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ABSTRACT Massive maps have been shared as Web Map Service (WMS) from various providers,
which could be used to facilitate people’s daily lives and support space analysis and management. The
theme classification of maps could help users efficiently find maps and support theme-related applications.
Traditionally, metadata is usually used in analyzing maps content, few papers use maps, especially legends.
In fact, people usually considers metadata, maps and legends together to understand what maps tell, however,
no study has tried to exploit how to combine them. This paper proposes a method to fuse them with the
purpose of classifying map themes, named latent feature based multimodality fusion for theme classification
(LFMF-TC). Firstly, a multimodal dataset is created that supports the supervised classification on map
themes. Secondly, textual and visual features are designed for metadata, maps, and legends using some
advanced techniques. Thirdly, a latent feature based fusion method is proposed to fuse the multimodal
features on the feature level. Finally, a neural network classifier is implemented using supervised learning
on the multimodal dataset. In addition, a web-based collaboration platform is developed to facilitate users
in labeling multimodal samples through an interactive Graphical User Interface (GUI). Extensive experi-
ments are designed and implemented, whose results prove that LFMF-TC could significantly improve the
classification accuracy. In theory, the LFMF-TC could be used for other applications with few modifications.

INDEX TERMS Cartography, machine learning, multimodality fusion, theme classification, web map

service.

I. INTRODUCTION

Maps enable people to intuitively sense geospatial entities’
morphology, distribution and spatial relationships by visual-
izing them using some creative efforts (e.g. symbolization,
generalization), which could serve for people’s daily lives,
space analysis and management. Web Map Service (WMS),
as a popular standard sharing geospatial data as interoperable
maps, has been adopted and implemented by many soft-
ware and authorities [1]. There have been large number of
WMS maps shared online across many disciplines [2], [3].
The theme classification of maps could help people effi-
ciently find maps of their interest [3], [4], analyze hot map
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themes and their changes [2], adaptively monitor the service
quality [5], [6] and compose service chains [7].

Features extraction plays a key role in the theme classifica-
tion. In the WMS, a map layer consists of metadata, map and
legend, and each of them contains some information related to
the map theme. Most studies have exploited in extracting tex-
tual features from the metadata to describe maps using some
natural language process (NLP) techniques [2], [3]. However,
few papers tried to understand maps using maps or legends
due to the semantic gap between low-level visual features
and themes. Recently, as the deep learning (DL) develops,
especially the convolutional neural network (CNN), some
salient and hierarchical visual features could be automati-
cally learnt from raw images [8]-[10], which have motivated
researchers to exploit them in variouse applications. Besides,
the development of optical character recognition (OCR)
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empowers people in extracting accurate textual information
from images. All of them could be used to extract more useful
features from maps and legends for classifying map themes.

Recently, information fusion also has shown promis-
ing performance in lots of applications, which can use
multi-source information to compensate for the limitations
with single source [11], [12]. Especially, the multimodality
fusion can integrate heterogeneous features due to multi-
modal sources or various feature extractors [13], [14]. Many
studies have illustrated its advantages compared to the uni-
modal fusion [15]-[17]. However, to the best of our knowl-
edge, only few studies tried to fuse the metadata and maps
on map analysis, and all of them firstly processed metadata
and maps separately, which lost many information before the
final fusion.

In this paper, a latent feature based multimodality fusion
method for theme classification (LFMF-TC) is proposed,
which works with multimodal features from metadata, maps
and legends to classify map themes. The contributions of this
work are: (1) creating a multimodal dataset for map themes
classification and developing an interactive web-based plat-
form to faciliate it; (2) designing textual and visual features
for metadata, maps and legends using some NLP, CNN and
OCR techniques; (3) proposing and implementing a latent
feature based fusion method to integrate multimodal features;
(4) designing a series of experiments and applying an in-depth
analysis of their results to investigate the effectiveness of
LFME-TC.

