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ABSTRACT Accurate vehicular sensing is a basic and important operation in autonomous driving.
Unfortunately, the existing techniques have their own limitations. For instance, the communication-based
approach (e.g., transmission of GPS information) has high latency and low reliability while the reflection-
based approach (e.g., RADAR) is incapable of detecting hidden vehicles (HVs) without line-of-sight. This
is arguably the reason behind some recent fatal accidents involving autonomous vehicles. To address this
issue, this paper presents a novel HV-sensing technology that exploits multi-path transmission from a HV to
a sensing vehicle (SV). The powerful technology enables the SV to detect multiple HV-state parameters
including position, orientation of driving direction, and size. Its implementation does not even require
synchronization like conventional mobile positioning techniques. Our design approach leverages estimated
information on multi-path [namely their angles-of-arrival (AoA), angles-of-departure (AoD), and time-of-
arrival (ToA)] and their geometric relations. As a result, a complex system of equations or optimization
problems, where the desired HV-state parameters are variables, can be formulated for different channel-noise
conditions. The development of intelligent solution methods ranging from least-square estimator to disk/box
minimization yields a set of practical HV-sensing techniques. We study their feasibility conditions in terms
of the required number of paths. Furthermore, practical solutions, including sequential path combining and
random directional beamforming, are proposed to enable HV-sensing given insufficient paths. Last, realistic
simulation of driving in both highway and rural scenarios demonstrates the effectiveness of the proposed
techniques. In summary, the proposed technique will enhance the capabilities of existing vehicular sensing
technologies (e.g., RADAR and LIDAR) by enabling HV-sensing.

INDEX TERMS Hidden vehicle sensing, asynchronous V2V transmission, NLoS positioning, multi-path
geometry.

I. INTRODUCTION
Autonomous driving (auto-driving) aims at reducing car
accidents, traffic congestion, and greenhouse gas emissions
by automating the transportation process [2]. The potential
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impact of the cross-disciplinary technology has attracted
heavy R&D investments not only by leading car manufac-
turers (e.g., Tesla) but also Internet companies (e.g., Google).
One primary operation of auto-driving is vehicular position-
ing [3]–[5], namely positioning nearby vehicles and tracking
other parameters such as sizes and trajectories. The informa-
tion then serves as inputs for computing and control tasks
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FIGURE 1. Hidden vehicle scenario with multi-path NLoS channels.

such as navigation [6], accidence avoidance [7], and an elec-
tric vehicle’s battery changing [8]. There exist diversified
approaches for vehicular positioning but they all have their
own drawbacks. One conventional approach is to exchange
the absolute location information among a group of nearby
vehicles by using vehicle-to-vehicle (V2V) transmission [9].
Its main drawbacks include high latency due to the data
exchanging process and low reliability arising from inaccu-
rate Global Positioning System (GPS) information in e.g.,
dense urban areas or tunnels [2]. Another approach is to
deploy sensors ranging from LIght Detection and Rang-
ing (LIDAR) to RAdio Detection And Ranging (RADAR).
As illustrated in Fig. 1, they are capable of sensing the line-of-
sight (LoS) vehicles, but cannot ‘‘see through’’ a large solid
object (e.g., a truck) to detect hidden vehicles (HVs). A com-
prehensive discussion of existing approaches is given in the
sequel. Motivated by their drawbacks, this paper presents
a novel technology for accurately sensing a HV including
detecting its position, orientation of driving direction, and
size by exploiting the multi-path geometry of asynchronous
V2V transmission.

A. WIRELESS TRANSMISSION AND VEHICULAR
POSITIONING
Wireless transmission underpins different approaches for
vehicular positioning as follows.

1) COMMUNICATION-BASED VEHICULAR POSITIONING
Nearby vehicles can position each other by vehicle-to-
everything (V2X) communication to exchange GPS infor-
mation [9]. The state-of-the-art protocol for connecting
vehicles is the low-latency dedicated short-range commu-
nication (DSRC) [10], a variant of the IEEE 802.11 Wi-Fi
random-access protocol. The effectiveness of the protocol has
been examined in the scenario of two-lane rural highway [11].
Recently, the 3rd Generation Partner Project (3GPP) has
initiated a standardization process to realize cellular-based
V2X (C-V2X) communication supporting higher data rate
and larger coverage than DSRC [12]. To boost data rate,
the technology aims at implementation in the millimetre-
wave (mmWave) spectrum where abundant of bandwidth is

available [13]. A key challenge faced by mmWave V2X
communication is the high overhead arising from frequent
ultra-sharp beam training and alignment to cope with fast
fading in channels between high-speed vehicles. To reduce
this overhead, a fast beam-alignment scheme is proposed
in [14] that leverages matching theory and swarm intelligence
to efficiently pair vehicles. An alternative technique for accel-
erating beam alignment is to leverage information generated
by either onboard RADAR [15] or GPS [16] to deduce useful
channel information.
The main challenge faced by the communication-based

approach is that their reliability and latency may not meet
the requirements of mission-critical scenarios such as acci-
dent avoidance at high speeds. Consider the reliability issue.
The GPS information exchanged between vehicles can be
highly inaccurate due to the blockage of GPS signals from
satellites in urban areas or tunnels. Next, consider the latency
issue. The implementation of V2X communication in a
dense vehicular network incurs high communication over-
head due to many practical factors including complex pro-
tocols, packet loss and retransmission, source and channel
coding, limited link life time, etc. The long latency makes
relevant positioning information easily out-of-date [17]. Due
to the above issues, the application of the communication-
based approach is limited to pedestrian positioning but
not yet suitable for a latency-sensitive task like vehicular
positioning.

2) REFLECTION-BASED VEHICULAR POSITIONING
Auto-driving vehicles are typically equipped with RADAR
and LIDAR among other sensing devices. The two sens-
ing technologies both adopt the reflection-based approach,
namely that the sensors detect the reflections from vehicles
and objects in the environment but using different mediums,
microwaves and laser light, respectively.
LIDAR steers ultra-sharp laser beams to scan the sur-

rounding environment and generates a dynamic high-
resolution three-dimensional (3D) map for navigation [18].
The main drawback of LIDAR is its ineffectiveness
under hostile weather conditions due to the difficulty of
light in penetrating fog, snow, and rain [2]. In addition,
LIDAR is currently too expensive to be practical and
the huge amount of generated data is challenging to be
processed within the ultra-low latency required for safe
driving.
RADAR can locate a target object as well as estimate its

velocity via sending a designed waveform [e.g., frequency
modulated continuous waveform (FMCW)] and analyzing its
reflection by the object [19]. Particularly, the metal surfaces
of vehicles are capable of reflecting microwaves with negli-
gible absorption. For the reason, RADAR is popularly used
for long-range sensing. Recent breakthroughs in mmWave
RADAR make it feasible to deploy large-scale but high
impact arrays for sharp beamforming to achieve a high posi-
tioning accuracy [20]. Compared with LIDAR, RADAR can
provide longer sensing ranges (up to hundreds-of-meter) and
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retain the effectiveness under hostile weather conditions or
in an environment with poor lighting. One disadvantage of
RADAR is that it may incorrectly recognize a harmless small
metal object as a much larger object due to scattering, leading
to false alarms [21].

In the context of auto-driving, perhaps the most critical
limitation of LIDAR, RADAR and other reflection-based
technologies is that they can detect only vehicles with LoS
since neither microwaves nor laser light can penetrate a large
solid object such as a truck or a building. However, detecting
HVs with non-LoS (NLoS) is crucial for collision avoidance
in complex scenarios such as overtaking and cross junctions
as illustrated in Fig. 1.

B. LOCALIZATION BY SYNCHRONOUS TRANSMISSION
Besides to vehicular positioning, there exists an active
research area to estimate the positions of mobile devices in
cellular networks, a. k. a. localization [22], most of which
rely on synchronous transmissions. For example, a receiver
(e.g., a mobile device) estimates the relative position of a
transmitter [e.g., base station (BS)] from the prior knowledge
of the transmitted waveform (see e.g., [22], [23]). The effec-
tiveness of this approach hinges on the key assumption of
perfect synchronization between the transmitter and receiver.
The reason is that the distance of each propagation path can
be directly converted from its propagation delay, i.e., Time-
of-Arrival (ToA) (for pulse transmission) [24] or frequency
variation (for FMCW transmission) [25], which can be easily
measured given the said synchronization. Localization via
asynchronous transmission is possible when received-signal-
strength (RSS) information is given [26], but the resultant
accuracy is far from that via synchronous transmission. On
the other hand, spatial parameters of individual paths, includ-
ing the AoA and AoD, can be estimated if the transmitter and
receiver are equipped with antenna arrays to perform spatial
filtering [27]. Combining the distances and spatial parameters
of multi-paths and exploiting their geometric relations enable
the localization despite the lack of LoS, given the perfect
synchronization among multiple transmitters [24], [28], [29].

The assumption of perfect transmitter-receiver or
transmitter-transmitter synchronizations is reasonable for
localization in cellular networks since the BSs and mobiles
are relatively stationary. However, in the auto-driving sce-
nario, the transmitter and receiver are a HV and a sens-
ing vehicle (SV), respectively, and their synchronization
is impractical especially at high speeds.1 This renders the
approach based on synchronous transmission unsuitable for
vehicular positioning. In view of the prior work, sensing a HV
remains largely an open problem and tackling it is the theme
of this work.

