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ABSTRACT To meet the requirement of vehicle real-time and precise ego-localization on the flat road of
city, a vehicle ego-localization method based on the fusion of optical flow and feature points matching is
proposed. A novel FAST algorithm with self-adaptive threshold is applied to detect feature points. Based
on the assumption of flat plane, the improved Lucas-Kanade algorithm is carried out to track feature points,
and then the custom LARSAE is used to amend vehicle offsets. Meanwhile, Hu moments are used as the
feature descriptor to complete image matching, realizing vehicle motion estimation. These two methods are
fused by the discrete kalman filter to update and optimize vehicle position. Experimental results show that
the fusion algorithm overcomes the shortcomings of poor positioning accuracy of optical flow and the low
processing speed of feature matching, and is able to provide more accurate real-time positioning output,
having a certain robustness for circumstances such as illumination change and low pavement texture.

INDEX TERMS Vehicle ego-localization, image matching, optical flow, optimized FAST, Kalman filter.

I. INTRODUCTION
High-precision vehicle position information is of great sig-
nificance for vehicle behavior safety analysis. In recent
years, machine vision based vehicle positioning has grad-
ually become the research hotspot of autonomous navi-
gation [1], [2]. Compared with the traditional positioning
methods (GPS, INS, Odometer, etc.), visual odometer does
not have signal blind area, and is not affected by wheel
slip, having the advantages of independence, high position-
ing accuracy, and not susceptible to interference [3], [4].
Uchiyama et al. [5] put forward an ego-localization using
streetscape image sequences from in-vehicle cameras. All-
dimensional street view images were shot in advance to
store in a database. In the process of vehicle moving, two
cameras were applied to take street scenes from different
angles in real-time, then they were matched with pre-existing
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street images, and the triangulation method was used to
calculate the precise location of vehicle. This method had
high positioning accuracy, but required to establish the image
database beforehand. So it wasted time and energy, and was
not applicable to vehicle real-time positioningwithout captur-
ing panoramic images.Wu and Ranganathan [6] proposed the
vehicle localization using road markings. According to the
actual coordinates of the detected road signs in the database
and its relative distance to vehicle, the vehicle position could
be estimated precisely. However, establishing the database
also wasted time and required to make a regular update.
In the literatures [7], [8], according to the homography matrix
calculated by local feature points matching, vehicle trajectory
was calculated to realize ego-localization. The method had
the accurate positioning information in a short time, but it
had low efficiency and was affected by the accumulated
error to make the trajectory drifted over time. Zhang et al.
[9] introduced a method of visual odometry based on ran-
dom finite set statistics in urban environment. Targets were

167310 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-7158-9682
https://orcid.org/0000-0002-0452-4720
https://orcid.org/0000-0002-0116-5988
https://orcid.org/0000-0001-5972-2890
https://orcid.org/0000-0002-0378-8310
https://orcid.org/0000-0001-6861-9684


C. Xin et al.: Vehicle Ego-Localization Based on the Fusion of Optical Flow and Feature Points Matching

optimally selected and dynamically evaluated by a recur-
sive filtering algorithm in the presence of clutter and high
association uncertainty, to make sure them more accurate.
Meanwhile, he presented that vehicle trajectory could be
calculated based on random finite set statistics using a single
camera in complex urban environments [10], and a sensor
fusion approach with cumulative error elimination was used
to achieve vehicle precise positioning [11]. Pink et al. [12]
proposed the visual features for vehicle localization and ego-
motion estimation, however the speed was relatively slow.
Vehicle positioning based on image matching had good accu-
racy, but the time efficiencywas too low. After nearly 30 years
of development, the optical flow method could meet the
requirements of certain accuracy and stability for vehicle
motion estimation, and because of the fast computational
speed, visual odometry based on optical flow method had
been able to reach the level of practical application [13].
Vision-based mobile robot navigation based on optical flow
proposed by Ban [14] could be analogically applied in vehi-
cle, which studied the optical flow effects of images captured
by panoramic camera, fish-eye lens and spherical panoramic
stereo imaging system, to accomplish obstacle avoidance and
depth estimation. Steven et al. put forward the accurate visual
odometry from a rear parking camera [2], [15], which aligned
images to calculate relative offsets by Efficient Second-order
Minimisation (ESM) algorithm, and fused GPS to complete
accurate positioning. Monocular vision odometry based on
the fusion of optical flow and feature points matching was
put forward by Zheng et al. [16] and Zheng [17]. The fusion
of optical flow and feature points matchingwas accomplished
by using kalman filter, to realize ego-localization on the flat
surface by reducing error on the basis of considering real
time. An optical flow-based integrated navigation system
inspired by insect vision was presented by Pan et al. [18],
which also used the kalman filter to correct the cumulative
error.