The rest of the paper is organized as follows: section 2
presents a review of the available papers related to the map
classification. Section 3 describes the architecture and some
implementation details of the LFMF-TC. Section 4 presents
a series of experiments which were conducted to ana-
lyze the effectiveness and configuration of the LFMF-TC.
Section 5 furtherly discusses how LFMF-TC takes effect
using confusion matrixes and samples. Section 6 summarizes
our findings and discusses future research avenues.

II. LITERATURE REVIEW

In the WMS, some other materials are also published with
maps to help users understand and use maps, such as
metadata, legends. Based on the material they used, exist-
ing map classification methods could be generally divided
into two main categories: map-based classification and
metadata-based classification.

Map-based classification studies involved the use of visual
features from maps to classify map types like themes. Numer-
ous visual features have been proposed to describe maps’
visual appearance or infer their semantics, which achieved
successful results. For example, [18] extracted distributed
color histograms to measure users’ preference on the map
appearance. Particularly, to handle the semantic gap between
visual features and themes, most studies tried to use the car-
tography standards or summarize some historical conventions
on specific entities. Reference [19] summarized some heuris-
tics for roads and rivers using the shape compactness and
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color to extract roads and rivers from maps automatically. The
development of deep learning, especially deep convolutional
neural networks (DCNNs), opens up new research opportu-
nities for image processing, because they can automatically
learn salient visual features from raw images [20]. It has moti-
vated researchers to explore its application for map-based
classification. Reference [21] distinguished maps from other
images using the ResNet-50. Reference [10] compared sev-
eral popular DCNNs (e.g. AlexNet, VGG Net, ResNet, Incep-
tion, Inception-ResNet) in classifying map types defined by
themselves. However, with all their benefits, there exist some
limitations in map-based classification. Because they can
only handle those maps with significant visual features. For
those maps with ambiguous symbols, it needs some other
descriptive information to infer their themes even for human.

Metadata, as one complementary descriptive information
for maps in WMS, gives textual description about the map
content and some other attributes. Compared to maps, there
exists no semantic gap in metadata. Moreover, many appli-
cations related to maps are directly based on text, such as
keyword-based map retrieval. Therefore, many researchers
have put their efforts in classifying maps based on meta-
data. Reference [2] extracted keywords from metadata to
conduct a topic survey on their crawled maps. Reference [18]
matched users’ queries with metadata to search for maps
of users’ interest. Furthermore, [22] used TFIDF to weight
extracted words from metadata in classifying web services.
Reference [3] adopted GCMD and SWEET ontology to
increase the matching accuracy in classifying maps. However,
the textual metadata usually lacks descriptions or has limited
descriptive capability on maps’ visual features. In addition,
some metadata fields are left empty or unrelated to maps.

As stated above, neither maps nor metadata alone can
handle varying conditions well, but maps and metadata could
offer complementary information for each other. Hence,
by fusing data from two complementary sources, the per-
formance of map classification could be improved. Some
existing studies utilized the fusion of them to enhance their
applications, and their results revealed significant improve-
ment. For example, [18] used maps’ similarity on appearance
to refine metadata based search results. In addition, legends,
as an interpreter for map symbols, tell what are included in the
map, which could also provide complementary information
for the theme classification. But, to our best knowledge,
no study has explored in using legends to classify maps.
Therefore, in this research work, we proposed to fuse maps,
metadata and legends to classify map themes.

There exist some challenges in fusing maps, metadata and
legends, because they are organized using multiple modal-
ities (e.g. image, text), and heterogeneous features will be
extracted from them. Recently, many multimodality fusion
strategies have been proposed in various applications [16],
[17], [23]-[25]. Their fusion operations are mainly performed
at the feature-level and decision-level. However, in the map
classification, existing studies mostly fuse maps and meta-
data at the decision-level to avoid handling heterogeneous
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FIGURE 1. Architecture of LFMF-TC.