1The synchronization error for wireless communications is typically
around ±0.39µ sec [30], which is negligible compared with the size of
a cyclic prefix (4.7µ sec). However, from a positioning perspective, this
synchronization error will result in ±117 (m) distance error, which is
unacceptable and thus calls for developing a positioning technique without
transmitter-receiver synchronization.

C. MAIN CONTRIBUTIONS
In this work, we aim at tackling the open challenges faced
by existing vehicular positioning techniques as summarized
below.

1) No LoS and lack of synchronization: None of the
existing techniques (see Table 1) can be effective for sensing
a HV that has neither LoS nor synchronization (with the SV).
2) Simultaneous detection of HV’s position, orientation,

and size: Except for LIDAR, other existing vehicular posi-
tioning approaches are incapable of detecting the size and
orientation of a HV, which are important safety information
required in auto-driving. For auto-driving safety, all of the
vehicle’s safety information (position, orientation, and size)
should be given simultaneously but the existing technologies
cannot guarantee to achieve the goal due to various practical
factors, e.g., GPS-denied environments, high mobility, and
the perfect alignment among them.

3) Insufficient multi-path: Similar to the approach based
on synchronous transmission, the current technology posi-
tions a HV by exploiting multi-path propagation. Such
approaches may not be feasible in the scenario with sparse
scattering and hence insufficient paths. Tackling the chal-
lenge is important for making the technologies robust.

To tackle the above challenges, we propose a novel tech-
nology, called HV-sensing, to enable a SV to simultaneously
sense the position, orientation of driving direction, and size
of a HVwithout requiring synchronization. The SV leverages
the information of multi-path signals (including AoA, AoD,
and ToA) as well the derived geometry relations between
the paths so as to construct tractable systems of equations
or optimization problems, where the HV position, orienta-
tion of driving direction, and size are unknown variables to
be found. A set of HV-sensing techniques is designed for
operation in different practical settings ranging from low to
high signal-to-noise ratios (SNRs), single-cluster to multi-
cluster HV arrays, and small to large waveform sets. The
differences between the proposedHV-sensing technology and
conventional approaches are summarized in Table 1.
The proposed vehicular sensing technique can be used

to assist and enhance the current positioning approaches by
overcoming their limitations as well as enabling the vehicle
to sense the state of a HV including detecting its position,
orientation, and size. This technique can be integrated with
current vehicular positioning system to further improving
safety of auto-driving. The main contributions of this work
are summarized as follows.

1) Sensing HV position and orientation by using single
cluster array: Consider the case that the HV array contains a
cluster of collocated antennas. The goal is to simultaneously
estimate HV’s position and orientation without SV-HV syn-
chronization. The HV transmits orthogonal waveforms over
different antennas, enabling the SV to estimate the multi-
path information (AoA, AoD, and ToA). This multi-path
transmission allows the SV to resolve the synchronization
issues as follows. First, all signal paths are simultaneously
originated from the HV, providing the same effect of being

VOLUME 7, 2019 169401



K. Han et al.: Hidden Vehicle Sensing via Asynchronous V2V Transmission: Multi-Path-Geometry Approach

TABLE 1. Comparison of different vehicular positioning approaches.

perfectly synchronized among different signal paths. Second,
the SV can calculate the Time-Difference-of-Arrival (TDoA)
between any two signal paths from the observed ToAs even in
the absence of HV-SV synchronization, which is proportional
to the corresponding flight distance difference. Given the
three-fold information (AoA, AoD, and TDoA) and when
noise is negligible, a complex system of equations is con-
structed and solved in sequential steps at SV to obtain the
desiredHV-state parameters. On the other hand, when noise is
present, the sensing problem is reformulated as least-square
(LS) estimation also solved in a sequential procedure. For the
HV sensing to be feasible, the required numbers of paths are
at least 4 in 2D propagation (see Proposition 1) and 3 in 3D
propagation (see Proposition 3).
2) Sensing HV size by using multiple clusters array:

Consider the case that the HV array contains multiple clusters
of antennas that are distributed over the vehicular body. In this
case, the goal is to further estimate the HV size along with its
position and orientation. Two specific schemes are presented.
The first assumes the transmission of multiple orthogonal
waveform sets so that the SV can group the paths accord-
ing to their originating HV antenna clusters. The second
assumes the transmission of an identical waveform set such
that the said path-grouping is infeasible. Then alternative size
detection techniques are proposed based on efficient disk
or box minimization under the constraint that the disk or
box encloses the HV array. The required numbers of paths
for the first sensing scheme is found to be 6 and that for
the second scheme is 4. Nevertheless, when both of two
schemes are feasible, the former outperforms the latter as
multiple orthogonal waveform sets help to improve sensing
accuracy.

3) Coping with insufficient multi-path: To make the
proposed HV-sensing techniques more reliable, we further
propose practical solutions for increasing the number of
available paths in the case when there are insufficient for
meeting the feasibility requirements of the above HV-sensing
techniques. The first solution is to combine paths exploited
in multiple time instants and the second is to apply random
directional beamforming for uncovering hidden paths invisi-
ble in the case of isotropic HV transmission. The solutions are
complementary and can be jointly implemented to maximize
the number of significant paths for enhancing the sensing
accuracy.

4) Realistic simulation: The proposed HV-sensing tech-
niques are evaluated using practical simulation models of
highway and rural scenarios and found to be effective.

The remainder of the paper is organized as follows.
Section II introduces the system model and problem for-
mulation for HV-sensing. Sections III and IV present
the HV-sensing techniques for the cases of single-cluster
and multi-cluster HV arrays, respectively. The solutions for
the practical issue of insufficient multi-path for HV-sensing
are developed in Section V, and the extension to the multi-
vehicle scenario is considered in VI. Simulation results are
presented in Section VII, followed by concluding remarks in
Section VIII.

II. SYSTEM MODEL
We consider a two-vehicle system where a SV attempts to
detect the (relative) position, size, and orientation of a HV. An
antenna cluster refers to a set of collocated antennas where
the half-wavelength antenna spacing is negligible compared
with vehicle sizes and propagation distances. An array can
comprise single or multiple antenna clusters, referred to as
a single-cluster array and a multi-cluster array, respectively.
The deployment of a single-cluster array at the HV enables
the SV to detect the HV’s position and orientation. On the
other hand, a multi-cluster HV array can further make it pos-
sible for the SV to estimate the HV size. For the exposition,
in the case of multi-cluster HV array, we consider 4 clusters
located at the vertices of a rectangle representing the vehicle.
The principle of HV-sensing design in the sequel is based on
the efficient detection of the clusters’ positions and thus can
be straightforwardly extended to other clusters’ topologies
with irregular clusters’ distributions. For HV-sensing in both
scenarios, the SV requires only a single-cluster array. Signal
propagation is assumed to be contained in the 2D plane, and
the results are subsequently extended to the 3D propagation.
The channel model, V2V transmission, and sensing problem
are described in the following sub-sections.

A. MULTI-PATH NLoS CHANNEL
The NLoS channel between SV and HV contains multi-paths
reflected by a set of scatterers. Consider the characteristics of
V2V channel [31]. We make the following assumption.
Assumption 1 (Single-Bounce Scattering): The single-

bounce scattering is used to model the V2V propagations that
the NLoS signals are assumed to have only one reflection due
to scatterers.2

2Assumption 1 is widely used in the literature of localization via NLoS
paths [23], [27]. Variousmethods have been proposed to detect single-bounce
paths among multiple-bounce ones such a proximity detection [27], and
a joint ToA-and-signal strength based detection [32], making sense to use
Assumption 1 in practice.
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FIGURE 2. The geometry of a 2D propagation path and the definitions of
parameters.

Based on Assumption 1, a 2D Cartesian coordinate system
is considered as illustrated in Fig. 2, where the SV array
is located at the origin and the X -axis is aligned with the
orientation of SV. Further, consider a typical antenna cluster
at the HV. Each NLoS signal path from the HV antenna
cluster to the SV array can be characterized by the following
five parameters: the AoA at the SV denoted by θ ; the AoD at
the HV denoted by ϕ; the orientation of the HV denoted byω;
and the propagation distance denoted by d which is divided
into the propagation distance after reflection, denoted by ν,
and the remaining distance (d − ν). The AoD and AoA are
defined as azimuth angles relative to orientations of HV and
SV, respectively. Fig. 2 graphically shows the definitions of
the above parameters.

