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ABSTRACT One of challenging tasks in the field of artificial intelligence is the human action recognition.
In this paper, we propose a novel long-term temporal feature learning architecture for recognizing human
action in video, named Pseudo Recurrent Residual Neural Networks (P-RRNNs), which exploits the
recurrent architecture and composes each in different connection among units. Two-stream CNNs model
(GoogLeNet) is employed for extracting local temporal and spatial features respectively. The local spatial
and temporal features are then integrated into global long-term temporal features by using our proposed
two-stream P-RRNNs. Finally, the Softmax layer fuses the outputs of two-stream P-RRNNs for action
recognition. The experimental results on two standard databases UCF101 and HMDB51 demonstrate the
outstanding performance of proposed method based on architectures for human action recognition.

INDEX TERMS Action recognition, residual learning, recurrent neural networks, long short-term memory
(LSTM).

I. INTRODUCTION
Human action recognition in video is an important and
focused research topic with various useful applications, such
as intelligent video surveillance, video retrieval, human-
computer interaction and smart home appliance [1]–[3]. Due
to background clutter, lighting conditions, partial occlusion
and viewpoint change, action recognition is limited [4].
Similar to other vision problems, effective visual features
of human action in video are crucial for action recognit-
ion [5], [6]. For example, Figure 1 shows two examples from
the HMDB51 dataset [7]. The appearance feature in each
frame is not sufficient to differentiate the class.

The feature representation of human action recognition
can be roughly divided into two types. One is based
on hand-crafted features, such as Histogram of Gradi-
ent (HOG) [8], Histogram of Optical Flow (HOF) [9]
and Improved Dense Trajectories (IDTs) [10]. Because of
strong performance on the image recognition, IDTs features
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FIGURE 1. Exaples from the HMDB51 dataset [7]. The groundtruth for the
two samples are ‘‘sit’’ and ‘‘stand’’. Temporal information is crucial to
correctly determine these two classes.

with fisher Vector (FV) [11] or Vector of Locally Aggre-
gated Descriptors (VLAD) [12] have been applied onto
action recognition in video [10], [13], [14], which have
achieved the state-of-the-art results. Richard and Gall [15]
proposed RNNs-based encoding method [16] to aggregate
local feature descriptors for action recognition. Another is
deep learning-based technique. Similar with many com-
puter vision tasks, the progress on human action recogni-
tion is significantly advanced by deep learning techniques.
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Compared with hand-crafted features, deep neural networks,
such as deep belief network [17], Convolutional Neural Net-
works (CNNs) [18]–[21] and RNNs with Long Short-Term
Memory (LSTM) [22] are much more suitable for various
vision tasks such as object detection [23], [24] and image
recognition [18].

CNNs are powerful frameworks that achieve impressive
performance for human action recognition [4], [25]–[30].
Currently, most of the works of human action recognition
make use of 2-dimensional convolutional kernels [29], [31]–
[33], expanded from the mainframe of CNNs for image
classification [18]. The two-stream architectures [29], [31]
consist of spatial stream and temporal stream, which take
RGB images and optical flow images as inputs respectively.
Therefore, the two-stream CNNs architectures are often
applied to describe spatio-temporal information in video.
Each stream focuses on different type of feature learning
of video clip. The temporal stream mainly learns motion
features of videos. The spatial stream processes appearance
contents of videos.

Recently, CNNs with 3-dimensional (3D) convolutional
kernels are proposed to directly learn spatio-temporal fea-
tures for action recognition [34]–[36]. Tran et al. [37] exper-
imentally found 3 × 3 × 3 convolutional kernel obtained
the highest accuracy. In [38], a deep 3-dimensional (3D)
Residual ConvNet to extract spatio-temporal feature. Carreira
and Zisserman [26] proposed a new Two-Stream Inflated
3D ConvNet (I3D) for action recognition in video. More
recently, handcrafted features with BoW/FV representation
are simple to integrate with the I3D model [39]. However,
most of 3D convolutional models failed to exploit long-term
motion features of the video, and the performance of these
3D models is limited [40]. The primary reason for this failure
that the number of parameters of 3D convolutional kernels
is much larger than 2D kernels. Moreover, 3D CNNs cannot
be pretrained on ImageNet [41]. In addition, 3D models only
preserve short-term temporal features [42] whereas long-term
motion features are crucial for representation of human action
in video.