In order to ensure real time performance with better posi-
tioning accuracy, this paper proposes a vehicle ego-motion
estimation method based on the fusion of optical flow and
feature points matching. A novel FAST algorithm with self-
adaptive threshold is applied to detect feature points, and
vehicle offsets are calculated by using the modified Lucas-
Kanade algorithm. Meanwhile, Hu moments describe fea-
ture points to complete image matching, completing vehicle
motion estimation. Finally, these two methods are fused by
using kalman filter to update and optimize vehicle position.
Through the campus environment test, experimental results
show that the method can obtain more accurate and smoother
vehicle trajectory, and provide more complete location infor-
mation.

The remaining part of this paper is organized as follows:
The implementation procedure of the proposed method is
introduced in the next section, together with the algorithm
principle. Some experiments using real data are conducted
and the analyses are shown in Section III. Finally, conclusions
are summarized in the last section.

II. VEHICLE EGO-LOCALIZATION IMPLEMENTATION
PROCEDURE
A. FAST WITH SELF-ADAPTIVE THRESHOLD
Feature point extraction is the basis of vehicle ego-
localization with a lot of existing methods such as Harris
and Stephens [19], SIFT [20], SURF [21] etc. FAST (Fea-
tures from Accelerated Segment Test) [22] is widely used.
It is a simple and rapid, but has the following disadvan-
tages: (1) Because of the difference in contrast and noise
for images obtained under different conditions, FAST with
the fixed threshold has poor robustness; (2) There is a high
similarity between the real feature points and their nearby
pixels, so the feature block can be produced, leading to high
agglutination rate and reducing the application performance.
In order to improve these limitations, dynamic global thresh-
old and local threshold are combined to enhance the stability
and adaptive ability of the algorithm. At the same time,
NMS (Non-Maximum Suppression) is used to inhibit the
formation of multiple feature point blocks.

1) FEATURE EXTRACTION BASED ON DYNAMIC GLOBAL
THRESHOLD
The FAST threshold represents the minimum contrast of
detected feature points and themaximum tolerance of resisted
noise. The lager the threshold value is, the less the number
of detected points is, otherwise the more. Although using
fixed threshold is simple in calculation, it cannot meet the
requirement of feature point extraction for different images.
So the KSW entropy method is used to dynamically set a
global threshold T1 in this paper.
(1) N sample images are selected, which don’t exist signif-

icant interference from light, shadow, etc.
(2) TheKSWentropymethod is used to calculate the global

threshold T1i, i = 1, 2, · · · ,N .
A threshold value t is set to divide gray range [0, L-1]

into two parts of s1 and s2, which represent respectively
pixel frequency distributions of [0, t] and [t+1, L-1]. That is
s1 = {p0, p1, p2, . . . , pt }, s2 = {pt+1, pt+2, pt+3, . . . , pL−1},
where pi is the frequency of (i)th level gray scale.

Setting Pt =
t∑
i=0

pi, the entropies S1 and S2 of s1 and s2 are

relatively defined as

S1 = −
t∑
i=0

pi
Pt

ln
pi
Pt

(1)

S2 = −
L−1∑
i=t+1

pi
1− Pt

ln
pi

1− Pt
(2)

Therefore, the image entropy S is the sum of S1 and S2,
namely S = S1 + S2. According to the above description
and inference, when traversing each t in gray scale range,
two parts of entropies are calculated. Finally, we can get the
gray-scale level Tmax corresponding to the maximum sum of
entropies, and Tmin corresponding to the minimum. So the
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best global threshold of the (i)th image is given by

T1i = k × |Tmax − Tmin| (3)

where, k is the proportionality coefficient, and k is equal to
0.2 in the experiment.

(3) The average of sample images is calculated by
equation (4), and it is the dynamic global threshold T1 for
such images.