B. HIDDEN VEHICLE TRANSMISSION
To enable sensing at the SV, the HV transmits a set of wave-
forms defined as follows. Each antenna cluster at HV has
Mt antennas with at least half-wavelength spacing between
adjacent antennas. Consider a typical antenna cluster. A set of
orthogonal waveforms are transmitted over different anten-
nas.3 Let sm(t) be the finite-duration baseband waveform
in t ∈ [0,Ts] assigned to the m-th HV antenna with the
bandwidth Bs. Then the waveform orthogonality is speci-
fied by

∫ Ts
0 sm1 (t)s

∗
m2
(t)dt = δ(m1 − m2) with the delta

function δ(x) = 1 if x = 0 and 0 otherwise. The trans-
mitted waveform vector for the k-th HV antenna cluster is
s(k)(t) = [s(k)1 (t), · · · , s(k)Mt

(t)]T. In the case of multi-cluster
HV array, the waveform sets for different clusters are either
identical or orthogonal with each other. The use of orthog-
onal waveform sets allows SV to group the detected paths
according to their originating antenna clusters as elaborated
in the sequel, and hence this case is referred to as decoupled
clusters. Then the other case is called coupled clusters. With
the prior knowledge of transmitted waveforms, the SV with
Mr antennas can scan the received signal due to the HV
transmission to resolve multi-path as discussed in the next
sub-section.

3It is implicitly assumed that enough orthogonal waveforms are given for
HV’s multi-antenna transmission a.k.a. orthogonal multiple access (OMA).
It is interesting to extend the current design to non-orthogonal multiple
access (NOMA) [33] against case of insufficient orthogonal waveforms,
which is outside the scope of current work.

The expression of the received signal is obtained as fol-
lows. Consider a typical HV antenna cluster. Based on the
far-field propagation model, the cluster response vector is a
function of the AoD ϕ defined as

a(ϕ)=[exp(j2π fcα1(ϕ)), · · · , exp(j2π fcαMt (ϕ))]
T, (1)

where fc denotes the carrier frequency and αm(ϕ) is the
propagation time difference between received signals depart-
ing from the HV’s m-th antenna and the first antenna,
i.e., α1(ϕ) = 0. The response vector of the SV array is written
in terms of AoA θ as

b(θ ) = [exp(j2π fcβ1(θ )), · · · , exp(j2π fcβMr (θ ))]
T, (2)

where βm(θ ) refers to the propagation time difference
between received signals arriving at the SV’s m-th antenna
and the first antenna.We assume that SV has prior knowledge
of both the HV-and-SV array configurations and thereby
the response functions a(ϕ) and b(θ). This is feasible by
standardizing the vehicular arrays’ topology. In addition,
the Doppler effect is ignored based on the assumption that
the channel coherence time due to Doppler frequency shift
is much larger than the waveform duration and thus does not
affect waveform orthogonality (see Remark 1). Let k denote
the index of HV antenna cluster andP(k) denote the number of
received paths originating from the k-th HV antenna cluster.
The total number of paths arriving at SV is P =

∑K
k=1 P

(k).
We represent the received signal vector at SV as r(t) =
[r1(t), · · · , rMr (t)]

T that can be written in terms of s(t), a(ϕ)
and b(θ) as

r(t) =
K∑
k=1

P(k)∑
p=1

γ (k)
p b

(
θ (k)p

)
aT
(
ϕ(k)p

)
s
(
t − λ(k)p

)
+ n(t),

where γ (k)
p and λ(k)p denote the complex channel coefficient

and ToA of path p originating from the k-th HV antenna
cluster, respectively, and n(t) represents channel noise. With
no synchronization between the HV and SV, the SV has no
information of HV’s transmission timing. Therefore, it is
important to note that λ(k)p differs from the corresponding

propagation delay, denoted by τ (k)p , with τ (k)p =
d (k)p
c and

d (k)p being the propagation distance. Given an unknown clock-
synchronization gap between the HV and SV denoted as 0,
τ
(k)
p = λ

(k)
p − 0.

Remark 1 (Channel Coherence Time vs. Waveform Dura-
tion): It is essential to study the condition on channel
dynamics for accurate and stable positioning. Specifically,
the assumption of invariant ToA, AoA and AoD holds if the
V2V channel is largely unchanged in the waveform duration:

Tc � Tw, (3)

where Tc and Tw denote the channel coherence time and
waveform duration, respectively. To verify the condition,
we analyze the two metrics as follows.
• Coherence Time: It is well-known that Tc is inversely
proportional to the maximum Doppler frequency f1 as
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FIGURE 3. The relation among delay spread, waveform duration, and
coherence time. A Fourier matrix is selected as a reference signal of the
waveform of which the length is the number of transmit antenna Mt .

Tc ≈ 1
f1
=

c
fcv

with the relative velocity of HV to SV v
(HV and SV are driving in in opposite directions) and the
carrier frequency fc. When v = 200 (km/h) and fc = 5.9
(GHz), Tc approximately becomes 0.9153 (msec).

• Waveform Duration: We select a Mt by Mt Fourier
matrix as a codeword of the orthogonal waveform [34].
To guarantee the waveform’s orthogonality, the interval
between adjacent code transmissions should be larger
than the channel’s delay-spread, denoted by Td , enabling
to avoid inter-code interference (see Fig. 3). In other
words, we should satisfy Tw ≥ MtTd , whereMt refers to
the length of the codeword. Note the coverage of V2V
channel with fc = 5.9 (GHz) is less than 1 (km) [35],
which is translated to the maximum delay spread 103

c ≈

3.33 (µsec). Given Mt = 20, we obtain Tw ≥ 0.0667
(msec).

As a result, the condition in (3) is satisfied. It is worth
mentioning that the technique proposed in the sequel is based
on this one-way transmission of which the entire duration
is significantly shorter than conventional two-way position-
ing approaches (e.g., round-trip-time (RTT) based), enabling
accurate and stable positioning in highly dynamic environ-
ments.

C. ESTIMATIONS OF AoA, AoD, AND ToA
The sensing techniques in the sequel assume that the SV
has the knowledge of AoA, AoD, and ToA of each receive
NLoS signal path, say path p, denoted by

{
θp, ϕp, λp

}
where

p ∈ P = {1, 2, · · · ,P}. The knowledge can be acquired by
applying classical parametric estimation techniques briefly
described as follows.

1) Sampling: The received analog signal r(t) and the
waveform vector s(t) are sampled at the Nyquist rate Bs
and converted to the digital signal vectors r[n] and s [n],
respectively.

2) Matched Filter: The sequence of r[n] is matched-
filtered by s [n]. The resultantMr×Mt coefficient matrixY[z]
is given by Y[z] =

∑
n r[n]s

H [n− z]. The sequence of ToAs
{λp} can be estimated by detecting peak points of the matrix
norm ‖Y[z]‖, denoted by {zp}, which can be converted into
time by multiplication with the time resolution 1

Bs
. One peak

point can contain multiple signal paths if the signals arrive
within the same sampling interval.

3) Multi-Path Estimation: Given {Y[zp]}, AoAs and
AoDs are jointly estimated by scanning two-dimensions

angular domains by leveraging the prior knowledge of a(ϕ)
in (1) and b(θ ) in (2). It is called a 2D-multiple signal classi-
fication (MUSIC) algorithm, which is the most widely used
subspace-based detection method. The estimated AoA {θp}
and AoD {ϕp} are paired with the corresponding estimated
ToA {λp}, which jointly characterize path p.
It is worth mentioning that only a small portion of signal

paths can be observed among the entire ones because some of
them experience severe signal attenuations due to path-loss
and small-scale fading and their received signal strengths are
not enough to estimate AoD/AoA accurately.

D. HIDDEN VEHICLE SENSING PROBLEM
The SV attempts to sense the HV’s position, size, and orien-
tation, which can be obtained by using parameters of AoA
θ , AoD ϕ, orientation ω, distances d and ν, and location of
multi-cluster HV array.4 Noting the first two parameters are
obtained based on the estimations in Section II-C and the goal
is to estimate the remaining parameters.

III. SENSING HIDDEN VEHICLE WITH
A SINGLE-CLUSTER ARRAY
In this section, we consider the scenario that a single-cluster
array is deployed at HV. Then this section focuses on design-
ing the sensing techniques for SV to detect 1) the HV position
(i.e., position of the single-cluster array), specified by the
coordinate p = (x, y), and 2) the HV orientation, specified
by ω (see Fig. 2). Based on the multi-path-geometry, p is
described as{

x = νp cos(θp)− (dp − νp) cos(ϕp + ω),
y = νp sin(θp)− (dp − νp) sin(ϕp + ω),

∀p ∈ P. (4)

The prior knowledge that SV has for sensing is the parameters
of P NLoS paths estimated as described in Section II-C.
Each path, say path p, is determined by the parametric set
{θp, φp, λp} and orientation ω as (4) shows. Then given the
equations in (5), the sensing problem for the current scenario
reduces to ⋃

p∈P
{θp, φp, λp} ⇒ {p, ω}. (5)

A. SENSING FEASIBILITY CONDITION
In this subsection, it is shown that for the HV-sensing to be
feasible, there should exist at least four NLoS paths. To this
end, by using (4) and multi-path-geometry, we can obtain the
following system of equations:

xp = νp cos(θp)− (dp − νp) cos(ϕp + ω)
= ν1 cos(θ1)− (d1 − ν1) cos(ϕ1 + ω),

yp = νp sin(θp)− (dp − νp) sin(ϕp + ω)
= ν1 sin(θ1)− (d1 − ν1) sin(ϕ1 + ω),

p ∈ P, (E1)

4The proposed sensing technique is to exploit the geometry relation
between a few channel parameters of a signal path i.e., TDoA/AoA/AoD,
which is analogy to transmitting a reference signal for conventional wireless
channel estimation (e.g., [36]).