RNNs are effective architecture to model contextual infor-
mation. But for standard RNNs, the long range of context that
in practical accessed is quite limited due to gradient vanishing
problem [43]. In RNNs with LSTM, a set of memory blocks
with gating architecture are used to process the information
flow such that gradient vanishing problem is tackled, and
long-term features are better extracted. To capture stronger
and longer spatio-temporal representations, hybrid neural
networks are proposed by using CNNs in combination with
LSTM [44]–[46]. Simultaneous training of CNNs and LSTM
models is prone to overfitting on challenging benchmark
database HMDB51 [7] and UCF101 [47], and recognition
accuracy is lower than hand-crafted feature methods. In order
to tackle overfitting problem, Yu et al. [42] proposed single
layer pi-LSTM architecture to learn long-term information
for action recognition. However, shallowLSTMhas difficulty
in learning rich semantic features. Meanwhile, unsupervised

FIGURE 2. Framework of our proposed pseudo recurrent residual neural
network for action recognition. The main steps include as follows:
(1) extracting the frame-level features of the RGB and flow images by
two-stream CNNs, (2) learning long-term temporal features by
two-stream P-RRNNs, (3) Softmax layer to fuse spatial and temporal
stream, and output class scores.

learning architecture for capturing video representation is
also proposed by using LSTM model [48].

In this paper, we experimentally evaluate the proposed
method to learn richer semantic features and model longer-
term temporal information in video for action recognition.
Our main contributions can be summarized as follows: First,
we introduce residual learning into the recurrent structure
and propose Pseudo Recurrent Residual Neural Networks
(P-RRNNs) tomodel long-term temporal features. Ourmodel
outperforms other RNNs based architectures in action recog-
nition tasks. Meanwhile, the number of model parameters is
greatly reduced. Second, different from most of approaches
that extract temporal features from sample video frames,
we directly learn spatial and long-term temporal features
from holistic video clip to depict the human action infor-
mation, which is able to obtain more robust visual features.
Third, we combine our P-RRNNs features with IDT features
for action recognition. The experimental results prove the
complimentary of both features. Figure 2 summarizes the
pseudo recurrent residual neural network architecture in
the study.

The paper is organized as follows: in next section,
we review literatures related with the presented works.
In section III, we elaborate on the details of the proposed
P-RRNNs for action recognition in video. In section IV,
we analyze the performance of the approach. Finally, the con-
clusion of the work is in Section V.

II. RELATED WORKS
Human action recognition has been studied by researchers for
decades. Early studies [49], [50] mainly focus their research
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on simple actions with flat background, such as hand clap-
ping, boxing and walking. With rapid developments in local
feature extracting and encoding, action recognition is grad-
ually towards practical applications [10], [13], [51], [52].
According to deep neural networks, various reportedmethods
are categorized into hand-crafted feature-based methods and
deep learning-based methods.

A. HAND-CRAFTED FEATURES FOR ACTION RECOGNITION
Early methods [53]–[55] for action recognition in videos
primarily focus on hand-crafted features, which described
appearance and motion information by using a number of
local features. Local features are effective tool in image
recognition, which represent image through feature descrip-
tors, such as Scale-Invariant Feature Transform (SIFT) [56],
Speeded Up Robust Features (SURF) [57]. Inspired by suc-
cess of image recognition, the researchers directly extend
the image classification methods to learn spatio-temporal
information of video for action recognition. In [54], HOG
descriptor is extended to Histograms of Oriented 3D spatio-
temporal Gradients (HOG3D) for action recognition in video.
Inspired by the Harris corner descriptor [58], Harris3D [55] is
proposed to encode the region of the interest (ROI). Extended
from SIFT, SIFT-3D [53] is proposed to represent the spatio-
temporal motion features for action recognition. Recently,
one effective approach is Dense Trajectories (DT) [14], which
consist of HOG, HOF, and Motion Boundary Histogram
(MBH). IDTs features [10] take camera motion into account
to improve performance of action recognition based on DT
approach. Furthermore, Crmona and Climent [59] combine
IDTs and subtensor projections to depict the human action.
Whereas, to extract IDTs features has much higher computa-
tional complexity and intractable on large scale data sets.