T1 =
N∑
i=1

T1i

/
N (4)

The feature extraction algorithm based on dynamic global
threshold is to calculate a fixed optimal global threshold for
each type of image. It overcomes the poor robustness of the
FAST algorithm. However, comparingwith the algorithm that
calculates an optimal global threshold for each image, its time
efficiency has greatly improved.

2) FEATURE OPTIMIZATION BASED ON DYNAMIC LOCAL
THRESHOLD
The global threshold T1 meets the requirements of different
images on thresholds, but its correlation with global gray
distribution cannot adapt to local gray change. So the study
further screens through setting dynamic local threshold T2 for
feature points obtained by dynamic global threshold T1.

Analyzing the contrast of image gray value, the adaptive
local threshold value T2 is calculated under the different
regions of the image. (x0, y0) is assumed as the candidate
feature point, for which chooses a square area with length
of side L. In this area, the dynamic local threshold T2 is
calculated by

T2 = k ×

1
n ×

[
n∑
i=1

Iimax −

n∑
i=1

Iimin

]
Iiaver

(5)

where, k is the proportionality coefficient, Iimax and
Iimin(i = 1, 2, . . . , n) represent respectively n grays values
of the maximum and minimum in the square area, Iiaver is the
average of gray values in the square area.

Setting 1 = 1
n ×

[
n∑
i=1

Iimax −

n∑
i=1

Iimin

]
, it is the contrast.

Because the nature of the FAST algorithm is a measure of
contrast for adjacent pixels, so the local threshold is related
to the local contrast of image (a proportional relation).

Through the local threshold T2 further screening, the can-
didate feature points are made more stable. Then in order to
eliminate the gathered phenomenon of feature point block,
the NMS is used to get finally the effective FAST feature
points.

B. VEHICLE MOTION ESTIMATION USING LUCAS-KANADE
Bouguet [23] proposed an improved Lucas-Kanade algorithm
aiming at affine transform based on pyramid layering, which
had fast computing speed and high stability. Its principle is
that motion vector and transformation matrix of pixels are

FIGURE 1. Standard normal distribution diagram.

selected to make the gray difference of images minimum.
Assuming a pixel u = [ux , uy]T of the previous frame I , it is
matched with a pixel v = [ux + dx , uy + dy]T of the next
image J , that is the gray difference of two pixels is the least.
So d = [dx , dy]T is the optical flow of the pixel u in I .

The transformation matrix of two images is defined to

A =
[
1+ dxx dxy
dyx 1+ dyy

]
(6)

where dxx , dxy, dyx , dyy are parameters of affine transform,
so the gray difference is expressed to

ε(d,A) = (dx , dy, dxx , dxy, dyx , dyy)

=

wx∑
x=−wx

wy∑
y=−wy

(I (x + u)− J (Ax + d + u))2 (7)

where, wx and wy are used to set up the rectangle area of
image whose size is (2wx + 1)× (2wy + 1), and their values
are 7, 8, 10 or 20 in general.

The improved Lucas-Kanade algorithm is used as follows.
Firstly, two consecutive frames are respectively built pyra-
mids by sampling, all improved FAST feature points in the
previous frame are traced from the top layer, computing opti-
cal flow d and transformation matrix A, then gray difference
ε in this layer of improved FAST feature points between two
consecutive frames after using d and A is made minimum by
constant iteration. And the result of this layer is transferred to
the next layer, the optical flow d and transformation matrix
A are recalculated, then continue to transfer until the last
layer (the layer of original image), the d and A of the layer
are the final result. The advantage of the algorithm is that it
has a good tracking effect for small inter-frame displacement
motion, and can increase the number of layers to meet the
large-scale displacement tracking in building pyramids.

In order to effectively and quickly retain more accurate
optical flow, the LARge SAmple Estimation (LARSAE)
is proposed to eliminate error. Assuming that the image
optical flow in the pixel coordinate system is matrix X ,
a large number of samples (X1,X2, · · · ,Xn) is obtained
by the above method, and the confidence interval of u
(the mean of the matrix) can be estimated by X̄ (the
sample mean). According to the central limit theo-
rem, when n is very large, X̄ approximately obeys the
normal distribution, therefore U approximately obeys
the standard normal distribution as shown in Fig.1,
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where S is standard deviation.

U =
X̄ − u

S
√
n

(8)

1−α is known, u α
2
(Upper quantile about α

/
2 of the stan-

dard normal distribution) can be found to make Equation (9)
right.

