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ABSTRACT This paper presents a novel procedure to identify cross-section deformation modes of
thin-walled structures with the application of pattern recognition. Initially, a higher order model is derived by
considering an approximation of cross-section deformation by a set of basis functions, which are integrated
in the governing equations and decoupled through the solution of the associated generalized eigenvalue
problem. The eigenvectors obtained are deemed to inherit the attributes of structural behaviors, and thus
can serve as the basis to identify deformation modes. Accordingly, these eigenvectors are further handled
employing the singular value decomposition, in order to recognize the axial variation patterns of the
basis functions. Next, each eigenvector is orthogonally decomposed into components corresponding to the
variation patterns, with their proportional relationship, which is really pursued, being obtained and used as
the weights to ‘‘assemble’’ basis functions to generate deformation modes. Moreover, a numbering system
is proposed to hierarchically organize these deformation modes. Finally, a reduced higher order model can
be obtained by updating the initial governing equations with a selective set of cross-section deformation
modes. The main features lie in the capability to be numerically implemented in a simple and intuitive way
and the nature to give identified deformation modes mechanical interpretation inherited from actual dynamic
behaviors of thin-walled structures. The versatility of the procedure as well as the resulting beam model has
been validated through both numerical examples and comparisons with other theories.

INDEX TERMS Thin-walled structures, cross-section deformation modes, pattern recognition, a higher
order beam theory.

I. INTRODUCTION
Thin-walled structures are widely used as structural com-
ponents in various fields of engineering mainly because of
their advantage of high strength to weight ratio [1], [2]. The
analysis of thin-walled structures through one-dimensional
models represents a simple and efficient method that has
been successfully adopted. However, one-dimensional mod-
els considering the three-dimensional deformation confront
some challenges in providing a rational set of deformation
modes: (i) the criterion to define deformation modes should
be rationalized to perform automatically but adaptable to
various geometry and boundary conditions; (ii) the procedure
should provide a complete set of deformation modes but with

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

clear structural interpretation; and (iii) the number of the
deformation modes employed should be as few as possible
but reproduce the structural deformation as accurately as
possible. Accordingly, many attempts have been made on this
subject over the years [3].

Among them, the most direct strategy is to consider
the addition of deformation modes that represent specific
structural behaviors. Typically, the non-uniform warping is
defined by Vlasov and used to refine the displacement field
of thin-walled beams [4]. From then on a number of warping
functions have been proposed for different thin-walled struc-
tures [5], [6]. Besides, the demands of providing an appro-
priate shear distribution over the cross-section have served
the study of shear correction factors, which are employed in
order to enhance classic beam theories for the analysis of
thin-walled structures [7]. More recently, some higher order
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deformation modes have also been brought in to capture
special boundary conditions [8]. For example, the studies of
themulti-cell distortion and distortional warping due to shear-
lag effects have advanced the design theory of box girders in
bridge engineering [9], [10].

Another strategy is to formulate the three-dimensional
model to a one-dimensional one in a mathematical way,
without considering the physical interpretation. In this
field, the Saint-Venant solution has been an exemplary
record [11], [12]. Besides, the proper generalized decompo-
sition method has also been used for the same reason [13].
It decomposes a three-dimensional problem as the summa-
tion of several one-dimensional functions [14]. Now it has
been considered as a powerful tool to reduce the numerical
complexity of thin-walled structures [15], [16]. Variational
asymptotic methods represent another powerful tool, which
has stepped towards the refined beam model with a transcen-
dental accuracy [17]. Furthermore, variational asymptotic
methods have been refined to carry out the variational asymp-
totic beam sectional analysis [18], [19], allowing deriving
beam-like equations for higher order effects [20].Meanwhile,
Carrera unified formulation has been developed by consid-
ering the displacement field through Taylor or Maclaurin
expansions [21], [22]. Over the past decade, it has been
extended for the analysis of thin-walled structures [23], which
allows to improve the accuracy on representing higher order
effects for arbitrary cross-sections [24], [25].

There are also some higher order beam theories trying to
provide a solution that fulfills all the objectives mentioned
above. The generalized beam theory (GBT) is featured with
a cross-section analysis procedure, which combines elemen-
tary deformation modes defined through kinematic concepts
into GBT deformation modes [26]. The procedure is achieved
by means of base changes related to the eigenvectors of the
stiffness matrix. At present, GBT has been used to perform
first-order [27], buckling [28], post buckling [29], vibra-
tion [30] and dynamic analyses [31] of thin-walled struc-
tures. Besides, Vieira et al. [32] have also developed a higher
order theory, which initially considers the displacement field
through the interpolation over the meshed cross-section [33].
Towards an efficient application, a criterion is developed to
uncouple the governing equations by solving the associated
polynomial eigenvalue problem [34]. The results yield several
sets of non-null eigenvalues representing beam classic modes
and sets of pairs and quadruplets of non-null eigenvalues
corresponding to higher order modes [35].