features together. They firstly conducted the classification on
maps and metadata separately, then some rules were used
to fuse the stand-alone classification results [18]. The major
drawback of them is the stand-alone result to each indi-
vidual information source. Firstly, it requires to train many
classifiers for each information source and needs another
classifier or rules to fuse all results. Moreover, the acquisition
of concurrent features from all sources may be necessary to
collect sufficient information to make an improved classifica-
tion result, but stand-alone results will lose some information
compared to the raw features. In contrast, the feature-level
fusion could collect concurrent features and integrate them
to provide sufficient information for making an improved
decision. Therefore, in this study, we proposed a latent feature
based multimodality fusion method to fuse maps, metadata
and legends on the feature-level.

Ill. METHODOLOGY

In this section, we firstly describe the architecture of
LFMF-TC. Then, some details are described on how to cal-
culate the multimodal features and fuse them.

A. ARCHITECTURE

The architecture of LFMF-TC is presented in FIGURE 1,
which mainly consists of three functional parts: feature cal-
culation, feature fusion and theme classification. The feature
calculation aims to extract multimodal features from meta-
data, maps, legends and legend text, where the legend text is
recognized from legends using the Google Vision API and
manual rectifications. The details about four feature extrac-
tors are described in the III-B. Once multimodal features
extracted, the feature fusion module fuses them into a single
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feature vector. In this module, a latent feature based fusion
method is proposed to handle their heterogeneous structures,
whose details are described in the III-C. Finally, the theme
classification module maps the fused feature vectors to pre-
defined themes. It contains of a fully connected (fc) layer and
a softmax classifier. They work together to generate a proba-
bility distribution for each map over all themes. To measure
and train the overall framework, the categorical cross entropy
loss function is chosen, which will give a high penalty when
the predicted theme diverges from its ground truth.

B. FEATURE CALCULATION

This section describes how we extract features from mul-
timodal information sources. Based on their modalities,
the methods are organized as two parts: textual features
(i.e. metadata, legend text) and visual features (i.e. map,
legend).

1) TEXTUAL FEATURES

The textual description about a map comes from the meta-
data and legend text. Metadata contains many fields which
describe the map from many perspectives, such as providers,
spatial range, content, temporal information. The legend text
mainly tells users what symbols represent in the map,
which could provide more detailed information on entity
types compared to the metadata. As noted in the literature
review, some methods have been developed to extract and
weight keywords from the metadata. In this study, we only
want to testify the effectiveness of fusing multimodal infor-
mation in classifying map themes. Therefore, two typical
word weighting schemas are selected: term frequency (TF)
and term frequency inversed document frequency (TF-IDF).
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FIGURE 2. Structures of the textual feature extractor on metadata and
legend text.

Their algorithms are shown as the equation (1) and (2), where
tf; « means the frequency of the t-th word in a document;
n means the total number of documents; n; ; means the
number of documents containing the t-th word.

TF =t fia 1)

TF—IDF = 1 f, g(log —— + 1) @)
Nt.d

B

FIGURE 2 shows how we calculate TF and TF-IDF for
the metadata and legend text. In metadata, there exist four
fields closely related to the map theme: title, name, keywords,
and abstract, which are used to calculate the textual features.
Firstly, a (Extensible Markup Language) XML document
parser is developed to extract the content of four fields from
the WMS capability document. Because the sentence struc-
ture is not a concern for both TF and TF-IDF, their contents
are simply concatenated as a document named description
document. To remove the non-meaningful words or punc-
tuations which will affect the quality of textual features,
some text preprocess techniques are applied to it like filtering
(punctuation, stop words), lowercase, lemmatization. Finally,
the metadata textual features (i.e. TF, TF-IDF) are calcu-
lated by the textual feature extractor using above equations.
Same procedures are conducted in calculating textual features
for the legend text, with an exception that the description

Visual Feature Extractor

Inception-Resnet
& Reduction
Combinations

Input Stem

Inception-ResNet-v2

IMAGE —

FIGURE 3. Structures of the visual feature extractor.
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document is from the legend using the Google Vision API
assisted with manual rectifications.