P{|U | < u α
2
} = P


∣∣X̄ − u∣∣

S
√
n

< u α
2

 ≈ 1− α (9)

So the confidence interval of u is
(
X̄ − u α

2

S
√
n , X̄ + u α2

S
√
n

)
.

Regardless of the rotation, affine and projection, the con-
fidence interval of u can be estimated. Feature points whose
optical flows are not included in the interval are eliminated
as error data, the feature points within the confidence interval
are as effective feature points to calculate vehicle trajectory,
where the confidence probability 1− α is 95%.
The initial position of vehicle is assumed to one point in the

world coordinates, and the ground is a plane, so the height
in Z direction is always set to 0. The movement of camera
and vehicle is rigid, and the projection relationship between
camera coordinate system and image coordinate system is
obtained by using the calibration algorithm [24]. Therefore,
the optical flow d and transformation matrix A obtained
by effective feature points in image coordinate system can
be transformed to the new coordinates in three-dimensional
space, then the vehicle position is estimated and vehicle
trajectory can be drawn.

C. VEHICLE MOTION ESTIMATION BASED ON FEATURE
POINTS MATCHING
The main idea of this section is as follows. Hu moments
are selected as feature descriptors to describe feature points
obtained by the optimized FAST algorithm. They are the
statistical features with invariants of translation, rotation and
scale transformation. The maximum and minimum distance
method is taken as the matching criterion. Then 2-Dmatching
points are obtained and further corrected by the literature [7].
Finally, the coordinate transforming algorithm above (Similar
to the section 2.2) is used to estimate vehicle trajectory.

(p + q)th order moment is defined by equation (10), its
corresponding center moment is calculated by equation (11).

mpq =
∑
x

∑
y

xpypf (x, y) (10)

upq =
∑
x

∑
y

(x − x)p(y− y)qf (x, y) (11)

where, (x, y) is for the image coordinates, f (x, y) is the image
gray value, x = m10

m00
, y = m01

m00
.

The upq is normalized to get

ηpq =
upq
ur00

(12)

where, r = (p+ q)/2+ 1, p+ q = 2, 3, · · · .

Hu moments have the following seven orthogonal invari-
ants of an image [25]:

φ1 = η20+η02

φ2 = (η20−η02)2+4η211
φ3 = (η30−3η12)2+(3η21−η03)2

φ4 = (η30+η12)2+(η21+η03)2

φ5 = (η30−3η12)(η30+η12)[(η30+η12)2−3(η12+η03)2]

+ (3η21−η03)(η03+η21)[3(η12+η30)2−(η03+η21)2]

φ6 = (η20−η02)[(η30+η12)2−(η21+η03)2]

+ 4η11(η30+η12)(η03+η21)

φ7 = (3η21−η03)(η30+η12)[(η30+η12)2−3(η21+η03)2]

+ (3η12−η30)(η03+η21)[3(η30+η12)2−(η21+η03)2]

(13)

When generating the feature descriptors of FAST feature
points, each feature point is as the center, the radius is L/2
to select a circular area, and then Hu moments of this area
are calculated as descriptors. Schematic diagram is shown
in Fig.2.

FIGURE 2. Schematic diagram of calculating feature descriptors.

The gray mean value F and the standard deviation σ of
the circular region are extracted as gray feature descriptors,
which have translational and rotational invariance as shown
by equations (14) and (15).

F =
∑

(x−a)2+(y−b)2=r2

f (x, y)

/
T (14)

σ =

√√√√ ∑
(x−a)2+(y−b)2=r2

(f (x, y)− F)2

T
(15)

where, (a, b) is the position coordinate of one feature point,
T is the total number of pixels in the circular area, and f (x, y)
is the gray value of the position (x, y) in the circular area.

The maximum and minimum distance method is used
to calculate the similarity between feature points, which is
defined by equation (16). A judgment standard is that the
difference between the maximum distance and the second
maximum distance is greater than the threshold T , which is
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FIGURE 3. Flow chart of the fusion method using Kalman filter.

used to screen the effective matching points.

rij =

M∑
k=1

min(fik , fjk )

M∑
k=1

max(fik , fjk )

(i, j = 1, 2, · · · ,N + 1) (16)

where, i and j are tags of feature points,M is the total number
of elements in a feature vector,N is the total number of feature
vectors, fik represents feature value of (i, k), and (i, k) is the
(k)th element of the (i)th feature vector.