This paper works on a procedure to identify cross-section
deformation modes in a simple fashion. The derived defor-
mation modes should be of clear hierarchy and physical
interpretation. Besides, geometry and boundary conditions
should be considered in the identification to truly reflect the
dynamic behaviors of thin-walled structures. To this end,
some special measures are taken in the procedure. Firstly,
governing equations of a higher order model are derived
with the displacement field approximated with basis func-
tions, which are then decoupled by solving the associated

generalized eigenvalue problem. Within each eigenvector,
the weights of basis functions vary along the beam axis in
specific patterns. Secondly, pattern recognition is employed
to handle the eigenvectors in order to recognize the varia-
tion patterns. Then these eigenvectors are decomposed into
components collinear with the recognized variation patterns,
with their proportional relationship being obtained and used
to assemble basis functions for deformation modes. Thirdly,
a numbering system is proposed to hierarchically organize
the deformation modes. On this foundation, a reduced higher
order model can be obtained by updating the initial governing
equations with a rational set of deformation modes. In addi-
tion, the versatility of the procedure as well as the resulting
beam model is validated through both numerical examples
and comparisons with other theories.

II. A HIGHER ORDER BEAM MODEL
A higher order model for thin-walled structures is presented
considering the deformable cross-section. Specially, the dis-
placement field is defined through a set of basis functions
interpolated over the discretized cross-section.

A. DISPLACEMENT FIELD
The model is supposed to be applicable to thin-walled struc-
tures with arbitrary prismatic cross-sections. For the sake of
generality, a cross-section shown in Fig. 1(a) is taken as an
illustrative example since it includes both open and closed
profiles and possesses both symmetric and non-symmetric
features. Also shown is the local reference frame O(s, n, z)
adopted in each wall, with s being the coordinate along the
midline, n indicating the perpendicular direction to the wall
and the beam axis represented by z.

FIGURE 1. (a) The local (s, n, z) coordinate system attached on the
thin-walled structure; (b) the cross-section discretization and (c) the
approximation functions adopted.

The cross-section discretization is performed as shown
in Fig. 1(b) and (c), whereNk = 6 natural andNa= 4 artificial
nodes are employed. Also shown is the displacement approx-
imation along the midline, with linear Lagrange functions
adopted to interpolate the axial and tangential displacement
components while cubic Hermite functions are used for the
normal components. Actually, the basis functions are just
defined based on these shape functions to describe the varia-
tion of displacement components along s.

The displacement of an arbitrary point (s, z) on the
mid-plane can be described with three components, namely
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u(s, z), v(s, z) and w(s, z) for the axial, tangential and normal
components, respectively. They are approximated with a set
of basis functions about s, which stem from the interpolation
of nodal displacements imposed on the meshed cross-section
(shown in Fig. 1). Thus, d, the displacement field of the mid-
plane, can be expressed as

d =


u (s, z)

v (s, z)

w (s, z)

 =

ϕT (s)χ (z)

ψT (s)χ (z)

ωT (s)χ (z)

 (1)

where ϕ,ψ andω are the vectors grouping the basis functions
ϕ(s), ψ(s) and ω(s), respectively; χ corresponds to the vector
composed of their weights. Since these weights vary along z,
they are also referred to as amplitude functions. The set of
basis functions are written as

ϕ = [ϕ1, ϕ2, · · · , ϕN ]T ,ψ = [ψ1, ψ2, · · · , ψN ]T ,

ω = [ω1, ω2, · · · , ωN ]T (2)

where ϕ, ψ and ω should guarantee the continuity along s.
Thus, the amplitude function vector χ is written as

χ = [χ1, χ2, · · · , χN ]T (3)

whereN = 4× (Nk+Na) since four degrees of freedom (three
translations and the rotation about z) are considered for each
node.

The three-dimensional displacement field of the thin-
walled structure is expressed with three components
U (s, n, z), V (s, n, z) andW (s, n, z). By considering the mem-
brane and flexural behaviors of thin walls, and employing
Kirchhoff’s thin-plate assumption, the displacement field D
is obtained as

D =

 U (s, n, z)
V (s, n, z)
W (s, n, z)

 =

u (s, z)− n

∂w (s, z)
∂z

v (s, z)− n
∂w (s, z)
∂s

w (s, z)

 (4)

Substitute (1) into (4); a complete kinematical description of
the displacement field can be obtained as

D =


ϕTχ − nωTχ ,z

ψTχ − nωT
,sχ

ωTχ

 (5)

where the subscripts (,s) and (,z) stand for the partial deriva-
tives with respect to s and z, respectively.
The strain and stress fields are obtained under the small

displacement hypothesis. In the case of small strains and by
employing the Saint Venant-Kirchhoff material law, the strain
field ε (s, n, z) = [εzz, εss, γsz]T and stress field σ (s, n, z) =
[σzz, σss, τsz]T can be expressed as

ε = LD =

 ϕTχ ,z − nω
Tχ ,zz

ψT
,sχ − nω

T
,ssχ

ϕT
,sχ + ψ

Tχ ,z − 2nωT
,sχ ,z

 (6)

σ = Cε

=


E∗
(
ϕTχ ,z − nω

Tχ ,zz
)
+ E∗ν

(
ψT
,sχ − nω

T
,ssχ

)
E∗ν

(
ϕTχ ,z − nω

Tχ ,zz
)
+ E∗

(
ψT
,sχ − nω

T
,ssχ

)
G
(
ϕT
,sχ + ψ

Tχ ,z − 2nωT
,sχ ,z

)

(7)

where L and C are the differential operator and the constitu-
tive matrix, respectively; E∗ = E /(1-ν2), G = E /(2+2ν) in
whichE and ν are thematerial elasticitymodulus and Poisson
coefficient, respectively.