By adopting encoding methods, such as Bag of Visual
Words (BoVW) [60], FV, or VLAD, local descriptors can be
embedded into a global video-level feature vector for action
recognition. Comparing with BoVW, the FV and VLAD
can process statistics analysis of high order local features,
and obtain noticeable higher accuracy. But these encoding
methods obviously lead to the loss of temporal order of local
features in the video. Meanwhile, graphical models, such as
conditional randomfields [61], are well-known approaches to
extract the long-term temporal features for action recognition.

B. DEEP LEARNING FOR ACTION RECOGNITION
Many advances of action recognition in video are inspired by
success on image classification [62], [63]. The breakthrough
of image domain also rekindled the focus on deep learning for
video recognition. The CNNsmodels play significant roles in
the image classification and achieves state-of-the-art results.
Extending the 2D convolutional filter, Ji et al. [35] proposed
3D CNNs to address video features from both the spatial
and temporal dimensions. Karpathy et al. [32] built a large-
scale dataset of action recognition, which consists of 1million
video clips belonging to 487 classes, namely Sport1M, and
proposed various ways to fuse motion information into the

current CNNs model. Tran et al. [37] applied convolutional
3D (C3D) on 16 consecutive frame to learn motion and
appearance information for action recognition, and experi-
mentally found 3 × 3 × 3 convolutional kernel obtained the
highest accuracy. Varol et al. [64] proposed Long-term Tem-
poral Convolution (LTC) models to expand temporal length
of inputs. Simonyan and Zisserman [29] first proposed a two-
stream CNNs architecture, which applies two networks for
extracting appearance and motion features from two infor-
mation streams, and fuse them by using average pooling or a
linear SVM. Yang et al. [65] and Shi et al. [66] proposed
additional information sources to learn richer appearance
and motion features for action recognition based on two-
stream framework. Duta et al. [67] proposed Spatio-Temporal
VLAD (ST-VLAD) to integrate spatio-temporal features.
Kar et al. [25] found that only a small part of frames play
a crucial role to discriminate an human action class, and
they proposed a temporally pooling frames method to filtrate
spatio-temporal action attention components.Wang et al. [28]
proposed a temporal segment network (TSN) architecture
that incorporates sparse temporal sampling and video-level
supervision to learn more proper long-term temporal fea-
tures. An [68] used restricted Boltzmann machine as fea-
ture encoder to encode the spatial and temporal features and
a SVM classifier is applied to recognize human action in
video. Cherian et al. [69] explored generalized rank pooling
(GRP) to preserve video frames temporal order information
for improve action performance. Choutas et al. [70] pro-
posed pose motion (PoTion) forms to recognize video action.
However, the PoTion method needs to be combined with
I3D [26] to obtain high recognition accuracy. Meantime, it is
affected by the human pose estimator.

Recently, with the improvement of ResNet [21], [71] for
image classification, Feichtenhofer et al. [72] proposed a
spatio-temporal ResNet (ST-ResNet) that associates ResNet
with the two-stream CNNs. To effectively learn spatio-
temporal features, they apply a residual connection from the
spatial stream to the temporal stream. Meantime, inspired
by the success of recurrent neural networks in sequential
informationmodeling [73]–[76], many researchers [42], [44],
[45], [48], [77], [78] propose LSTM model for action recog-
nition. Ng et al. [44] and Donahue et al. [45] extracted frame-
level features of video by using CNNsmodel, and train LSTM
with the frame-level feature for direct video-level prediction.
Srivastava et al. [48] proposed an approach for learning
the sequence information in unsupervised settings by using
LSTM architecture. To mitigate the overfitting problem,
Yu et al. [42] proposed a single-layer LSTM frameworks for
learning long-term motion features. To learn spatio-temporal
information, Zhang et al. [79] proposed multi-level recurrent
residual networks to produce complementary representations
for action recognition. The recurrent residual model is also
use of temporal skip connection.