The correct matching points are obtained, and then
the vehicle trajectory estimation is accomplished by the
literature [7].

D. KALMAN FILTER-BASED FUSION
The vehicle location estimation based on optical flowmethod
has fast computing speed and high positioning frequency,
so it is suitable for vehicle real-time positioning with small
displacement between frames. However, the cumulative error
will be increased with time. The positioning method based on
feature points matching has higher precision for existing large
displacement between frames, but its positioning frequency is
low and run time is long. To get the best of both approaches,
these two kinds of vehicle location estimation methods are
fused by using the discrete kalman filter, whose process is
shown in Fig.3.

As seen in Fig. 3, in one stage, the offsets are mainly
calculated based on optical flow for two consecutive frames,

and continue to accumulate from the first image. When the
number of accumulated images is 10, the first frame and the
10th frame are matched based on feature matching method
to calculate offsets. Then the results of two methods (their
offsets in the world coordinates) are fused by kalman filter to
get a more accurate result. Because feature points matching
need a longer time, after a completion, a few frames have been
computed by optical flow. Therefore, the fusion result will
be as the initial value to update the next stage of computing.
Finally, this fusion process is repeated until all images are
calculated.

In the fusion process, time update equation o of the discrete
kalman filter is given by

x̂k,k−1 = Ax̂k−1 + Buk−1
Pk,k−1 = APk−1AT + Q (17)

Observation equation is defined as

zk = Hxk + vk (18)

where, x̂k−1 is the cumulative offsets of calculating 10 frames
based on optical flow; zk is the offsets using feature points
matching; H is unit matrix; uk−1 represents the position
control function; Pk−1 is the covariance estimation of the
previous frame; Q represents the process noise covariance
matrix; B is the ride gain, which is set to a constant;
A is a constant; vk represents observation noise, which is
white noise obeying normal distribution, p(v) ∼ N (0,R).
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FIGURE 4. Experiment equipment.

FIGURE 5. Effects of the improved FAST algorithm: (a) original image;
(b) T1; (c) T1 + T2; (d) T1 + T2+ NMS.

Measurement equation for update process is calculated
by

Kk = Pk,k−1HT (HPk,k−1HT
+ R)−1

x̂k = x̂k,k−1 + K (zk − Hx̂k,k−1)

Pk = (I − KkH )Pk,k−1 (19)

FIGURE 6. Relationship of the common FAST algorithm and threshold
values.

TABLE 1. Comparison of feature extraction algorithms.

where, R is the covariance matrix of observation noise, which
is set to the constant.

The advantage of fusing optical flow and feature points
matching is to reduce the mean square error. Because optical
flow is the main positioning method of this paper, its result is
affected by illumination change to produce deviation. Mean-
while, when ground texture is unclear, the number of feature
points is less, and produce higher error percentage. Through
kalman filter, the error can be effectively reduced to improve
the precision.

III. EXPERIMENTAL RESULTS AND ANALYSIS
This paper conducts tests using the intelligent car of
Chang’an University, whose experiment devices are shown
in Fig.4. German basler aca1600-60gm-gc industrial camera
is applied to collect images with resolution of 1600∗1200.
Sampling frequency is 60 Hz, and the average speed of
vehicle is 25 km/h. Image sequence are collected in testing
ground.

In one experiment, the 1632th frame of pavement image
sequence is processed by the novel FAST algorithm with
self-adaptive threshold of the study to extract feature points,
whose results are shown in Fig.5. Data show that the num-
ber of feature points using the global dynamic threshold is
6851, the number is 1545 after adding the local dynamic
threshold, and it is 730 by using NMS. This process ensures
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FIGURE 7. Matching effects: (a) optical flow; (b) feature matching
method.

FIGURE 8. Result of LARSAE: (a) α = 0.05; (b) α = 0.1.

the stability of feature points, and solves the phenomenon of
feature point blocks. Fig.6 shows the number of feature points
using the common FAST with different thresholds. Through
comparison with it, the improved FAST can adjust adap-
tively threshold according to the actual situation, to obtain
more effective feature points, which has more adaptable.
Observing Table 1, the speed of FAST algorithm is very fast,
the optimized FAST algorithm increases the complexity and
time-consuming, but it is still quick and meets the needs of
real-time system compared with other algorithms.