B. GOVERNING EQUATIONS
The thin-walled structure is supposed to be subjected to a set
of distributed forces p = [pz, ps, pn]T, where the elements
are the force densities along z, s and n, respectively. Thus,
the structure total energy can be given as∏

=
1
2

∫
V
ρ
∂DT

∂t
∂D
∂t

dV −
1
2

∫
V
εTσdV −

∫
A
pTddA

(8)

where V is the structure volume, ρ is the material density, and
A is the area of the mid-plane.

The dynamic modeling of thin-walled structures involves
the application of Hamilton’s principle, reading (in the
absence of dissipative forces)

δH = δ
∫ t2

t1

∏
dt = 0 (9)

whereH is the Hamiltonian, and t1 and t2 are boundary times.
In the case of this paper, the principle yields the governing
equations by substituting (1), (5), (6), (7) and (8) into (9) as∫ L

0
M1

∂2χ

∂t2
dz+

∫ L

0
M2

∂2χ ,zz

∂t2
dz

+

∫ L

0
K1χdz+

∫ L

0
K2χ ,zdz

+

∫ L

0
K3χ ,zzdz+

∫ L

0
K4χ ,zzzzdz =

∫ L

0
Pdz (10)

where related terms are given by

M1 =

∫
�

ρ
(
ϕϕT
+ ψψT

+ ωωT
+ n2ω,sωT

,s

)
d�

M2 =

∫
�

ρn2ωωTd� (11)

K1 =

∫
�

[
E∗
(
ψ ,sψ

T
,s + n

2ω,ssω
T
,ss

)
+ Gϕ,sϕ

T
,s

]
d� (12)

K2 =

∫
�

[
E∗ν

(
ϕψT

,s + ψ ,sϕ
T
)
+ G

(
ψϕT

,s + ϕ,sψ
T
)]

d�

(13)

K3 =

∫
�

[
E∗
(
ϕϕT
+ νn2ωωT

,ss + νn
2ω,ssω

T
)

+G
(
4n2ω,sωT

,s + ψψ
T
) ]

d� (14)

K4 =

∫
�

E∗n2ωωTd� (15)
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P =
∫
0

(
pzϕT

+ psψT
+ pnωT

)
ds (16)

with parameters L and � indicating the beam length and the
cross-section midline, respectively.

Theoretically, the governing equations (10) can serve well
for dynamicmodeling of thin-walled structures. However, the
displacement field is purely based on kinematic concepts, and
the large number of basis functions adopted hinders efficient
computation. Accordingly, further improvements should be
made to refine the model by providing a rational set of
cross-section deformation modes.

III. IDENTIFICATION OF DEFORMATION MODES
The identification of cross-section deformation modes is
based on the handling of generalized eigenvectors related
to the dynamic governing equations, thus being deemed to
inherit mechanical characteristics of thin-walled structures.

A. EIGENVECTORS
The generalized eigenvalue problem related to the dynamic
governing equations (10) is solved to obtain the eigenvectors
using the finite element method. As a result, the eigenvectors
are derived and grouped in a matrix 8 as

8 =
[
χ (1),χ (2), · · · ,χ (k), · · · ,χ (N )

]
(17)

where the superscript (k) is the order of an eigenvector. Notice
that an eigenvector χ (k) has been grouped with N amplitude
functions as χ (k)

= [χ1(z), χ2(z), . . . , χN (z)]
T in advance.

Since each amplitude function has been discretized into Ne
node values along z, the amplitude function χ i(z) can be
expressed in a discretization form as

χ i = [χi (1) , χi (2) , · · · , χi (Ne)]T . (18)

In other words, an eigenvector χ (k) is actually spanned with
N amplitude function vectors χ i(k) that further contain Ne
node values. Thus, it can be rewritten in a matrix form as

χ (k)
=

[
χ
(k)
1 ,χ

(k)
2 , · · · ,χ

(k)
N

]
∈ RNe×N (19)

where each column represents the axial variation of an ampli-
tude function. More precisely, the eigenvector χ (k) is newly
reformed as an ‘‘eigen matrix’’.