2) VISUAL FEATURES

Maps use symbols to represent the morphology and spa-
tial distributions of geospatial entities. Legends consist of
symbols and their descriptions, whose symbols and layout
may be related to map themes. As noted in the literature
review, DCNNs have become the popular candidate in the
image processing. Inception-Resnet-v2, as a distinguish one
among them, integrates two unique modules to enhance its
capability: inception and residual [26]. The inception mod-
ule can extract more details by using multiple convolution
branches linked to the feature map, and the residual connec-
tion resolves the problem of gradient propagation through
adding direct connections between the input and output [27].
But the Inception-Resnet-v2 is used for classification, a key
aspect here is to identify a splitting point used to accom-
plish feature extraction for maps and legends. As shown in
FIGURE 3, the output of the average pooling is selected as
the feature map for maps and legends.

As you know, massive labelled images are required to
train the Inception-Resnet-v2 because of millions of weight
parameters to learn. Recently, transfer learning has been
proved to be an effective method to apply DCNNs on
small datasets, which can leverage the knowledge from
other big datasets [28]. FIGURE 3 shows how we com-
bine them to implement our visual feature extractors. Firstly,
the Inception-Resnet-v2 network is trained on the ImageNet
dataset which contains millions of annotated images [29], and
there have been well trained model and parameters shared
online. Then, based on the splitting point in the previous
paragraph, the weight parameters could be divided into two
groups, named feature weights and classifier weights. Finally,
those modules and feature weights in the green rectangle
(FIGURE 3) work together as the visual feature extractor for
maps and legends in our study.

C. LATENT FEATURE BASED MULTIMODALITY FUSION

After extracting above multimodal features, we need to
fuse them for the further classification. As stated in the

Weights
Feature Classifier “
Weights Weights
Average Pooling Dropout Softmax
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literature review, the feature-level fusion can leverage the
sufficient information from all features to enhance the clas-
sification result. Therefore, in this study, a new high dimen-
sional feature vector is constucted by concatenating above
feature vectors. Although all textual and visual features have
been represented as numeric vectors, their length and spar-
sity are significantly different due to heterogeneous sources
and algorithms. For example, the visual features are with
fixed length, while the length of textual features varies as
samples change. Besides, the textual feature vectors are high
dimensional and sparse, because both metadata and legend
text are usually short and organized with free description
from various publishers. On the one hand, the significant
difference on their feature length will degrade the fusion
purpose, in other words, the classifier maybe put more focus
on those features represented as longer vectors [25]. On the
other hand, the feature sparsity will lead to huge computation
cost. In this paper, latent features are constructed to keep
important information from raw features and decrease their
sparsity. In this study, as a compromise on avoiding intensive
manual work in exploiting the ideal size for different features,
a fixed size is used for all latent features. The neural network
with one hidden layer is used to construct latent features.
It can not only deal with raw features with variant length, and
it can also work together with the classification module to
optimize latent features.

IV. EXPERIMENTS

A. DATASET AND THEMES

The theme schema comes from the Infrastructure for Spatial
Information in Europe (INSPIRE) directive [30]. It consists
of 34 fine-granule themes which are grouped into 9 clusters.
In this paper, the coarse theme clusters were used in experi-
ments, because it is a labor intensive work to manually label
multimodal samples for map themes. Besides, to reduce the
difficulty, we restricted a map only related to a most related
theme.
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TABLE 1. The number of samples in each theme cluster.