169404 VOLUME 7, 2019



K. Han et al.: Hidden Vehicle Sensing via Asynchronous V2V Transmission: Multi-Path-Geometry Approach

where (xp, yp) denotes the coordinate characterized via path p.
The number of equations in E1 is 2(P − 1), and the above
system of equations has a unique solution when the dimen-
sions of unknown variables are less than 2(P − 1). Since
the AoAs {θp} and AoDs {ϕp} are known, the number of
unknowns is (2P + 1) including the propagation distances
{dp}, {νp}, and orientation ω. To further reduce the number of
unknowns, we use the propagation time difference between
signal paths also known as TDoAs, denoted by {ρp}, which
can be obtained from the difference of ToAs as ρp = λp− λ1
where ρ1 = 0. The propagation distance of signal path p, say
dp, is then expressed in terms of d1 and ρp as

dp=c(λp − 0) = c(λ1 − 0)+ c(λp − λ1) = d1 + cρp, (6)

for p ∈ {2, · · · ,P}. Substituting the above (P− 1) equations
into E1 eliminates the unknowns {d2, · · · , dP} and hence
reduces the number of unknowns from (2P + 1) to (P + 2).
As a result, E1 has a unique solution when 2(P− 1) ≥ P+ 2.
Proposition 1 (Sensing Feasibility Condition): To sense

the position and orientation of a HV equipped with a single-
cluster array, at least four NLoS signal paths are required:
P ≥ 4.
Remark 2 (Asynchronization): Recall that one sensing

challenge is asynchronization between HV and SV repre-
sented by 0, which is a latent variable we cannot observe
explicitly. In our proposed approach, based on the fact that all
NLoS paths experience the same synchronization gap, we do
not need to consider 0 in the positioning procedure.

B. HIDDEN VEHICLE SENSING WITHOUT NOISE
Consider the case of a high receive signal-to-noise ratio
(SNR) where noise can be neglected, i.e., the estimations of
AoA/AoD/ToA {θp, φp, λp} are perfect. Then the HV-sensing
problem in (5) is translated to solve the system of equa-
tions in E1. One challenge is that the unknown orientation
ω introduces nonlinear relations, namely cos(ϕp + ω) and
sin(ϕp + ω), in the equations. To overcome the difficulty,
we adopt the following two-step approach: 1) estimate the
correct orientation ω∗ via its discriminant introduced in the
sequel; 2) given ω∗, the equation becomes linear and thus can
be solved via LS estimator, giving the position p∗. To this end,
the equations in E1 can be arranged in a matrix form as

A(ω)z = B(ω), (E2)

where z = (v, d1)T ∈ R(P+1)×1 and v = {ν1, · · · , νP}. For
matrix A(ω), we have

A(ω) =
[
A(cos)(ω)
A(sin)(ω)

]
∈ R2(P−1)×(P+1), (7)

where A(cos)(ω) is
a(cos)1 −a(cos)2 0 · · · 0 a(cos)1,2

a(cos)1 0 −a(cos)3 · · · 0 a(cos)1,3
...

...
...

. . .
...

...

a(cos)1 0 0 · · · −a(cos)P a(cos)1,P

 (8)

with a(cos)p = cos(θp) + cos(ϕp + ω) and a
(cos)
1,p = cos(ϕp +

ω) − cos(ϕ1 + ω), and A(sin)(ω) is obtained by replacing all
cos operations in (8) with sin operations. Next,

B(ω) =
[
B(cos)(ω)
B(sin)(ω)

]
∈ R2(P−1)×1, (9)

where B(cos)(ω) = [cρ2 cos(ϕ2 + ω), cρ3 cos(ϕ3 +
ω), · · · , cρP cos(ϕP + ω)]T, and B(sin)(ω) is obtained by
replacing all cos in B(cos)(ω) with sin.
1) Computing ω∗: Note that E2 becomes an over-

determined linear system of equations if P ≥ 4 (see Proposi-
tion 1), providing the following discriminant of orientationω.
Since the equations in (7) are based on the geometry of multi-
path propagation and HV orientation as illustrated in Fig. 2,
there exists a unique solution for the equations. Then we
can obtain from (7) the following result, which is useful for
computing ω∗.
Proposition 2 (Discriminant of Orientation): WithP ≥ 4,

the unique ω∗ exists when B(ω∗) is orthogonal to the left null
space of A(ω∗) denoted by null(A(ω∗)T) ∈ R2(P−1)×(P−3):

null(A(ω∗)T)TB(ω∗) = 0. (10)

Proof: See Appendix A.
Given this discriminant, a simple 1D search can be per-

formed over [0, 2π ] to find ω∗. Note that the computation
complexity of the 1D search is low, and the method can be
decomposed into multiple independent computations. As a
result, the time to find ω∗ can be significantly reduced, and
it is possible to run the searching algorithm in real-time
vehicular sensing scenarios.

2) Computing p∗: Given the ω∗, E2 can be solved by

z∗ =
[
A(ω∗)TA(ω∗)

]−1
A(ω∗)TB(ω∗). (11)

Then the HV position p∗ can be computed by substitut-
ing (10) and (11) into (6) and E1.

C. HIDDEN VEHICLE SENSING WITH NOISE
In the presence of significant channel noise, the estimated
AoAs/AoDs/ToAs contain errors. Consequently, HV-sensing
is based on the noisy versions of matrix A(ω) and B(ω),
denoted by Ã(ω) and B̃(ω), which do not satisfy the equations
in (E2) and (10). To overcome the difficulty, we develop
a sensing technique by converting the equations into min-
imization problems whose solutions are robust against
noise.

1) Computing ω∗: Based on (10), we formulate the follow-
ing problem to find the orientation ω:

ω∗ = argmin
ω

[
null(Ã(ω)T)TB̃(ω)

]
, (12)

Solving the problem relies on a 1D search over [0, 2π ].
2) Computing p∗: Next, given ω∗, the optimal z∗ can be

derived by using the LS estimator that minimizes the squared
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FIGURE 4. 3D propagation model.

Euclidean distance as

z∗ = argmin
z
‖Ã(ω∗)z− B̃(ω∗)‖2

=

[
Ã(ω∗)TÃ(ω∗)

]−1
Ã(ω∗)TB̃(ω∗), (13)

where ‖ · ‖ is a Euclidean norm. It is shown that (13) has the
same structure as (11). Last, the origins of all paths {(xp, yp)}
can be computed using the parameters {z∗, ω∗} as illustrated
in E1. Averaging these origins gives the estimate of the HV
position p∗ = (x∗, y∗) with x∗ = 1

P

∑P
p=1 xp and y∗ =

1
P

∑P
p=1 yp.

Remark 3 (Feasibility to LoS Vehicle Sensing): The pro-
posed technique is also feasible to sense a vehicle in LoS
since the LoS path is a special case of NLoS path considering
that one virtual scatterer is located on the LoS path. The
accuracy of LoS vehicle sensing is much better than that of
HV sensing because the received signal power of LoS is much
larger that of NLoS, providing more accurate AoA/AoD/ToA
estimations. The detailed comparison is given in Section VII.

D. EXTENSION TO 3D PROPAGATION
Consider the scenario that propagation paths lie in the 3D
Euclidean space instead of the 2D plane previously assumed.
As shown in Fig. 4, the main differences are the elevation
angles added to the AoAs, AoDs, and HV orientation. Spe-
cially, the AoA includes two angles: θ (azimuth) and ϑ (ele-
vation) and AoD consists ϕ (azimuth) and ψ (elevation). The
estimations of AoAs and AoDs in the 3Dmodel can be jointly
estimated via various approaches, e.g., MUSIC algorithm for
3D signal detection (see e.g., [37]). The HV orientation also
includes two unknowns: ω (azimuth) and % (elevation). The
coordinates of HV, denoted by p = (x, y, z)T, are given as


x = νp sin(ϑp) cos(θp)− (dp − νp) sin(ψp+ %) cos(ϕp+ ω),
y = νp sin(ϑp) sin(θp)− (dp − νp) sin(ψp + %) sin(ϕp + ω),
z = νp cos(ϑp)− (dp − νp) cos(ψp + %),

where ∀p ∈ P .

Similar to E1, the following system of equations is con-
structed for 3D propagation:

νp sin(ϑp) cos(θp)− (dp − νp) sin(ψp + %) cos(ϕp + ω)
=ν1sin(ϑ1) cos(θ1)− (d1− ν1) sin(ψ1 + %) cos(ϕ1 + ω),
νp sin(ϑp) sin(θp)− (dp − νp) sin(ψp + %) sin(ϕp + ω)
= ν1 sin(ϑ1) sin(θ1)− (d1 − ν1) sin(ψ1 + %) sin(ϕ1 + ω),
νp cos(ϑp)− (dp − νp) cos(ψp + %)
= ν1 cos(ϑ1)− (d1 − ν1) cos(ψ1 + %),

(E3)

where ∀p ∈ P .
It is shown that the number of equations and the number of

unknown variables are 3(P−1) and (P+3), respectively. For
the HV-sensing problem to be solvable, we require 3(P−1) ≥
P+ 3, which leads to the following proposition.
Proposition 3 (Sensing Feasibility Condition for 3D):

Consider the 3D propagation model. To sense the position
and orientation of HV provisioned with a single-cluster array,
at least three NLoS signal paths are required, i.e., P ≥ 3.
Compared with 2D propagation, the minimal number of

required signal paths is reduced because extra information
can be extracted from one additional dimension (i.e., eleva-
tion angles information of AoAs, AoDs) of each signal path.
A similar methodology described in Sections III-B and III-C
can be easily modified for 3D propagation by applying a 2D
search based discriminant to find ω and % over [0, 2π ] and
[0, π], respectively.