Among these RNN-based approaches, the recurrent resid-
ual networks are [44], [45], [79] closely related to us.
In [44] and [45], the deep learning model is built by CNNs
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FIGURE 3. LSTM memory block with one cell [43].

and LSTMs, which feeding the output of CNNs into LSTMs.
In contrast, we introduce pseudo residual learning into RNNs,
which can design deeper model to learn richer semantic fea-
tures for action recognition. In [79], three stream multilevel
recurrent residual networks are proposed for action recogni-
tion. Each stream consist of ResNets and a recurrent model.
However, the proposed network mainframe fuses pseudo
residual learning into recurrent neural networks to learn long-
term temporal features.

Motivated by above analysis, we propose a pseudo
recurrent residual neural network, which considers skip
one or more hidden layers in RNNs. The model can learn
richer action semantic features and long-term motion infor-
mation to classify action recognition in video.

III. METHODS
In this section, we describe the key components of the
P-RRNNs, including LSTM and GRU architectures, and
pseudo recurrent residual network architectures.

A. LONG SHORT-TERM MEMORY
Figure 3 is a LSTM memory block with one cell, where ⊗
represents multiplication, and dashed lines represent weight
between the cell to the gates. All other connection weights
within the block are fixed to one. The LSTM architecture
uses a set of memory blocks which each block contains
one or more self-connected memory cells, and three mul-
tiplicative units: the input, output and forget gates. Three
gates provide continuous analogues of write, read and reset
operations for the cells. The gate activation function usually
is the logistic sigmoid. The cell input and output activation
functions are hyperbolic tangent or logistic sigmoid. Based
on the specialized memory architecture, LSTM is able to
effectively tackle the vanishing and exploding gradient prob-
lem. Assuming that x = (x1, x2, · · · , xT ) is a length T input

FIGURE 4. GRU architecture [80].

feature, at time step t , for all LSTM neurons in some layer,
activations are computed as follows:

it = σ (Wxixt +Whiht−1 + bi) (1)

ft = σ (Wxf xt +Whf ht−1 + bf ) (2)

ot = σ (Wxoxt +Whoht−1 + bo) (3)

gt = σ (Wxcxt +Whcht−1 + bc) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � ct−1 + tanh(ct ) (6)

where σ is the logistic sigmoid function,� denotes element-
wise multiplication, it , ft , ot and ct are the input gate, forget
gate, output gate and memory cell activation vectors, respec-
tively, bi, bf , bo and bc denote the bias terms, Wαβ is the
weightedmatrix between α and β, such asWxi is the weighted
matrix from the inputs xt to the input gates it .

B. GATED RECURRENT UNIT (GRU)
The GRU architecture is a simplified variant of the LSTM
architecture [80], in which coupled the input and the forget
gate into an update gate [81].

Compared to three units of LSTM architecture, the GRU
reduce the gating signals to two. The GRU architecture is
showed in Figure 4, which consists of an update gate z and
a reset gate r. The update gate moderates the rate at which
the information at the previous moment is allowed to enter
the current state. Oppositely, the reset gate is applied onto
controlling how much status information of the previous
moment can be ignored. At time step t , the information of
the forward propagation can be computed as follows:

ht = (1− zt )ht−1 + zth′t (7)

zt = σ (Wzxt + Uzht−1) (8)

h′t = tanh(Wxt + U (rtht−1)) (9)

rt = σ (Wrxt + Urht−1) (10)

yt = σ (Woht ) (11)

where� is represents the multiplication of the corresponding
elements of two matrices. Wo ∈ Rh×y is the weight matrix
between input and output layer, h and y is number of nodes
in hidden layer and output layer, respectively, W ∈ Rx×h is
represents the connection weight matrix of the input layer to
the update gate, and x is the feature dimension of the input
feature vector. Uz ∈ Rh×h is the weight matrix between the
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hidden layer and the updated gate of the previous moment.
Wr ∈ Rx×h and Ur ∈ Rh×h are the connection weight
matrixes of the input layer and hidden layer of the previous
time to the reset gate, respectively. W ∈ Rx×h and U ∈
Rh×hare also the connection weight matrixes of the input
layer and hidden layer of the previous time to the candidate
state h′.