ID Theme Cluster Name Number
1 Statistics and Health 145
2 Marine and Atmosphere 146
3 Earth Science 184
4 Land Use and Land Cover 111
5 Elevation, Ortho-imagery, Grids 210
6 Environmental Monitoring and Observations 110
7 Biodiversity and Management Areas 122
8 Facilities, Utilities and Public Services 124
9 Topo and Cadastre, Reference Data 325

Total number 1477

A web based Graphical User Interface (GUI) was
developed to facilitate the multimodal samples labelling
(FIGURE 4). It consists of three panels named metadata, map
& legend, and INSPIRE theme. The metadata panel shows
the content of selected metadata fields (name, title, keywords,
and abstract). The map & legend panel presents the layer’s
map and legend. All of them were parsed and cached using
the standard operations defined by WMS. In the theme panel,
the fine-granule themes are listed, because they are easier for
users to judge than the coarse-granule themes, and the latter
could be easily got using the mapping relationship maintained
in the INSPIRE directive. When labelling samples, users only
need to check or uncheck corresponding themes for maps, and
they can also view the theme definition during labelling by
moving their mouse over the question icon. Table 1 summa-
rizes the samples number. There exist at least 100 samples in
each theme cluster. Although imbalanced samples could lead
classifiers to predict samples as the type with most samples,
it can only achieve up to 23% accuracy on our samples when
no useful features used.

B. EXPERIMENTS AND ANALYSIS

A series of experiments were conducted to verify the effec-
tiveness of LFMF-TC and investigate the impact of some
parameters. Experiment 1 tests and analyzes the performance
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of textual features in classifying map themes using several
popular classifiers. Experiment 2 tests and analyzes the per-
formance of visual features and their combination using the
same classifiers. Experiment 3 demonstrates improvements
made by our proposed LFMF-TC. Experiment 4 further
investigates the impact of the latent feature size in LFMF-TC.
To measure their performance, the k-fold cross validation was
adopted, and its parameter k was set to five. It firstly divided
labeled samples into five subsets, then samples in each subset
were iteratively used for testing while the others for training
the classifier. Therefore, five independent accuracy results
could be calculated for each classifier. The average value
of them was used as the overall accuracy to measure clas-
sifiers. Traditionally, samples are randomly divided into k
subsets in the k fold cross validation. In this study, to guar-
antee the class balance and sample representativeness on the
fine-granule themes across subsets, a hierarchical partition
strategy was proposed in dividing samples with hierarchical
themes. Experiment 5 investigates its advantages by compar-
ison to the traditional random partition strategy.

1) TEXTUAL FEATURES BASED THEME CLASSIFICATION

In experiment 1, several popular supervised classifica-
tion algorithms were used to analyze whether textual fea-
tures were useful in classifying map themes, including
K-NearestNeigobor (KNN), NaiveBayes, Decision Tree,
Random Forest, Logistic Regression, Linear SVM, and Neu-
ral Network (NN). Except the NN, all others were from
the Python Sklearn library. In experiments, the parameter
k was set to 1 in the KNN after some initial experiments
on our dataset. The NN classifier contained a hidden layer
containing 64 neurons and a softmax classifier, and the RELU
activation function and the categorical cross entropy loss
function were used in training it. The NN classifiers were
trained by running 500 iterations. All other parameters were
set to their default value.

Their results are shown in FIGURE 5. Compared to the
extreme situation stated in IV-A where no useful information
contained in features, both metadata and legend text achieved
significant improved accuracy than 23% across all selected
classifiers. Hence, both of them contained some useful infor-
mation for classifying map themes. In addition, the metadata
achieved higher accuracy than the legend text universally,
which means metadata contained more useful information.
On the one hand, there were more maps with empty legend
text than maps with empty metadata. Although the keywords
and abstract in metadata are optional, the name and title are
required for layers containing maps. But legends are optional,
and part of them does not contain legend text. On the other
hand, four fields in metadata usually contain more attributes
and words than the legend context. About the feature type,
no significant advantage was found on the TF or TF-IDF
across classifiers or information sources, but the TF-IDF
showed a little better than the TF in the NN classifier which
achieved the best accuracy on both metadata and legend text.
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FIGURE 6. The classification accuracy based on visual features.

Therefore, the TF-IDF was used in our method for metadata
and legend text.