IV. SENSING HIDDEN VEHICLE WITH A MULTI-CLUSTER
ARRAY
The preceding section targets the scenario that the HV is
provisioned with a single-cluster array, allowing the SV to
sense the HV position and orientation. In the concerned HV
scenarios, the SV does not know whether the HV exists and
has no size information as prior knowledge. It calls for devel-
oping a technique to estimate the HV’s size together. To this
end, this section considers the scenario where a multi-cluster
array is deployed at HV so that SV can sense HV’s array
size (approximating the HV size) in addition to its position
and orientation. Sensing techniques are designed separately
for two cases, namely decoupled and coupled HV antenna
clusters, in the following sub-sections.

A. CASE 1: DECOUPLED HV ANTENNA CLUSTERS
Consider the case of decoupled HV antenna clusters via trans-
mission of orthogonal waveform sets over different clusters.
As a result, the SV is capable of grouping detected paths
according to their originating clusters. This simplifies theHV-
sensing in the sequel by building on the techniques in the
preceding section.

Recall that four HV antenna clusters are located at the
vertices of a rectangle with length L and width W that rep-
resents the HV shape (see Fig. 5). The vertex locations are
represented as {p(k) = (x(k), y(k))T}Kk=1. Different orthogonal
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FIGURE 5. Rectangular configuration of a 4-cluster HV array and the
corresponding multi-path propagations.

waveform set is assigned to each cluster, allowing SV with
prior knowledge on the waveform sets to differentiate the sig-
nals transmitted by different clusters. The more challenging
case where all clusters are assigned an identical waveform set
is studied in the next section. Let each path be ordered based
on HV array index such that P = {P (1),P (2),P (3),P (4)

}

whereP (k) represents the set of received signals from the k-th
HV antenna cluster. Note that the vertices determines the HV
size and their centroid that gives the HV position. Therefore,
the sensing problem can be represented as⋃4

k=1

⋃
p∈P (k)

{θp, φp, λp} ⇒ {{p(k)}4k=1, ω}. (14)

A naive sensing approach is to exploit the orthogonality of
multiple waveform sets to decompose the sensing problem
into separate positioning of HV antenna clusters using the
technique designed in the preceding section. In the following
subsection, we propose a more efficient sensing technique
exploiting the prior knowledge of the HV clusters’ rectangu-
lar topology.

1) SENSING FEASIBILITY CONDITION
Without loss of generality, assume that the received signal
from the first HV antenna cluster, indexed by the set P (1),
is not empty and 1 ∈ P (1). Based on the rectangular con-
figuration of {p(k)}4k=1 (see Fig. 5), a system of equations is
formed:

νp cos(θp)−(dp − νp) cos(ϕp + ω)+ ηp(ω,L,W )
= ν1 cos(θ1)− (d1 − ν1) cos(ϕ1 + ω),
νp sin(θp)−(dp − νp) sin(ϕp + ω)+ ζp(ω,L,W )
= ν1 sin(θ1)− (d1 − ν1) sin(ϕ1 + ω),

(E4)

where ηp(ω,L,W ) = 0, L ·cos(ω), L ·cos(ω)−W ·sin(ω), and
−W ·sin(ω) when p ∈ P (1), p ∈ P (2), p ∈ P (3), and p ∈ P (4),
respectively. ζp(ω,L,W ) is obtained via replacing all cos
and sin in ηp(ω,L,W ) with sin and − cos, respectively. The
number of signal paths is given as P = |P| =

∑4
k=1 |P (k)

|.
Compared with E1, the number of equations in (E4) is the
same as 2(P − 1) while the number of unknowns increases
from (P + 2) to (P + 4) since L and W are also unknown.

Consequently, E4 has a unique solution when 2(P − 1) ≥
P+ 4.
Proposition 4 (Sensing Feasibility Condition): Consider

the scenario that the HV is provisioned with a 4-cluster array
and orthogonal waveform sets are transmitted from different
clusters. To sense the position, size, and orientation of the HV,
at least six paths are required: P ≥ 6.
Remark 4 (Advantage of Array-Topology Knowledge):

The separate positioning of individual HV antenna clusters
requires at least 16 NLoS paths (see Proposition 1). On the
other hand, the proposed sensing technique reduces the num-
ber of required paths to only 6 by exploiting the prior knowl-
edge of the rectangular configuration of antenna clusters.

2) HIDDEN VEHICLE SENSING
Consider the case where channel noise is negligible. The
system of equations in E4 can be rewritten in a compact
matrix form:

Â(ω)ẑ = B(ω), (E5)

where ẑ = (v, d1,L,W )T ∈ R(P+3)×1 with v following the
index ordering ofP , andB(ω) is given in (9). Thematrix Â(ω)
can be decomposed as

Â(ω) =
[
A(ω) L(ω) W(ω)

]
∈ R2(P−1)×(P+3), (15)

where A(ω) follows (7). Moreover, L(ω) ∈ R2(P−1)×1 is
given as [L(cos)(ω),L(sin)(ω)]T with

L(cos)(ω) = [0, · · · , 0︸ ︷︷ ︸
|P (1)|−1

,− cos(ω), · · · ,− cos(ω)︸ ︷︷ ︸
|P (2)|+|P (3)|

, 0, · · · , 0︸ ︷︷ ︸
|P (4)|

]T,

where |P (k)
| counts the number of elements in P (k) and

L(sin)(ω) is obtained by replacing all cos(ω) in L(cos)(ω) with
sin(ω).W(ω) can be written as [W(sin)(ω),W(cos)(ω)]T where

W(sin)(ω) = [ 0, · · · , 0︸ ︷︷ ︸
|P (1)|+|P (2)|−1

, sin(ω), · · · , sin(ω)︸ ︷︷ ︸
|P (3)|+|P (4)|

]T,

and W(cos)(ω) is obtained by replacing all sin in W(sin)(ω)
with − cos.

1) Computing ω∗: Noting that E5 is over-determined when
P ≥ 6, the resultant discriminant of the orientation ω is
similar to that in Proposition 2 and given as follows.
Proposition 5 (Discriminant of Orientation): With P ≥

6, the unique ω∗ exists when B̂(ω∗) is orthogonal to the
null column space of Â(ω∗) denoted by null(Â(ω∗)T) ∈
R2(P−1)×(P+1):

null(Â(ω∗)T)TB̂(ω∗) = 0. (16)

Given this discriminant, a simple 1D search can be performed
over the range [0, 2π ] to find ω∗.
2) Computing {p(k)}4k=1: Given the ω∗, E5 can be solved

by

ẑ∗ =
[
Â(ω∗)TÂ(ω∗)

]−1
Â(ω∗)TB̂(ω∗). (17)
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FIGURE 6. Different approaches of HV-sensing for the scenario of a 4-cluster HV array and an identical waveform set for transmission by
different HV antenna clusters.

The positions of HV antenna clusters, say {p(k)}4k=1, can be
computed by substituting (16) and (17) into (6) and (E4).
Extending the above sensing technique to the case with chan-
nel noise is straightforward by modifying (16) to a minimiza-
tion problem as in Section III-C.

B. CASE 2: COUPLED HV ANTENNA CLUSTERS
It is desired to reduce the number of orthogonal waveform
sets used by a HV so as to facilitate multi-access by dense
HVs. Thus, in this section, we consider the resource-limited
case of coupled HV antenna clusters where an identical wave-
form set is shared and transmitted by all HV antenna clusters.
The design of HV-sensing is more challenging since the SV is
incapable of grouping the signal paths according to their orig-
inating HV antenna clusters. For tractability, the objectives of
HV-sensing for this scenario is redefined as: 1) positioning
of the centroid of HV multi-cluster array denoted by p0 =

(x0, y0); 2) sensing the HV size by estimating the maximum
distance between HV antenna clusters and p0, denoted by
R = maxk |p(k) − p0|; 3) estimating the HV orientation ω.
It follows that the sensing problem can be formulated as

⋃
p∈P

{θp, φp, λp} ⇒ {p0,R, ω}. (18)

To solve the problem, we adopt the following two-step
approach:
Step 1: By assuming that all signals received at SV originate
from the same transmitting location, it is treated as the HV
array centroid and estimated together with the orientation ω

using the technique in Section III.
Step 2: Givenω and p0, the size parameter R can be estimated
by solving optimization problems based on bounding the HV
array by either a disk or a box.
The techniques for Step 2 are designed in following

sub-sections.