In fact, the eigen matrix (19) has uncoupled the kinematic
variables in (10), and provides an access to have an insight
of the relations among basis functions: they are deemed to
possess the information to conduct the assemblage of basis
functions. Within each eigenvector, axial variation patterns of
amplitude functions correspond to structural behaviors. The
procedure comes into the clustering and classification, which
is the strong suit of pattern recognition.

B. PATTERN RECOGNITION
The pattern recognition aiming at the clustering of variation
patterns involves the singular value decomposition of the
eigen matrix. By means of the principal pattern analysis,

the variation patterns can be derived in the form of basis vec-
tors. The identification of deformation modes is then sorted
out by decomposing the amplitude functions into components
collinear with the basis vectors and by assembling basis
functions employing the same set of weights derived from
the decomposing procedure.

For a better presentation, the procedure above is carried
out on the thin-walled structure shown in Fig. 1. Without
special consideration, the cross-section is set to have a height
of h = 0.6 m, a bottom width of b = 0.8 m, a flange width
of c = 0.3 m and a wall thickness of e = 0.03 m. The
structure is cantilevered, with an axial length of L = 6.4 m.
Material parameters are E = 200 GPa, ν = 0.3 and ρ =
7830 kg/m3. The generalized eigenvalue problem associated
with the homogenous form of (10) has been solved in advance
by discretizing the beam into 40 quadratic finite elements.
The derived eigenvectors have also been rewritten in the form
of the eigen matrix (19).

Pattern recognition of the amplitude functions actually
comes to the low-rank approximation of the eigen matrix.
Here χ (k) is generally not a square matrix. However,
the theorem of Autonee-Eckart-Young is applicable to an
arbitrary complex rectangular matrix. As a result, χ (k) is
decomposed as

χ (k)
= U(k)6(k)V(k)

∈ RNd×N ,U(k)
∈ RNd×Nd (20)

where related matrices are given by

U(k)
=

[
u(k)1 ,u

(k)
2 , · · · ,u

(k)
N

]
,6(k)

=

[
61 O
O O

]
,

6
(k)
1 = diag

(
σ
(k)
1 , σ

(k)
2 , · · · , σ (k)r

)
(21)

with the following relations adopted

σ
(k)
1 ≥ σ

(k)
2 ≥ · · · ≥ σ

(k)
r , r = rank

[
χ (k)

]
. (22)

The first r columns u(k)i ofU(k) are orthogonal basis vectors
of the column space of χ (k). All of them can be used to
cluster the variation pattern of amplitude functions, but only
the ‘‘effective’’ ones are meaningful for the identification
of deformation modes. It depends on the effective rank p,
the maximum integer that satisfies the following relation

µ(k)
p =

[
σ (k)p

]2/ r∑
j=1

[
σ
(k)
j

]2
≥ µ0 (23)

where µ is the contribution value of a basis vector. The
threshold µ0 can be determined as 0.001 for most cases.
In practice, each eigen matrix is divided into two submatri-

ces to process out-of-plane and in-plane deformation modes
separately. The step can be expressed as

χ (k)
=

[
χ
(k)
out

χ
(k)
in

]
∈ RNe×N ,χ

(k)
out ∈ RNe×Nout ,χ

(k)
in ∈ RNe×Nin

(24)

where Nout = N /4 and Nin = 3×N /4 are the numbers of out-
of-plane and in-plane amplitude functions, respectively.
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TABLE 1. Contribution values of principal variation patterns for the first-order eigenvector of the illustrative thin-walled structure.

FIGURE 2. The three variation patterns obtained from the pattern recognition of the first-order eigenvector of the
illustrative thin-walled structure.

Take the pattern recognition of out-of-plane amplitude
functions as an example to illustrate the procedure. With the
singular value decomposition of χ (1)

out, all of its ten singular
values are obtained and exhibited in Table 1. The effective
rank is determined as p = 3 through the analysis of contri-
bution values (here the threshold is determined as 0.000001)
employing (23). Thus, the first three columns ofU(1), i.e. u(1)i
(i = 1, 2, 3), are selected as the principal variation patterns.
Fig. 2 shows the three principal patterns obtained from

the pattern recognition of the ten out-of-plane amplitude
function vectors. Not surprisingly, three orthogonal waves
are presented in Fig. 2(b). The result supports that three
principal variation patterns play dominant roles in performing
the structural behaviors. Actually, each of them represents a
cross-section deformation mode. The next step is to decom-
pose all the amplitude functions and classify the resulting
components into the three recognized variation patterns.

C. ASSEMBLAGE OF BASIS FUNCTIONS
With principal variation patterns recognized, it is workable to
decompose any amplitude function into components collinear
with basis vectors. To ensure the orthogonality, an amplitude
function component [χ (k)

i ]j corresponding to the principal
component u(k)j is decomposed from χ

(k)
i , reading

[
χ
(k)
i

]
j
= λ

(k)
i,j u

(k)
j , λ

(k)
i,j =

dot
(
χ
(k)
i ,u

(k)
j

)
dot

(
u(k)j ,u

(k)
j

) (25)

where dot() is the inner product of the two vectors, and λi,j is
the weight of [χ (k)

i ]j when u
(k)
j acts as the basis vector.