2) VISUAL FEATURES BASED THEME CLASSIFICATION

In experiment 2, same classifiers were used to analyze the
usefulness of visual features in classifying map themes.
Beside the stand-alone map features and legend features,
their combination was also tested by concatenating them into
a single vector, because they were with the same length.
FIGURE 6 shows their results. Although maps were used in
nearly all existing studies to conduct visual analysis, it was
surprising that legends achieved better performance with
most classifiers in classifying map themes, whose reason will
be investigated in our future research. In addition, intuitively,
the combined feature contains more information and should
be with a better performance. However, the legend feature
outperformed it with the decision tree and random forest
classifiers. The possible reason may be that these two clas-
sifiers did not make full use the information from features
with their default parameters. It could be somehow proved
by that they achieved significantly lower accuracy compared
to other classifiers with higher accuracy. The lower accuracy
of the naiveBayes classifier may be due to that it was hard to
conduct statistical analysis on high-dimensional features with
small number of samples. But all classifiers got improved
accuracy than 23% with all visual features, which means
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TABLE 2. The classification accuracy based on multimodality fusion.

Method Accuracy
LFMEF-TC (vision) 0.7387
Majority Voting 0.7508
Feature Concatenation 0.8368
LFME-TC 0.8842

that all visual features contained some useful information for
classifying map theme.

3) MULTIMODALITY FUSION BASED THEME CLASSIFICATION
Drawn from above analysis, all information sources (meta-
data, maps, legends) could provide some useful informa-
tion for classifying map themes. Among them, the metadata
yielded best accuracy (81.11%) with the NN classifier using
its TF-IDF feature. In this below, it will be used to verify the
effectiveness of our method.

In the previous section, it has shown promising improve-
ment by fusing homogeneous and unimodal features from
maps and legends. In this section, we firstly investigate the
effectiveness of LFMF-TC by fusing all information (maps,
legends, legend text) from visual sources named LFMF-TC
(vision). At the same time, three typical fusion methods
were selected to fuse metadata, maps and legends: majority
voting, feature concatenation, and LFMF-TC. In the feature
concatenation and LFMF-TC, a neural network classifier was
used to classify their fused features, which shared the same
structure as those in previous experiments. The size of latent
features was set to 32 in LFMF-TC. Table 2 lists their results
accuracy. The LFMF-TC (vision) could further improve the
classification accuracy from 68.72% to 73.87% by fusing
the legend text. By fusing all information sources, all of
three classifiers achieved better accuracy than the LFMF-TC
(vision). Among them, LFMF-TC achieved the best accuracy
(88.42%) which was also higher than accuracies on any indi-
vidual information source or fusing part of them. In compar-
ison, the majority voting got a lower accuracy even than the
metadata TF-IDF based NN, because it lost much information
before fusing decisions. Although the feature concatenation
conserved more information than the LFMF-TC, the variant
length of multimodal features and limited training iterations
degraded its fusion performance.

4) EFFECT OF SIZE OF LATENT FEATURE SET TO
CLASSIFICATION ACCURACY

The influence of latent feature size could be analyzed
from two perspectives: information volume and computa-
tion cost. A latent feature with bigger size could conserve
more information for further analysis, but it also requires
huger computation cost to make full use of those infor-
mation. In this experiment, we changed the latent feature
size in the LFMF-TC to investigate its effect on the clas-
sification accuray. All classifiers were trained by running
500 iterations. Their results are shown in FIGURE 7. As the
size increased, the result accuracy firstly increased then
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FIGURE 7. The classification accuracy of the LFMF-TC with different latent
feature size.

decreased. As stated above, a latent feature with small size
only conserved little information, which will limit the per-
formance improvement. As the size increases, more informa-
tion could be conserved to improve the accuracy, therefore,
the result accuracy firstly increased. However, bigger size
requires huger computation cost to make full use of con-
served information. Therefore, the result accuracy went down
after a size (32) due to inadequate training with limited
iterations.