C. RESIDUAL NETWORKS
He et al. [21] proposed residual learning in CNNs architec-
ture for image classification. Let H (x) indicate the desired
mapping. The theory of ResNet is to account for the mapping
of the learned function from one layer to another as H (x) =
F(x) + x, where x is original input, and F(x) is residual
function. By using the spatial skip connection, the input
feature x is directly forwarded and added to the next layer,
it only remains to approximate the residual functions F(x) =
H (x) − x, where the input x and output H (x) need have the
same dimensions. To learn long-term temporal features with
RNNs for action recognition, we approximate the desired
mapping functions H (x) = F(x)⊕ x, where⊕ represents the
concatenation of two feature vectors. Such skip connection in
RNNs can be regarded as a Pseudo Recurrent Residual Neural
Networks (P-RRNNs).

D. PSEUDO RECURRENT RESIDUAL NEURAL NETWORKS
(P-RRNNs) ARCHITECTURE
Inspired by the success of ResNets [21] in image recognition
tasks, and RNNs are good at processing sequential infor-
mation, we design a novel pseudo recurrent residual neural
networks to pursue spatio-temporal feature for action recog-
nition. More specifically, we integrate the residual learning
into the recurrent neural network and propose pseudo recur-
rent residual recurrent neural network architectures. In our
studies, we design three P-RRNNs architecture variants,
as show in Figure 5.
Figure 5(a) illustrates an unfold two-stream P-RRNNswith

skip connections over time. Therefore, the l th hidden layer
receives the feature-maps of the input and upper preceding
layers, x0, xl−1, as input:

xl = Fl([x0, xl−1]) (12)

[x0, xl−1] refers to the concatenation of the feature-maps
produced in layer 0, l − 1, and l > 1. Figure 5(a) depicts the
video frame feature stream and optical flow feature stream.
Blue circle indicates input feature vectors of the two-stream
RRNNs at time t . Orange circles indicates hidden layers,
the number of hidden layers of each stream is set to 3.
Meantime, the number of hidden units is set to 512 [46].
C represents the concatenation of two vectors. The action
recognition is achieved by merging the outputs of the two-
stream with the Softmax layer. Such concatenation of two
vectors can be regarded a pseudo residual connection, and
the network architecture regarded as an pseudo recurrent
residual neural networks. We named this recognition network
structure as an Input P-RRNNs (IP-RRNNs).

FIGURE 5. Three P-RRNNs architectures for action recognition. (a) In the
IP-RRNNs, except for the first hidden layer, the input of other hidden
layers is the concatenation of the output of the previous hidden layer and
the input feature-maps of the network. (b) In addition to the first hidden
layer, the input of other hidden layers is the concatenation of the output
of the last two layers. (c) residual connection on recurrent neural
networks.

Figure 5(b) is a Cross-layer P-RRNNs (CP-RRNNs),
the l th hidden layer receives the feature-maps of the last two
preceding layers, xl−2, xl−1, as input:

xl = Fl([xl−2, xl−1]) (13)
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where[xl−1, xl−2] refers to the concatenation of the feature-
maps produced in layer l − 1, l − 2, and l ≥ 2.
Figure 5(c) are Recurrent Residual Neural Networks

(RRNNs). The residual connection is similar to the deep
residual CNNs, and ⊕ represents the addition of two feature
vectors.