In general, a set of N × p component weights λi,j (i = 1,
2, . . . , N , j = 1, 2, . . . , p) can be determined for each eigen

matrix χ (k) through the decomposition procedure. They are
organized into a matrix λ(k) as

λ(k) =


λ
(k)
1,1 λ

(k)
1,2 · · · λ

(k)
1,p

λ
(k)
1,1 λ

(k)
1,2 · · · λ

(k)
2,p

...
...

. . .
...

λ
(k)
N ,1 λ

(k)
N ,2 · · · λ

(k)
N ,p


=

[
λ
(k)
1 ,λ

(k)
2 , · · · ,λ

(k)
p

]
(26)

where λ(k)j is the weight vector corresponding to a principal
variation pattern j (j = 1, 2, . . . , p) derived from the eigen
matrix k . Actually, they are also the weights of the set of basis
functions that can be assembled for a cross-section deforma-
tion mode, since the amplitude function itself is the weight
of a basis function. However, it should be noticed that not
all the weight vectors are effective, since some deformation
modes may be recurrent in different patterns. To ensure the
independency, a newly identified weight vector λ(k)j should
retain the full column rank of λ(k), reading

rank
[
λ(k)

]
= rank

[
λ
(k)
1 ,λ

(k)
2 , · · · ,λ

(k)
i ,λ

(k)
j

]
= rank

[
λ
(k)
1 ,λ

(k)
2 , · · · ,λ

(k)
i

]
+ 1 = r (k) (27)

where r (k) is the column rank of the weight matrix λ(k), with
r (k) ≤ p. If not, the new weight vector should be deleted from
the final weight matrix.

With the application of the decomposition procedure
to a certain amount of eigen matrices χ (k), a set of
λ(k) can be derived to determine a set of cross-section
deformation modes. They are further organized into a
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FIGURE 3. The three out-of-plane deformation modes identified from the first-order eigenvector of the
illustrative thin-walled structure.

matrix 3 as

3 =
[
λ(1),λ(2), · · · ,λ(Ns)

]
(28)

where Ns is the number of eigen matrices being processed.
Its value depends on the required accuracy of the higher order
model. In a special case where a complete set of cross-section
deformation modes are needed, Ns is determined by

Ns = min

{
Ns|

k=Ns∑
k=1

r (k) = N

}
(29)

which also indicates that the number of identified cross-
section deformation modes will not exceed the number
of basis functions. However, it is also possible that some
cross-section deformation modes may be recurrent in differ-
ent eigenvectors. Therefore, one should ensure the orthog-
onality within the columns of the final weight matrix 3.
This means 3 should be of full column rank by deleting the
columns collinear with existing ones.

The final weight matrix 3 demonstrates the compositions
of cross-section deformation modes. Or rather, it provides
the sets of weights to assemble basis functions for the cross-
section deformation modes, with

Φi (s) =
Nout∑
j=1

[
λi,jϕj (s)

]
, Ψi (s) =

N∑
j=Nout+1

[
λi,jψj (s)

]
,

Υi (s) =
N∑

j=Nout+1

[
λ
(k)
i,j ωj (s)

]
(30)

where λi,j is the element of the weight matrix 3, with λi,j =
3(i, j); Φi(s), Ψi(s) and Υi(s) are the axial, tangential and
normal components of the shape function of deformation
mode i, respectively.
In practice, out-of-plane and in-plane amplitude function

vectors are separately decomposed, which results in the

identification of at most Nout out-of-plane and Nin in-plane
deformation modes. Here take the decomposition of out-of-
plane amplitude functions of the first-order eigenvector as
an example to illustrate the procedure. By employing the
decomposition procedure shown in (25), the weigh matrix for
the out-of-plane amplitude functions is obtained as (31).

The result in (31), as shown at the bottom of this page,
provides three sets of weights for the assemblage of three
cross-section deformation modes. By employing the assem-
blage procedure shown in (30), three identified out-of-plane
deformation modes are obtained and shown in Fig. 3. The
results make it clear that the first principal variation pattern
corresponds to classic bending about the minor axis, and
the other two represent warping modes concomitant with
the classic bending but with relatively smaller contribution
values. In this sense, the identified cross-section deformation
modes naturally possess structural interpretation. Besides,
the hierarchy is also embodied through their contribution
values.

The procedure above is carried out on the firstNs eigenvec-
tors one by one, until the number of identified cross-section
deformation modes satisfies the requirements. It should be
pointed out that the procedure can be carried out automat-
ically with the help of a computer in a more efficient way.
Finally, because the deformation modes are assembled by
handling eigenvectors, their amplitudes of shape functions
should be normalized after the identification. The normalized
criteria are simply expressed as rendering themaximum value
of each deformation mode shape function to be 1.