1) HV SIZE SENSING BY DISK MINIMIZATION
Note that the HV array is outer bounded by a disk. Then the
problem of estimating the HV size parameter R at SV can
be translated into the optimization problem of minimizing
the bounding-disk radius. As shown in Fig. 6(a), we define
a sensing disk C(p0, r) centered at the estimated centroid p0

with the radius r :

C(p0, r) =

{
(x, y)| (x − x0)2 + (y− y0)2 ≤ r2

}
. (19)

A constraint is applied that all HV antennas, or equivalently
the origins of all signal paths received at the SV, should
lie within the disk. Then estimating the HV size R can be
translated into the following problem of disk minimization:

R = min
d1,r,{νp,xp,yp}

r

s.t.
(
xp − x0

)2
+

(
yp−y0

)2
≤ r2, 0 < νp < d1 + cρp,

(xp, yp) satisfies (4) with dp = d1 + cρp, ∀p ∈ P,

(E6)

where the first constraint is as mentioned above and the sec-
ond represents the distance after the reflection νp cannot
exceed the total propagation distance dp represented in terms
of d1 and TDoA ρp as dp = d1 + cρp with {ρp} being the
TDoAs [see (6)]. The values of {xp, yp} are directly calculated
by plugging the optimized d1 and {νp} into E1, corresponding
to the optimal radius r∗ according to the first constraint of E6.
One can observe that Problem E6 is a problem of second-
order cone programming (SOCP). Thus, it is a convex opti-
mization problem and can be efficiently solved numerically
e.g., using the efficient MatLab toolbox such as CVX.
Analyzing the problem structure can shed light on the num-

ber of required paths for HV-sensing in the current scenario.
The existence and uniqueness of the optimal solution r∗ for
Problem E6 can be explained intuitively by considering the
feasible range of d1. Let Sp(r) represent the feasible range of
the optimization variable d1 for path p when the disk radius
is given as r :

Sp(r) = {d1 |all constraints for path p in E6 } . (20)

Then the feasible range of d1, denoted by S(r), is the intersec-
tion of the feasible range of d1 for every path p, i.e., S(r) =⋂

p∈P Sp(r). This is because all the paths share the same d1
and thus the feasible range of d1 should satisfy all paths’
constraints in E6 simultaneously. Next, it is straightforward
to show the following monotonicity of S(r): S(r1) ⊆ S(r2)
if r1 ≤ r2 with S(0) = ∅. Based on the monotonicity,
there always exists an optimal and unique solution r∗ for
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Problem E6 such that S(r) 6= ∅ if r ≥ r∗ or otherwise
S(r) = ∅. In other words,

r∗ = inf {r > 0 |S(r) 6= ∅} = sup {r > 0 |S(r) = ∅} .

The value r∗ corresponds to the critical case where there
exist two feasible range sets Sp(r∗) and Sp′ (r∗) only contact
each other at their boundaries such that S(r) contains a single
feasible point d∗1 that corresponds to r∗. This leads to the
following proposition.
Proposition 6 (HV Size Sensing by Disk Minimization):

Given the solution r∗ for Problem E6, there always exist at
least two paths, say p1 and p2, whose originating positions lie
on the boundary of the minimized disk C(p0, r∗):(

xp1 − x0
)2
+
(
yp1 − y0

)2
=
(
xp2 − x0

)2
+
(
yp2 − y0

)2
= (r∗)2. (21)

Instead of the earlier intuitive argument, Proposition 6 can
be proved rigorously using the Karush-Kuhn-Tucker (KKT)
conditions as shown in Appendix B.
Remark 5 (Feasible Condition of HV Sensing byDiskMin-

imization):Though two paths are required to determine the
optimal disk radius R = r∗ based on Proposition 6, at least
four paths are required for estimating the required centroid p0
(see Proposition 1).
Remark 6 (Extension to 3D Propagation): The extension

to 3D propagation model in Section III-D is straightforward
by using a sphere instead of a disk [see Fig. 6(b)]. The
resultant sphere minimization problem has the same form
as Problem E6 except that the first constraint modified as(
xp − x0

)2
+
(
yp − y0

)2
+
(
zp − z0

)2
≤ r2, ∀p ∈ P , where

the centroid p0 = (x0, y0, z0) is estimated using the technique
in Section III-D. Again, the problem can be optimally solved
since it still follows SOCP structure.

2) HV SIZE SENSING BY BOX MINIMIZATION
In the preceding sub-section, the HV size is estimated by
bounding the HV array by a disk and then minimizing it.
In this sub-section, the disk is replaced by a box and the
HV size estimation is translated into the problem of box
minimization. Compared with disk minimization, the current
technique improves the estimation accuracy since a vehicle
typically has a rectangular shape. Let L and W be the length
and width of the rectangular where the HV antenna clusters
are placed at its vertices (see Fig. 6(c)). Then the problem of
HV size sensing is to estimate both L and W . Recall that the
HV array centroid p0 and orientation ω are estimated in Step
1 of the proposed sensing approach as mentioned. Given p0
and ω, we define a sensing box for bounding the HV array,
denoted as B(p0, ω, `,w), as an ω-rotated rectangle centered
at p0 = (x0, y0) and having the length ` and width w:

B(p0, ω, `,w) =
{
(x, y)

∣∣∣∣−1
2

[
`,w

]T
� R(ω)

[
x − x0, y− y0

]T
�

1
2

[
`,w

]T}
,

(22)

where R(ω) is the counterclockwise rotation matrix with the
rotation angle ω given as

R(ω) =
[
cos(ω) sin(ω)
− sin(ω) cos(ω)

]
, (23)

and � represents an element-wise inequality. Like disk min-
imization in the previous subsection, finding the correct L
and W is transformed into the following box minimization
problem:

{L,W } = arg min
d1,`,ω,{νp,xp,yp}

(`2 + w2)

s.t. −
1
2

[
`,w

]T
� R(ω)

[
xp − x0, yp − y0

]T
�

1
2

[
`,w

]T
,

0 < νp < d1 + cρp, ∀p ∈ P, (E7)

where the first constraint represents that all origins of signal
paths {xp, yp} should be inside B(p0, ω, `,w) defined in (22)
and the second one is the same as in E6. Problem E7 can be
solved by quadratic programming (QP), which is a convex
optimization problem and can be efficiently solved using a
software toolbox such as MatLab CVX. A result similar to
that in Proposition 6 can be obtained for HV size sensing by
box minimization as shown below.
Proposition 7 (HV Size Sensing by Box Minimization):

Given the solution {`∗,w∗} for ProblemE7, there always exist
at least two paths, say p1 and p2, whose originating positions
lie on two different vertices of the minimized box:

R(ω)
[
x∗p1 − x

∗
p2 , y

∗
p1 − y

∗
p2

]T
=
[
`∗,w∗

]T or [−`∗,w∗]T or [`∗, 0]T or [0,w∗]T . (24)

Proof: See Appendix C
Remark 7 (Feasible Condition of HV-Sensing by Box Min-

imization):A similar remark as Remark 5 for disk minimiza-
tion also applies to the current technique. Specifically, though
two paths are required to determine the optimal box length
L = `∗ and width W = w∗ based on Proposition 7,
at least four paths are required for estimating the required HV
centroid p0 and orientation ω (see Proposition 1).
Remark 8 (Sensing Box Minimization for Decoupled

Antenna Clusters): The technique of HV size sensing by box
minimization developed for the case of coupled HV antenna
clusters can be also modified for use in the case of decoupled
clusters. Roughly speaking, the modified technique involves
separation minimization of four boxes corresponding to the
positioning of four antenna clusters. As the modification is
straightforward, the details are omitted for brevity. The resul-
tant advantage with respect to the original sensing technique
proposed in Section IV-A is to reduce the minimum number
of required paths from 6 (see Proposition 4) to 4.
Remark 9 (Extension to 3D Propagation): Similar to

Remark 6 for disk minimization, the technique of HV size
sensing by box minimization originally designed for 2D
propagation can be extended to 3D propagation model by
using a cuboid instead of a box, yielding the problem of
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FIGURE 7. Proposed solutions for coping with insufficient number of
propagation paths.

cuboid minimization as illustrated in Fig. 6(d). Compared
with E7, the objective function of the cuboid minimization
is `2+w2

+h2 where the new variable h is added to represent
the height of the cuboid. In addition, the first constraint in E7
is modified as

−
1
2

[
`,w, h

]T
� R3D(ω, %)

[
xp − x0, yp − y0, zp − z0

]T
�

1
2

[
`,w, h

]T
, ∀p ∈ P (25)

where R3D(ω, %) is the 3D counterclockwise rotation matrix
with the rotation angles ω and % as

R3D(ω, %) =

cos(ω) − sin(ω) cos(%) sin(ω) sin(%)
sin(ω) cos(ω) cos(%) − cos(ω) sin(%)

0 sin(%) cos(%)

 ,
(26)

and the centroid p0 = (x0, y0, z0) can be obtained by the
technique in Section III-D. The cuboid minimization is still
QP and the solution approach is similar to that for the 2D
counterpart.