IV. EXPERIMENTS
In this section, we demonstrate extensive experimental effec-
tiveness of pseudo recurrent residual neural network on the
HMDB51 and UCF101 datasets. Firstly, we introduce two
challenging human action benchmark datasets and network
training in Section IV-A. We study the recurrent units of
P-RRNNs in Section IV-B and the RNN architectures in
Section IV-C. Next, we evaluate in Section IV-D the impact
of different residual architectures. Then, we show effect of
multi-stream fusion architecture in Section IV-E and com-
putational costs in Section IV-F. Finally, we compare our
method with the state-of-the-art in Section IV-G.
We conduct experiments on Ubuntu 14.04 with Intel Core

i7-7700, 32GBMemory, and a NVIDIA GTX Titan Graphics
Card.

A. DATABASES AND IMPLEMENTATION DETAILS
1) DATABASES
UCF101 database [47] contains 13320 video clips that are
downloaded from YouTube, and has 101 human action
classes. The video clips were temporally trimmed and fixed
frame rate of 25 FPS, and resolution of 320×240 respectively.
Each action class is divided into 25 groups which contain 4
to 7 video clips. Following the literature, to ensure that video
clips from the same video were not used for both training
and testing, three train and test splits are used for action
recognition on UCF101.

Moreover, HMDB51 database [7] contains 6766 videos
divided into 51 human action categories, which is collected
from a wide range of sources from digitized movies to online
videos such as YouTube. For evaluation purposes, we follow
the constraint that video clips in the training and testing
set could come from different video file. Specifically, three
distinct training and testing splits were generated from the
database that 3570 clips in the training set and 1530 clips in
the testing set.

2) IMPLEMENTATION DETAILS
Following TDD [82], we set the label between the video
frames and video snippets from the video to be the same.
We implement our network in Caffe. To alleviate the over-
fitting issue, we use two-stage training tactic to train our pro-
posed networks. Firstly, we train the two-stream GoogLeNet
models, and initialize GoogLeNet parameters of both streams
with pre-trained models from ImageNet [41]. We build fine-
tuned network by using Stochastic Gradient Descent (SGD)
with a batch size of 128, and the momentum is set to 0.9.
For spatial stream, the input is a single RGB frame image

TABLE 1. Performance with different standard deviation of IP-LSTM and
IP-GRU architectures on the split1 of UCF101.

of size 224 × 224 × 3, and learning rate starts from 0.001,
and decreases to its 0.1 every 2,000 iterations, stops at
10,000 iterations. For temporal stream, the input is a 224 ×
224× 2L volume, where L is the number of stacking optical
flows. Meanwhile, we initialize the learning rate as 0.005,
get reduced by a factor of 10 after 10,000 and 15,000 iter-
ations, stops at 20,000 iterations. The dropout ratios are set
to 0.5 [83] for both streams. We select softmax loss for
GoogLeNet training.

At the second stage, we train the P-RRNNs with LSTM
and GRU units from scratch for the temporal stream and spa-
tial stream. The initialization of the P-RRNNs is important.
To ensure that good hyper-parameters are used, we exper-
iment with Gaussian distribution with mean of zero and
several standard deviation σ = {0.1, 0.01, 0.001, 0.0001} on
the split1 of UCF101. Table 1 reports results with different
standard deviation of IP-LSTM and IP-GRU architectures.
We can observer that via setting σ = 0.001 we achieve
better performance. Therefore, we initialized weights of the
P-RRNNs with LSTM and GRU from a Gaussian distribution
with mean of zero and 10−2 variance.The training parameters
of both streams are the same. Specifically, the initial learning
rate is set to 0.01 and get reduced by a factor of 10 after
2,000 and 5,000 iterations. The whole training procedure
stops at 10,000 iterations. We use dropout of 0.6 for both
streams [84]. Cross entropy loss is used for P-RRNNs. During
training of P-RRNNs, the two-streamGoogLeNet parameters
are fixed.

At test time, given a video, we input the video frame by
frame to P-RRNNs, and the class scores for the whole video
are then obtained. The maximum class score is the classifica-
tion of the input video. For both databases, we select the same
evaluation protocol. Three distinct training and testing splits
are provided by the organizers. The performance is estimated
by mean recognition accuracy across three splits.