D. NUMBERING OF DEFORMATION MODES
In the above section, basis functions are assembled to gen-
erate a set of cross-section deformation modes that are of
physical interpretation since they stem from the eigenvec-
tors of the governing equations. Moreover, the sequence of

λ
(1)
out =

−0.6987 0.1506 1.000 1.000 1.000 0.1506 −0.6987 −0.6987 −0.6987 −0.6987
0.3765 0.0112 −0.6957 1.000 −0.6957 0.0112 0.3765 −0.2448 −0.8508 −0.2448
−0.3691 0.0555 0.0494 0.4200 0.0494 0.0555 −0.3691 1.000 −0.4879 1.000

T

(31)
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FIGURE 4. The numbering of cross-section deformation modes identified for the illustrative thin-walled structure by
employing the proposed procedure.

eigenvectors and the contribution values of principal com-
ponents reflect the priority of identified deformation modes.
Thus, the proposed procedure is expected to organize the
deformation modes hierarchically, thereby being conducive
to develop reduced higher order models.

To this end, it is essential to propose a numbering sys-
tem that orders the identified deformation modes considering
their priority. Generally, the numbering system divides the
cross-section deformation modes into two families for both
out-of-plane and in-plane modes: the ones with contribution
values bigger than 0.5 are classified into Dominant family,
and the ones with smaller contribution values belong to Sec-
ondary family. The members of Dominant family occupy
the first row according to the sequence they are identified,
while the members of Secondary family are arranged in
the subsequent rows in a descending order of their contri-
bution values. The numbering is carried out row by row,
reflecting the hierarchy of cross-section deformation modes.
Fig. 4 shows the numbering of the identified deformation
modes for the illustrative thin-walled structure, where eight
out-of-plane modes (modes i to viii) and twelve in-plane
modes (mode I to XII) are identified and ordered. Among
them, modes i to iv and I to VI are Dominant family members,
while modes v to viii and VII to XII belong to Secondary
family.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION
In order to illustrate the versatility of the proposed pro-
cedure, numerical examples are carried out on a typical
I-shaped cross-section. Moreover, free vibration analysis
of the thin-walled structures is implemented to test the
accuracy and efficiency of the resulting higher order beam
models.

A. BEAM CROSS-SECTION ANALYSIS
In this part the proposed procedure is verified concerning the
capability to provide a rational set of cross-section deforma-
tion modes. Its performance is to be evaluated through the
comparison with other theories. Here a steel beam with an
I-shaped cross-section is considered. The cross-section has a
web with dimensions 1.2 m × 0.02 m and two flanges with
dimensions 0.6 m × 0.05 m. The material parameters are
E =210 GPa, ν = 0.3 and ρ = 7850 kg/m3, and the structure
is cantilevered with a beam length of L = 8 m.
The discretization of the cross-section midline with six

natural nodes and one artificial node on the web results in
the identification of a set of deformation modes by handling
the first ten eigenvectors with the proposed procedure. They
are displayed in Fig. 5, including five out-of-plane and nine
in-plane deformation modes. Obviously, all the six classic
modes have been captured. These deformation modes can
be further classified into two families according to their
participation: Dominant family including modes i, ii, iii, iv,
I, II, III, IV and V, and Secondary family including modes v,
VI, VII, VIII and IX. Generally, these deformation modes are
adequate to form a higher order model being accurate enough
for most cases in engineering. If more deformation modes
with lower priority are needed in special cases, one can just
handle more eigenvectors using the proposed procedure. This
advantage is the conduciveness to obtain a selective number
of cross-section deformation modes according to the actual
needs, instead of calculating all of them from the beginning
in any case. In this respect, the proposed procedure is more
efficient in adapting different demands.

For comparison, the cross-section being discretized with
the same seven nodes is studied using the GBT cross-section
analysis [36], with the first thirteen deformation modes

169592 VOLUME 7, 2019



L. Zhang et al.: Application of Pattern Recognition to the Identification of Cross-Section Deformation Modes

FIGURE 5. The cross-section deformation modes of the I-shaped cross-section beam identified with
the proposed procedure.

derived and exhibited in Fig. 6. The results support that the
proposed procedure agrees well with GBT, particularly con-
cerning the out-of-plane modes. The only difference between
the two sets of out-of-plane modes is the priority assign-
ment of the classic modes, which can be attributed to the
evaluation mechanism. In fact, the priority assignment of
the proposed procedure may be more reasonably confined to
the boundary condition of the illustrative example. However,
it will not affect the accuracy or efficiency of the beam model
since any classic mode is essential for a higher order model.
On the other hand, some in-plane and out-of-plane modes
are tied together to describe structural behaviors related to
classic flexure and rotation in GBT, while they are identi-
fied separately in the proposed approach. The difference in
format is irrelevant to the model accuracy, since modes 2,
3, 4, 10, 11 and 12 tied together in GBT are just equal to
the linear combination of the identified modes i, ii, iv, I, II
and III. Of course, GBT modes may have the advantage of
employing fewer deformation modes in some cases. What
actually matters is the difference between the two sets of
in-plane deformation modes. For example, modes VI and VII
are not optional among the first thirteen GBT deformation
modes. Though the combination of modes 8 and 9 can replace
mode VII, it risks the lack of a clear mechanical interpreta-
tion, while mode VII represents a structural behavior that can
be directly observed in the vibration modes of the thin-walled
structure. The absence of mode VI may reveal the diversity in

determining deformationmodes for different beam theories to
describe the structural deformation related to beam torsion.