V. COPING WITH INSUFFICIENT MULTI-PATH
The HV-sensing techniques designed in the preceding sec-
tions require at least four propagation paths to be effec-
tive. In practice, it is possible to happen that the number of
observed (i.e., detectable) paths may be insufficient, i.e., P <
4, due to either sparse scatterers or the fact that most paths
are severely attenuated. To address this practical issue, two
solutions are proposed in the following sub-sections, called
sequential path combining and random directional beam-
forming. For simplicity, we focus on the case of single-cluster
HV arraywhile the extension to the case ofmulti-cluster array
is straightforward.

A. SEQUENTIAL PATH COMBINING
As shown in Fig. 7, the technique of sequential path com-
bining implemented at the SV merges paths from repeated
transmissions of HV till a sufficient number of paths is
identified for the purpose of subsequent HV-sensing. Let Q
denote the number of HV’s repetitive transmissions with a
constant interval denoted by 1. The interval is chosen to
be much larger than the coherence time, enabling SV to

differentiate the arrival paths according to their transmission
time instants. In addition, the total transmission duration Q1
should be sufficiently small enough to guarantee the constant
velocities of HV and SV within the duration. Assume that the
relative orientation of driving direction and velocity of HV
with respect to SV, namely ω and v, remain constant within
the entire duration ofQ intervalsQ1. LetPq denote the set of
observed paths of the q-th transmission. Then the following
system of equations are formed:
νp cos(θp)− (dp − νp) cos(ϕp + ω)+ v(q− 1) cos(ω)
= ν1 cos(θ1)− (d1 − ν1) cos(ϕ1 + ω),
νp sin(θp)− (dp − νp) sin(ϕp + ω)+ v(q− 1) sin(ω)
= ν1 sin(θ1)− (d1 − ν1) sin(ϕ1 + ω).

where p ∈ Pq and q = 1, 2, · · · ,Q. They can be solved
following a similar procedure as in Section IV-A. Let P1:q be
the total number of paths identified due to the q transmissions,
i.e., P1:q = |P1|+|P2|+· · ·+|Pq|. Noting that the number of
equations above is 2(P1:q − 1) and the number of unknowns
are (P1:q+3) including {νp}, d1, ω and v. As a result, the con-
dition for the SV collecting sufficient paths for HV sensing
is 2(P1:q − 1) ≤ (P1:q + 3) or equivalently P1:q ≥ 5. So path
combining over multiple sequential transmissions overcomes
the practical limitation of insufficient paths.

B. RANDOM DIRECTIONAL BEAMFORMING
To further enhance the effectiveness of sequential path com-
bining, a directional beam can be randomly steered at HV
over sequential transmissions. Its purpose is to reveal some
paths that are otherwise hidden to SV due to severe atten-
uation. The beam width can be set as ranging from 90◦ to
30◦ with gain ranging from 3 dB to 10 dB, which helps reach
faraway scatterers by focusing the transmission power in their
directions and thereby mitigating path loss [38]. Note that a
single trial of randomly steered beam may not find enough
paths. Thus, it is important to combine the technique with
sequential path combining designed in the preceding sub-
section for the former to be effective. Their integrated opera-
tion is illustrated in Fig. 7 and its effectiveness is verified by
simulation in the sequel.

VI. EXTENSION TO MULTI-VEHICLE VEHICULAR
POSITIONING
The current two-vehicle based positioning scenarios can
be extended to multi-vehicle scenario straightforwardly by
jointly using the following two approaches.
• Waveform Pool & Sensing: Interference-free multi-
vehicle sensing is possible if multiple orthogonal wave-
forms are given, called a waveform pool. The list of
waveforms in the pool is periodically broadcast by a
road side unit (RSU), and each vehicle knows the list.
Before selecting a waveform, the usages of all wave-
forms in the list are sensed. It is analogy to a carrier
sensing mechanism in WiFi communication, and it is
thus called a waveform sensing. To avoid waveform
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TABLE 2. Simulation settings.

collision, one waveform is selected in the list except the
ones being used by nearby vehicles.

• Geo-Zoning: In spite of using waveform sensing, more
than two vehicles could select the samewaveform simul-
taneously if they are out of their sensing coverage,
named as hidden vehicle problem (HVP). To avoid
HVP, a spatial isolation should be created where vehi-
cles in different locations would be limited to select
the resources for transmission from a certain time-
frequency set, based on their absolute geographical loca-
tion. In 3GPP specification, it is called geo-zoning or
zone-based resource allocation [39].

VII. SIMULATION RESULTS
In this section, the performance of the proposed vehicu-
lar sensing techniques are evaluated by realistic simulation.
Consider the V2V channel model. We adopt the geometry-
based stochastic channel model given in [31] for modeling
the practical scatterers distribution and V2V propagation
channel, which has been validated by real measurement data.
Two types of scatterers, namely mobile scatterers (e.g., from
moving vehicles) and static scatterers (e.g., from road signs
and buildings), are simulated. As illustrated in Fig. 8(a), in the
highway scenario, most of the scatterers aremobile scatterers.
On the other hand, in the rural scenario illustrated in Fig. 8(b),
the scatterers include vehicles on the road as well as relatively
denser stationary objects off the road. The locations of mobile
and static scatterers are randomly distributed over the entire
area depending on their densities described in [31, Table 1].
Given the scatterer location, the corresponding AoA andAoD
are determined without explicit distribution. If more than two
scatterer locations are close to each other, the correspond-
ing paths are unresolvable due to similar AoAs and AoDs.
Instead, they are observed as a single signal path with higher
power. We set the relative velocity and the resultant Doppler
shift as zero unless specified since its effects on positioning
accuracy are separately verified in Fig. 14. The key simula-
tion parameters and their values are summarized in Table 2
unless stated otherwise.We useMatLab and its CVX tool box
for solving optimization problems and simulations.

A. VEHICULAR POSITIONING
The metric for measuring positioning accuracy is defined as
the average Euclidean squared distance of estimated posi-
tions of vehicle antenna clusters to their true locations:
1
4

∑4
k=1 ‖p∗(k)

− p(k)‖2, named average positioning error.
Note that the metric also indirectly measures the accuracy of

FIGURE 8. Two typical driving scenarios considered in simulation.

estimated vehicle size and orientation that are determined by
the clusters positions.
Fig. 9 shows the performance of the proposed vehicu-

lar sensing techniques in the 2D propagation model. The
curves of average positioning error versus varying number of
observed signal paths and inter-vehicle distance are plotted
in Fig. 9(a) and 9(b), respectively. For the case of decoupled
antenna clusters using different orthogonal waveform sets,
the LS estimator given in Section IV-A is applied, which is
feasible if P ≥ 6 (see Proposition 4). On the other hand,
for the case of coupled clusters, the technique of sensing
box minimization in Section IV-B.2 is used requiring the
number of observed paths P ≥ 4. Several key observations
can be made as follows. First, from Fig. 9(a), receiving more
observed paths at SV can dramatically decrease the position-
ing error and the positioning accuracy is significantly higher
in the case of decoupled clusters than the other case. Second,
the positioning accuracy in the rural scenario is better than
that in the highway scenario due to the following two reasons:
1) the signal propagation loss in the highway scenario is
higher than that in the rural counterpart as typically longer
distance between vehicles and scatterers adds to the difficulty
of accurate sensing; 2) more paths exist in the rural scenario
due to denser scatterers, which help improve the position-
ing accuracy.
Next, in Fig. 9(b), it is shown that the average positioning

error increases as the inter-vehicle distance grows because
larger path loss degrades sensing performance. The gap of
positioning error between the highway and rural scenarios
increases with the inter-vehicle distance as the path loss scales
up faster in the former than the latter.
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FIGURE 9. Vehicular sensing accuracy under different number of signal
paths and the inter-vehicle distance.

B. COMPARISON BETWEEN 2D AND 3D PROPAGATIONS
Average positioning errors for 2D and 3D propagations are
compared in Fig. 10 for varying number of signal paths and
inter-vehicle distance. We simulate the case that vehicle uses
single-cluster array for transmission. First of all, the main
trends shown in Fig. 10 are same as plotted in Fig. 9. Specif-
ically, according to Fig. 10(a), the positioning for 2D and 3D
propagation are feasible when P ≥ 4 and P ≥ 3, respectively,
aligned with Propositions 1 and 3, respectively. Next, it is
observed from both Fig. 10(a) and (b) that, compared with 2D
propagation, the positioning accuracy for the 3D case is worse
and the error gap between the highway and rural scenarios
becomes larger. Due to relatively low scatterer height com-
pared with the inter-vehicle distance, most elevation angles
are around π

2 , and the resultant positioning accuracy tends
to be sensitive to noisy angle detection. In addition, angle
detection for 3D propagation is less accurate on the highway
due to the larger propagation loss.

C. VEHICULAR SIZE SENSING
In the preceding results, we assume decoupled antenna clus-
ters by using multiple orthogonal waveform sets for trans-
mission. Next, we consider the case of coupled clusters and
evaluate the performance of the vehicle size sensing tech-
niques developed in Section IV-B. To this end, we define a
sizing error as the area difference between the estimated size
[sensing disk in (19) or sensing box in (22)] and the real one.

FIGURE 10. Comparison of positioning accuracy between 2D and 3D
propagations.