B. EVALUATION ON RECURRENT UNITS IN P-RRNNs
Different types of recurrent units may significantly influence
the complexity and performance of RNNs. Recently, GRU is
proposed and become one of the most commonly used recur-
rent units in RNNs. Therefore, in this section we focus on two
types of recurrent units: LSTM units and GRUs. We mea-
sure these recurrent units on the task of action recognition
on the UCF101. More specifically, we employ IP-RRNNs
architecture with 512 hidden units [46]. Similarly, the number
of layers is set to three. Table 2 compares the accuracy of
our method with GRU and LSTM architectures. The results
demonstrate the LSTM units that obtaining higher perfor-
mance, in which gains 2.8% compare to GUR units on the
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TABLE 2. Performance of the GRU and LSTM architectures on the UCF101.

FIGURE 6. Performance of the IP-RRNNs with 1 to 5 hidden layers on the
UCF101.

UCF101 dataset. The reason that the GRU model simplifies
the network architecture, and reduces feature learning abil-
ity for action recognition. Consequently, we choose LSTM
architecture to learn long-term action feature in the remainder
if there is no special explanation.

C. EVALUATION ON DIFFERENT NUMBER OF HIDDEN
LAYERS OF P-RRNNs
In deep neural network architecture, each layer can carry
different recognition information. But it is easy to appear
of overfitting with the number of layers increased. In this
section, we investigate the networks with number of 1 to
5 hidden layers, and each layer with 512 hidden units.
Figure 6 reports action recognition results with different
number of hidden layers of IP-RRNNs. The discrimination
increases with the increase of hidden layer when the number
of hidden layers is less than 4. It indicates that in these
experiments, IP-RRNNs can gain recognition accuracy from
increased depth, and number of 3-layers architecture obtains
the most discriminative performance than others. The recog-
nition accuracy is degraded when the layer of the network
more than three. The reason may be that the model overfitting
the training dataset. Therefore, we use 3-layers IP-RRNNs
architecture in the remainder of this paper.

D. EVALUATION ON DIFFERENT P-RRNNs MODELS
In these experiments, we study the effect of different
P-RRNNs models. We already investigated the network with
LSTM units better than GRU architecture for action recog-
nition. In this set of experiments, we also further explore
advantage of the LSTM architecture compare to GRU.
Table 3 shows the accuracy on the UCF101. The IP-RRNNs
with LSTM (IP-LSTM) model obtains the highest average
accuracy 88.5%. The IP-LSTM model strengthen feature

TABLE 3. Performance of three type P-RRNNs on the UCF101.

propagation to increase representational power for action
recognition. Meanwhile, the results show that the recogni-
tion accuracy of LSTM is also higher than that of GRU
architecture, which again proves that LSTM architecture is
more suitable for human action recognition in video. There-
fore, considering the performance of the model, we select
IP-LSTM architecture for action recognition in the remainder
of this paper.

E. EVALUATION ON EFFECT OF HYBRID
NETWORK MODELS
In this subsection, we analyze the benefit of two different
networks’ fusion combining the IDT model and IP-LSTM
model. The hybrid network is used to learn hand-crafted
features and deep learning features respectively. Specifically,
IDT features extended local features such as HOF, HOG,
andMBH, which depict spatial and short-termmotion related
features in video. The IP-LSTM extract long-term temporal
feature. Possible reason could be both handcrafted and deep
learning features that play important role in action recogni-
tion in video. Therefore, we choose average fusion method to
obtain the probabilities of each video.