For further comparison, the first 5 out-of-plane and 8
in-plane deformation modes of the same I-shaped cross-
section are also obtained employing another higher order
theory [35]. Here the same cross-section discretization is
employed, and the identification of out-of-plane and in-plane
deformation modes is separately implemented, being simi-
lar to the proposed procedure. Regarding the final results
presented in Fig. 7, there are more similarities between the
two theories. For example, the priority assignment of the
deformation modes related to v and w in Fig. 7 are the same
as that in Fig. 5. And mode VII can serve as an alternative
to mode β2 in Fig. 7. Besides, the phenomenon that twelve
of all the fourteen identified deformation modes in Fig. 5 can
be found in Fig. 11 also supports that the two theories agree
well with each other, although the priority assignments of two
systems are not fully consistent.

Generally, the results confirm that the proposed proce-
dure can capture the cross-section deformation modes of
an I-shaped cross-section in a simple and general fashion.
The derived deformation modes are roughly consistent with
both GBT and another higher order theory though there are
some differences. Moreover, the proposed procedure may
have an advantage in providing deformation modes with
physical interpretation since they stem from actual vibration
modes of thin-walled structures. The results suggest that the
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FIGURE 6. The first thirteen GBT deformation modes of the I-shaped cross-section identified with GBTUL 2.0 [36].

FIGURE 7. The first five out-of-plane and eight in-plane deformation modes of the I-shaped
cross-section identified with another higher order theory [35].

proposed procedure is capable of considering the structural
geometry, material parameters and boundary conditions in
determining deformation modes. The differences among the
three theories also reveal the particularity of the cross-section
deformation modes that stem from the structural dynamic
behaviors. Further studies may be needed to assess the
effects in influencing the dynamic modeling of thin-walled
structures.

B. BEAM LONGITUDINAL ANALYSIS
In this part the same thin-walled structure is modeled for free
vibration analysis, in order to verify the performance of the
identified cross-section deformation modes in reproducing
the structural behaviors. The beam is discretized into 40 pro-
posed quadratic finite elements equally distributed along the
axis. Meanwhile, its three-dimensional shell model is also
built in the commercial software ANSYS 17.0 considering a
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TABLE 2. Comparison between the proposed theory and ANSYS shell 181 concerning the first 10 natural frequencies of the I-shaped beam.

FIGURE 8. The amplitude functions of the identified cross-section deformation modes varying along the beam axis concerning the first four
eigenvectors: (a) the out-of-plane modes, and (b) the in-plane modes.

mesh of 24 and 40 Shell 181 elements over the cross-section
and along the beam axis, respectively.

Comparisons regarding the natural frequencies are carried
out first to verify the accuracy and efficiency of the proposed
model. Here several sets of deformation modes are selected
from the first thirteen ones illustrated in Fig. 5 by considering
the hierarchy, and then used to formulate the corresponding
higher order beammodels, respectively. The first set contains
only six classic modes and yields the classic beam model.
The second set consists of all the nine Dominant modes and
forms the proposed beam model 1. The third set includes
all the thirteen deformation modes and yields the proposed
beam model 2. And as a reference, all the twenty-eight basis

functions are used to form the initial beam model, which
represents the upper limit of accuracy of the proposedmodels.

Table 2 shows the results, where the relative errors are
calculated based on the assumption that the values derived
through ANSYS shell model are exact enough. There is a
clear trend of gradual improvement of the model accuracy
concerning the natural frequencies when the number of
deformation modes employed increases. It is also noticeable
that the proposed beam model 1 has a good agreement with
the numerical results obtained from the ANSYS shell model,
while the classic beam model is not competent to capture the
structural behaviors even for the first two natural frequencies.
Meanwhile, the results support the point that it is essential to
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FIGURE 9. Comparison between the proposed model and the ANSYS shell model concerning the first ten vibration modes of
the thin-walled beam with an I-shaped cross-section.

consider cross-section deformation modes in the modeling
of thin-walled structures. One should have also noticed that
the set of Dominant modes have been able to formulate a
higher ordermodel to catch all the first ten natural frequencies
of a thin-walled structure. The relative errors can be further
reduced to less than 3.2% when the other four Secondary
modes are added into the model. The results confirm the
accuracy of the proposed model as well as the hierarchy of
the deformation modes. Besides, one should bear in mind
that the results obtained with a mesh of 40 proposed beam
elements are compared with those derived with 960 two-
dimensional shell elements. This is a great improvement
on the computation efficiency in the analysis of thin-walled
structures.