5) INFLUENCE OF PARTITION STRATEGIES

In this experiment, we investigated the effect of partition
strategies on the classification accuracy, where the ran-
dom and hierarchical partition strategies were compared.
Beside comparing two strategies on multimodal features
using LFMF-TC, they were also compared on the single
information source. Therefore, other four classifiers were
selected, which achieved the best accuracy on each single
information source. The five classifiers were named Meta-
data (NN & TF-IDF), Map (NN & Inception-Resnet-v2),
Legend (NN & Inception-Resnet-v2), Legend Text (NN &
TF-IDF) and All (LFMF-TC), where NN means the neural
network classifier. All of them were repeated on the sub-
sets divided using the traditional random partition strategy.
In experiments, beside the average accuracy, we also recorded
five accuracies taking each subset for validation. FIGURE 8
shows their results, where dot points mean the average accu-
racy and cap lines mean the minimum and maximum accu-
racy. Results showed that the hierarchical partition strategy
cannot only achieved slightly higher average accuracy, it was
also with smaller variance of accuracies across all classi-
fiers. Because the hierarchical partition strategy guaranteed
the class balance and samples representativeness across its
subsets.

V. DISCUSSION
The effectiveness of LFMF-TC has been verified by above
experiments, however, how it works is still somehow con-
fusing. In this section, we try to analyze its mechanism
from more perspectives using confusion matrixes and some
example results.
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FIGURE 8. The classification accuracy on different sources with
hierarchical and random partition strategies (NN represents the neural
network clssifier).

A. CONFUSION MATRIXES

As the name suggests, the confusion matrix (CM) could
help people to see if a model confuses any two classes,
where the class level accuracy and predictions’ distribution
are presented. In FIGURE 9, each row of them represents
maps in an actual theme cluster while each column represents
maps in a predicted theme cluster. The theme cluster for
each number could be found in Table 1. Generally, most
misclassified maps accumulated in the ninth theme cluster
across all themes, especially in the single source based CMs.
Because our samples were unbalanced, and the ninth theme
cluster contained largest number of samples. When insuf-
ficient information found in source data, the classifier will
predict a map as the ninth theme cluster, which was proved
by feeding some classifiers with empty features. The single
source data usually contained less information compared to
their fusion, therefore, the accumulation phenomenon was
more serious on them. Particularly, there existed deepest col-
ors on the ninth theme cluster in the legend text CM, because
there were many maps with empty legend text. In addition,
there existed more error predictions outside the ninth theme
cluster in CMs on maps and legends. Although the legend text
shared similar average accuracy (around 65%) as maps and
legends, few visual features for maps and legends are empty.
As more information embraced in the vision (LFMF-TC) and
All (LFMF-TC), more useful information could be extracted.
As a result, the accumulation phenomena became weaker.
Specially, the fourth theme cluster (land use and land cover)
got a relative low accuracy across all classifiers. The possi-
ble reasons include insufficient description in metadata and
arbitrary cartography units and colors in their maps and
legends.

B. EXAMPLES RESULTS

In this section, some misclassified examples were presented
in Table 3. For the maps with id 1 and 2, no useful information
could be extracted from their metadata even for human. As a
result, the metadata based classifier predicted them as the
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FIGURE 9. Confusion matrixes for different sources (NN represents the
neural network classifier; rows represent ground truth and columns
represent predictions).

ninth theme cluster. But the first map contained significant
visual feature as remote sensing images, and the legend text
in the second map contained useful information. All of them
could be used by the LFMF-TC to make a true prediction.
In the third map, California, as a place name, was too general
for identifying its theme. In contrast, the legend text was more
clear. However, the LFMF-TC also faced some challenges
in fusing different information sources. For example, both
4 and 5 contained meaningful words in their metadata, such
as streets and user facilities. As a result, the metadata based
classifier could make true predictions for them. However,
the LFMF-TC misclassified them, because it may be influ-
enced by the visual features. For example, the fourth map
looked like contours, and the fifth map legend was similar
to land cover and land use maps. Although the legend text
in the fifth map could be used to rectify errors, the samples
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TABLE 3. Example classification results using LFMF-TC.