When estimating vehicle position based on optical flow,
in order to quicken running speed, a part of image is only
selected to calculate optical flow. For 1632th and 1633th
frames, its result is shown in Fig. 7(a). Every 10 frames,

FIGURE 9. Result of literature [7]: (a) different offset values;
(b) eliminating effect using dx; (c) eliminating effect using d .

feature points matching are used to estimate the vehicle posi-
tion, whose matching result is shown in Fig. 7(b) for 1630th
and 1639th frames. We can find that the number of matching
points for two algorithms meets the requirement of vehicle
offsets calculation, but they also exist false matching.

In order to remove the false matching points of optical flow
method, LARSAE is applied, whose effect is shown in Fig.8.
Different confidence probability (1 − α) has certain impact
on the number of feature points. The smaller the confidence
probability is, the less the number of points is. Correct match-
ing points are obtained by using the approach in literature [7]
for featurematchingmethod, as shown in Fig.9, where d is the
euclidean distances of dx and dy. When the different offsets
(dx, dy, and d) are used to remove, the number of getting
feature points is different, so it can be chosen according to
the actual situation.

After correct matching points are obtained through the two
methods, they are transformed to the new values in three-
dimensional space of camera coordinate system according to
calibration algorithm [24], where the Z -offset is known as 0.
Selecting a lot of images as a test case, for two adjacent
frames, optical flow method is applied to calculate offsets
of rotation and translation, which are continued to accumu-
late, and makes a result [l_dx, l_dy, l_dθ ] every 10 frames
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FIGURE 10. Vehicle offsets analysis of three algorithms: (a) dx;
(b) dy; (c) dθ .

(called one stage). Meanwhile, in every stage, the match-
ing result [t_dx, t_dy, t_dθ ] of the first frame and the 10th
frame using feature matching method can be calculated.

FIGURE 11. Experiment results of three algorithms: (a) circular trajectory;
(b) straight trajectory.

According to the previous experiments and literatures, we can
easily know that the error of the optical flowmethod is higher
than feature points matching method. Therefore, in the fusion
process based on the discrete kalman filter, the parameters
of process noise covariance matrix Q and observation noise
covariance matrix R are relatively set to 0.1 and 0.05. The
optimized result is [dx, dy, dθ ], as shown in Fig. 10, improv-
ing the offsets’ accuracy. Because feature points matching
needs a longer time, after a completion, a few frames have
been computed by optical flow. Therefore, the fusion result
will be used as the initial value to update the next stage of
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computing. Finally, this fusion process is repeated until all
images are calculated.

The study is used to test vehicle trajectories, which is
shown in Fig. 11. For straight trajectory estimation, the opti-
cal flow-based method can obtain more accurate results.
However, for the bend, it will make the angle error larger,
and the cumulative error will be increased constantly. Large
scale scene moving can be conducted by the positioning
algorithm based on feature points matching, which has low
requirements for illumination change. When the shortage and
mismatching of feature points caused by the insufficient of
the ground texture appear, the accuracy will be influenced.
Therefore, the optical flow method and the feature point
matching algorithm are fused by kalman filter to reduce the
error and make the curve smooth. When lacking ground tex-
ture, vehicle ego-localization can be realized with the help of
optical flow. For large illumination change, feature matching-
based method is mainly used. Two algorithms complement
each other, and the fusion results can provide the more
accurate location information and more abundant details,
to improve the robustness of vehicle positioning system.

IV. CONCLUSION
In order to ensure better real-time performance and higher
accuracy of vehicle positioning, the paper puts forward a
vehicle motion estimation method based on the fusion of
optical flow and feature points matching. The novel FAST
algorithm with self-adaptive threshold enhances the stabil-
ity and adaptability of the feature points, suppressing the
phenomenon of multiple feature point block. The custom
LARSAE has a good effect for vehicle position estima-
tion based on optical flow. These two kinds of methods
are fused by using kalman filter, to overcome the low
accuracy of optical flow and the long processing time
of feature matching. On the hardware, using monocular
camera reduces the requirement for hardware devices, and
is easy to implement. Experimental results show that the
study can achieve higher positioning accuracy in real time,
and has a better result for ego-localization in the flat pave-
ment. Under the circumstances such as illumination change
and low pavement texture, it proves to have more precise
and stronger noise resistance, and can be very useful for the
development of odometer with quick visual.
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