The hierarchy of the identified cross-section deformation
modes can also be tested through their participation in the
eigenvectors of the thin-walled structure. Fig. 8 shows the
amplitude functions varying along the beam axis concerning
the first four eigenvectors. These data are derived with the
proposed beam model 2. A clear distinction can be observed
among the participations of Dominant and Secondary modes.
Generally, the participation of a Dominant mode is dozens of
times of that of a Secondary mode. Just because of this char-
acteristic, a rational hierarchy becomes possible in organizing

the set of deformation modes using the proposed numbering
system. And because of the hierarchy, one is able to select a
set of cross-section deformation modes with high priority to
form a reduced higher order model. It effectively contributes
to the improvement of efficiency in computation, since fewer
degrees of freedom needed prevail in the modeling of thin-
walled structures.

Moreover, the three-dimensional vibration modes of the
thin-walled structure are presented to exhibit the capabil-
ity of the proposed model in performing three-dimensional
analysis. Towards the plotting of the deformed configuration,
the displacement field obtained from the proposed model
is computed in a ‘‘mesh’’ of sampling points. The mesh is
defined over the beam cross-section with 25 points and along
the beam axis with 40 points. Thus, 25 × 40 rectangles will
be employed to describe the thin-walled structure config-
uration. To this end, the displacements of these sampling
points are obtained from the finite element solution of the
proposed beam model and then used to compute the new
coordinates of these sampling points. Then in a global coor-
dinate system describing the deformed configuration, these
sampling points are interconnected over the cross-section
and along the beam axis, respectively. It should be noted
that the mesh is just to represent the deformed configuration
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and not the discretization adopted for the cross-section
analysis.

Fig. 9 provides the comparison regarding the first ten vibra-
tion modes of the I-shaped beam. The comparison is divided
into ten pairs corresponding to the order of the vibration
modes. Within each pair, the left is derived with the proposed
beam 2 while the right represents the ANSYS shell result.
In general, there is no visible difference between all the
ten pairs. This fact proves the capability of the proposed
model in predicting the three-dimensional vibration modes
of thin-walled structures. Besides, these deformation modes
can be observed in the ten actual vibration modes of the
thin-walled structure, which strengthens the evidence linking
deformation modes and structural behaviors. Simultaneously,
the comparison reconfirms the good agreements between the
proposed model and the ANSYS shell model.

The results above suggest that the derived deforma-
tion modes and the higher order beam model can accu-
rately capture the three-dimensional deformation behaviors
of thin-walled structures, and that their hierarchy assignment
demonstrates its pivotal role in developing reduced models.
Both the accuracy and the efficiency support the necessity
of specially determining deformation modes for the dynamic
analysis of thin-walled structures. Meanwhile, it is also a
successful exploration in giving deformation modes physical
interpretation inherited from the structure vibration modes,
which may be more valuable for the modeling theory of
thin-walled structures.

The proposed procedure together with the higher order
model, although involving cross-section discretization and
deformation interpolation, is different from either the the-
ory put forward in [26] to obtain final deformation modes
through GBT cross-section analysis or the model developed
in [33] to derive deformationmodes representing higher order
effects using the uncoupling procedure. In fact, the authors
attempt to avoid both the complex subdivision of deforma-
tion modes and the solution of nonlinear eigenvalue problem
in determining higher order modes. Instead, a novel proce-
dure has been developed based on three fulcrums: (i) defin-
ing a set of basis functions to capture three-dimensional
deformation as accurately as possible in an efficient way,
(ii) recognizing the variation patterns of amplitude functions
within each generalized eigenvector through singular value
decomposition, and (iii) decomposing amplitude functions
to obtain the set of weights to assemble basis functions in
determining cross-section deformation modes. It reduces the
requirements on users, and the derived deformation modes
naturally own the features of physical interpretation and
specific hierarchy, which is further conducive to develop
reduced beam models. Besides, it makes it possible to take
the structural geometry, material parameters and boundary
conditions into account in determining deformation modes,
which is in favor of truly reflecting structural behaviors.
Most of all, it provides an access to identify deformation
modes considering the dynamic behaviors of thin-walled
structures.

V. CONCLUSION
This paper presented a novel procedure to identify cross-
section deformation modes of thin-walled structures employ-
ing pattern recognition. The main features lie in the capability
to be numerically implemented in a general and systematic
way and the nature to give the resulting deformation modes
physical interpretation together with the hierarchy. In particu-
lar, the structural geometry andmaterial parameters as well as
boundary conditions are all considered in the determination
procedure, to represent actual structural behaviors. It is also
featured as a special procedure open to dynamic modeling of
thin-walled structures by inheriting the mechanical meaning
from actual vibration modes. These properties had also been
tested through numerical examples and comparisons with
other theories.

Finally, it should be mentioned that available strategies to
define basis functions are not confined to the proposed one
and that the procedure may be extended to handle arbitrary
cross-sections on the basis of some essential improvements.
Now the authors plan to develop the procedure to analyze
the deformation modes of thin-walled structures with circular
cross-sections and curved axes.
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