ID Metadata Map Legend Theme
Labeled Theme:
Elevation, orthoimagery, grids
Name: psn:13c
1 Title: 13c ﬁ Metadata based Prediction:
Abstract: Topo&cadastre, reference data

Keywords: WCS, GeoTIFF, 13c

LFMF-TC Prediction:
Elevation, orthoimagery, grids

Name: ncr:NCR_LU_12_1
Title: NCR_LU_12_1

M Dense Built-up{Residential)
M Medium Built-up{Residential)
SparseiLow BuiltupiResidentialy
M ror-Residential
Openfacant Land
Recreation Areas

Labeled Theme:
Land use and land cover

Metadata based Prediction:

2 Abstract: ‘ Cultivated Lanc Topod&cadastre, reference data
KCyWOI‘dSZ ‘4 Agricultural Plantation
4 A Hotticulture Areas L.
A Fallow Land LFMF-TC based Prediction:
¢ ‘ = Mon Agriculture Dense Vegetated Area Land use and land cover
7 ] Man Agriculture Plantation
o Labeled Theme:
oo Topo&cadastre, reference data
Name: California &

3 Title: California ”'.-c Well Metadata based Prediction:
Abstract: California . @ Spring Marine and atmosphere
Keywords: .

LFMF-TC based Prediction:

Topo&cadastre, reference data

Labeled Theme:

Topo&cadastre, reference data
Name: 11

4 Title: Regional Streets (Emergency) _ Metadata based Prediction:
Abstract: Topo&cadastre, reference data
Keywords:

LFMF-TC based Prediction:
Elevation, orthoimagery, grids
x.' Access Point
S Aok Labeled Theme:
< Atiractian Facilities, utilities and public
g:f;m services
Name: 13 « Car Park (Temporary Evert/Zoo)

5 Title: Park User Facilities &) DepetBulding Metadata based Prediction:
Abstract: (&, Drinking F ourtain Facilities, utilities and public
Keywords: services

Events Area

Ferry Landing Stage
Ly GreenTailet
n Icecream and Mobile Catering
¢] Memorid f Monument

. Miniture R aibuay
. Dark Ruiildina

LFMF-TC based Prediction:
Land use and land cover

representativeness in the training set may be insufficient to
capture it.

VI. CONCLUSION AND FUTURE RESEARCH

This paper introduces a novel multimodality fusion method to
investigate how to fuse metadata, maps and legends together
in classifying map themes. In this paper, we addressed chal-
lenges in: 1) the lack of labeled multimodal samples for
maps; 2) difficulty in capturing discriminative features from
metadata, maps and legends; 3) the lack of studies trying to
fuse metadata, maps and legends on the feature level to infer
their themes; 4) the lack of thorough understanding of how

VOLUME 8, 2020

multimodality fusion works in classifying map themes. The
success of LFMF-TC is summarized by integrating follow-
ing strategies: 1) creating a multimodal sample dataset for
maps using a web-based collaborative platform; 2) designing
feature extractors for each map information source using
some NLP, CNN and OCR techniques; 3) proposing and
implementing a fusion method to fuse multimodal features
and integrate their discriminative power; 4) designing a series
of experiments and analyzing their fusion affects. To our best
knowledge, this study represents one of the first attempts
in understanding map contents by fusing metadata, maps,
especially legends.
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In the future, some features will be optimized by con-
sidering the characteristics of map attributes. For example,
we plan to use some augmentation strategies to enlarge map
samples and fine-tune the Inception-Resnet-v2 in extracting
visual features. Besides, some correlation analysis methods
could be used to investigate the relationship among features,
whose results can be used to optimize feature extractors
and the fusion method. In addition, the effect of imbalanced
samples will be considered by labeling more examples or
designing number-related loss function to measure the model
performance.
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