfall.
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FIGURE 5. The comparison of speed-up ratio of solving time for series instances.

TABLE 3. Results on binary constraint instances with dom/ddeg.

VI. CONCLUSION
There has been a lot of work on parallel constraint program-
ming for parallel search tree and problem decomposition.

In this paper, we illustrate the feasibility of research in
a different direction, i.e., parallel propagation, by revisit-
ing the parallel consistency model. We propose two (paral-
lel) propagation schemes: static and dynamic, which utilize
work-stealing thread pool and atomic operations to improve
the efficiency of propagation. In addition, to adapt the two
parallel propagation schemes, we improve the STR algo-
rithms and propose two parallel STR algorithms: PSTRss and
PSTRds. Our extensive experiments show that both PSTRss

and PSTRds outperform serial propagation scheme on most
of the larger non-binary table constraint instances, which
sufficiently illustrates the potential of parallel propagation. In
the future, we will combine the proposed parallel propagation
schemes with stronger consistencies to improve the solving
efficiency. Andwewill apply these schemes to parallel search
tree and problem decomposition instead of the serial version.
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