Fig. 11 plots the average sizing errors of the disk and box
minimizations versus the inter-vehicle distance. Box mini-
mization provides better sizing performance by exploiting the
antenna clusters array configuration that is neglected by disk
minimization.

Besides, we deploy more antennas per cluster or using
larger transmission bandwidth to further improve the size
sensing accuracy. It is observed in Fig. 11(a) that the average
sizing errors can be reduced by 1.5−3 (m) for NLoS case and
1 − 2 (m) for LoS case, respectively, by deploying 10 more
antennas per cluster. In Fig. 11(b), it is shown that the average
sizing errors can be reduced by 1.2 − 2 (m) for NLoS case
and 1 − 2 (m) for LoS case, respectively, by using 50 MHz
transmission bandwidth more.

D. THE EFFECTS OF A LoS PATH, TRANSMISSION POWER,
AND RELATIVE VELOCITY
Fig. 12 verifies the feasibility of the proposed technique
for sensing a vehicle in the LoS condition. It is shown
that the LoS path contributes to reducing positioning
errors in both 2D and 3D propagation models due to its
stronger signal strength than other NLoS paths, leading to
more accurate TDoA/AoA/AoD detections as mentioned in
Remark 3.

As observed in the graphs so far, the positioning accu-
racy is improved when the number of observed signal
paths increases, which can be achieved by using higher
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FIGURE 11. Effect of inter-vehicle distance on average sizing accuracy.

FIGURE 12. Comparison of positioning accuracy between the cases with
and without LoS path.

transmission power. Fig. 13 validates its effect on positioning
accuracy. It is shown that the positioning error can be reduced
with higher transmission power because it helps the SV to
detect more signal paths.

Fig. 14 shows the effect of HV-SV relative velocity on
positioning accuracy. A more significant Doppler shift due
to higher relative speed causes frequent variations of chan-
nel parameters such as AoA, AoD, and ToA. Therefore,
the perfect orthogonality of the transmitted waveforms is
not perfectly guaranteed, which results in the degradation
of positioning accuracy. Nevertheless, it is shown that the
degeneration is marginal with the practical range of velocity
[less than 200 (km/h)].

FIGURE 13. Effect of signal transmission power on positioning accuracy.

FIGURE 14. Effect of HV-SV relative velocity on positioning accuracy.

E. COPING WITH INSUFFICIENT MULTI-PATH
We evaluate the performance of the integrated solutions of
sequential path combining and random directional beam-
forming both proposed in Section V in the case where scat-
terers are sparse and there are insufficient paths for vehicular
sensing. The vehicle is equipped with a single cluster antenna
array and transmits Q repetitive signals with the transmission
interval 1 = 0.2 (sec). The setting of 1 satisfies the two
requirements explained in Sec. V-A, when considering the
maximum coverage of V2V transmission 1 km and assuming
that the vehicle’s velocity is not changed within 2 seconds.
We consider the random beamforming with the beam-
width 2π

Q and Q time instants sequential combining with
Q = {1, 2, 4, 8}. Note that Q = 1 corresponds to isotropic
transmission and serves as the benchmark. The metric of
success sensing probability is defined as the probability
that the feasible condition of positioning is satisfied after
applying sequential path combining and random directional
beamforming. For example, in the case of isotropic trans-
mission, at least 4 paths should be detected at each time
instant. On the other hand, in case of random beamforming
with sequential path combining, sensing is feasible when the
aggregate number of paths over Q time instants should be
larger than 5 (see Section V-A). In Fig. 15(a), it is observed
that the sensing success probability increases and approaches
to one as Q increases. Moreover, Fig. 15(b) shows that
the positioning accuracy is improved as sharper beam is
used (Q increases) since the angle detections become more
accurate.

VOLUME 7, 2019 169413



K. Han et al.: Hidden Vehicle Sensing via Asynchronous V2V Transmission: Multi-Path-Geometry Approach

FIGURE 15. Coping with insufficient multi-path by sequential path
combining and random directional beamforming.

F. MULTI-BOUNCE SCATTERING
Recall that our positioning technology is developed
under the assumption of single-bounce scattering (see
Assumption 1). In rich scattering scenarios, however, signals
are likely to reflect more than two bounces, defined as multi-
bounce scattering, which results in the degradation of the
positioning accuracy because the triangular geometry intro-
duced in Section II-A is not satisfied any more. To investigate
this effect, we consider an additional simulation scenario
where single-bounce and multi-bounce scattering coexist.
The multi-bounce signal paths are more attenuated than
single-bounce paths by multiplying the receive power with
an additional reflection coefficient. Fig. 16(a) presents the
positioning error with respect to the fraction of multi-bounce
signal paths, showing that the performance degradation is
reduced as the additional reflection coefficient reduces. The
reason is that multi-bounce paths usually have insufficient
signal strengths, making the SV difficult to observe them.
As a result, the dominant observed paths are single-bounce
signals from which the AoA, AoD, and ToA are accu-
rately estimated, yielding the acceptable positioning per-
formance with marginal degradation. Fig. 16(b) shows that
the positioning error can be significantly decreased when
more number of paths are observed. For instant, in case
with the reflection loss of multi-bounce signals being 0.1,
the positioning error is less than 0.6 (m) when 12 paths are
observed.

FIGURE 16. Effects of the multi-bounce scattering on the positioning
accuracy under different reflection coefficients.

VIII. CONCLUDING REMARKS
This work presents the technologies for sensing a HV, namely
its position, orientation, and size by relying on V2V trans-
mission and exploiting multi-path-geometry. Different tech-
niques have been designed to support tradeoffs between the
sensing accuracy and varying practical requirements in terms
of bandwidth, signaling complexity, and array configuration.
We have also addressed practical issue of insufficient multi-
path for HV-sensing via developing effective techniques
exploiting path randomness in time domain. The proposed
technique can be used to assist the current vehicular sensing
technologies via giving the vehicle capability to sense HVs.
This work opens a new area of HV-sensing and points to
many promising research topics on advanced HV-sensing
such as velocity detection by estimating Doppler frequencies
and simultaneous sensing of multiple HVs.

APPENDIX
A. PROOF OF PROPOSITION 2
The system of linear equations in E2 has a unique solution if
and only if both ranks of its coefficient matrix A(ω) and its
augmentedmatrix [A(ω)|B(ω)] are equal to (P+1), according
to Rouché-Capelli theorem (see pp. 56 − 57 of [33]). When
P ≥ 4,A(ω) becomes a tall matrix, namely, 2(P−1) > P+1.
Since every column ofA(ω) is independent, it is thus straight-
forwardly shown that rank(A(ω)) is (P+1). Next, noting that
the number of columns in the augmented matrix [A(ω)|B(ω)]
is (P + 2), rank([A(ω)|B(ω)]) with an arbitrary ω is (P + 2)
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unless B(ω) should be in the subspace of AT(ω). Therefore,
B(ω∗) should be orthogonal to null(AT(ω∗)). We complete
the proof.

B. PROOF OF PROPOSITION 6
The KKT conditions of Problem E6 provide the following
equality of the optimal solution as∑

p∈P
γp

(
2
(
xp − x0

) ∂xp
∂d1
+ 2

(
yp−y0

) ∂yp
∂d1

)
= 0, (27)

γp

(
2
(
xp − x0

) ∂xp
∂νp
+ 2

(
yp−y0

) ∂yp
∂νp

)
= 0, ∀p ∈ P,

(28)

γp

((
xp − x0

)2
+
(
yp−y0

)2
− r2

)
= 0, ∀p ∈ P, (29)

where {γp} represent the Lagragian multipliers of the first
constraint in ProblemE6. It is worth noting that at least two γp
should be strictly positive to satisfy (27) and (28). From (29),
it is obvious to lead (21), completing the proof.

C. PROOF OF PROPOSITION 7
The KKT conditions of Problem E7 provide the following
equality of the optimal solution as∑

p∈P

[
γ̄p

(
cos(ω)

∂xp
∂d1
+ sin(ω)

∂xp
∂d1

)

+µ̄p

(
− sin(ω)

∂xp
∂d1
+ cos(ω)

∂xp
∂d1

)]
= 0, (30)

γ̄p

(
cos(ω)

∂xp
∂νp
+ sin(ω)

∂xp
∂νp

)
+ µ̄p

(
− sin(ω)

∂xp
∂νp
+ cos(ω)

∂xp
∂νp

)
= 0, (31)

where γ̄p = γ
(+)
p − γ

(−)
p and µ̄p = µ

(+)
p − µ

(−)
p with

Lagragian multipliers of the first constraint represented by
γ
(+)
p , γ (−)

p , µ(+)
p and µ(−)

p , which are positive only when the
corresponding equalities are satisfied. In other words, either
γ
(+)
p

(
µ
(+)
p

)
or γ (−)

p

(
µ
(−)
p

)
should be zero.

Some observations are made. First, to satisfy (30) and (31)
simultaneously, at least two origins should be located in the
boundary. Next, it is shown in (31) such that if γ̄p 6= 0
then its counterpart multiplier µ̄p 6= 0, which implies that
the origin located in the boundary should be on the vertex.
Last, the origin located at the vertex is equivalent to (24),
completing the proof.
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