Firstly, we illustrate the split accuracy of each action cat-
egory from UCF101 in Figure 7. The accuracy of each cate-
gory is applied to analyze the performance of IP-LSTM, and
then its impact on the recognition accuracy after fusion with
the IDT features. On the UCF101 dataset, our IP-LSTM per-
form perfectly on most categories such as ‘‘Baby Crawling’’
and ‘‘Golf Swing’’. The results also show that the improve-
ment is obviously for most action classes, like ‘‘Apply Eye
Makeup’’, ‘‘Archery’’ and ‘‘Baby Crawling’’. On the other
hand, there are some categories in the IP-LSTM model
with a slightly lower accuracy than the IDT stream, such
as ‘‘Hammer throw’’, ‘‘Juggling balls’’ and ‘‘Boxing speed
bag’’. We find these action categories hold the characteristics
of fast behavioral movements, which facilitate the extraction
of IDT features and effectively describe behavioral actions.

The Table 4 shows the average accuracy of all action cat-
egories on the UCF101 dataset by fusing outputs of different
streams. We can observe that the fusion model of IP-LSTM
and IDT is able to significantly improve the performance
and obtain a recognition accuracy of 91.4%. The results
show that the IP-LSTM stream and IDT feature stream are
complementary. Therefore, it is crucial to merger two types
of features into successful action recognition system.
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FIGURE 7. The split1 results of IP-LSTM of all the action categories from UCF-101 dataset.

TABLE 4. Performance of the multi-stream feature fusion model on the
UCF101.

TABLE 5. Accuracy of the with and without pseudo recurrent residual
architecture on the UCF101.

Finally, the superiority of pseudo recurrent residual archi-
tecture is illustrated. The LRCN [45] and the proposed
method are evaluated with using UCF101 dataset. The results
are listed in Table 5. The results show that the pseudo recur-
rent residual architecture performs better than LRCN and
our without pseudo recurrent residual architecture separately.
The pseudo recurrent residual model is useful for action
recognition in video.

F. COMPUTATIONAL COSTS
In this part, we analyze the computational cost of our
method. Our IP-RRNNs model consists of two-stream CNNs
and two-stream pseudo recurrent residual neural networks.
The calculation of optical flow takes up time. It is around
60 millisecond for optical flow calculation of one frame
image by GPU acceleration. For the training time, the

TABLE 6. Speed and accuracy results of RNNs based methods on
UCF101 and HMDB51.

two-stream CNNs need around one day to train, and two-
stream IP-LSTMs need several hours to train by a Titan X
GPU. In Table 6, we compare the runtime and accuracy of
IP-LSTMs with other RNN-like action recognition methods.
Our IP-LSTM can reach a speed of 23.2fps. In UCF101, our
method is not state-of-the-art in terms of accuracy, but it is
computationally efficient.

G. COMPARISON WITH STATE-OF-THE-ART RESULTS
In this subsection, we compare our method against the
recently proposed and relevant state-of-the-art methods. Our
proposed IP-LSTM model achieves a better performance
than the most of previous methods on the two datasets.
The comparative results are summarized in Table 7 for
the UCF101 and HMDB51 datasets. Currently, the state-of-
the-art of 98.2% on UCF101 and 80.9% on HMDB51 are
obtained in literature [6] and [62], which are CNNs-based
models and pretrained on Kinetics [86]. Our method is pre-
trained on ImageNet [41], and somewhat inferior in respect to
recognition accuracy. But compared to RNNs based methods
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TABLE 7. Comparison with previous state-of-the-art methods.

such as VideoLSTM [46], LRCN [45], MRNN [79], our
accuracy outperforms or basically equals to previousmethods
on two datasets. But, as show in Table 6, our IP-LSTMmodel
with the number of parameters is much less than other RNNs
based architectures. In addition, the RNNs architecture is
good at dealing with temporal features, but it may lose spa-
tial features, which is equally critical to action recognition.
Therefore, the accuracy of the RNNs-based method is lower
than CNNs-based method.

We also notice that our IP-LSTM combines with IDT fea-
tures can achieve 91.4% and 68.2% accuracy on UCF101 and
HMDB51 dataset. Comparing with other deep model fuses
IDT features, our method outperforms the VideoLSTM
with [46] by 5.2% and outperforms the CNN with IDT
model [67] 0.6% on HMDB51 dataset. This implies that our
deep learning features are highly complimentary to hand-
crafted features for action recognition.

V. CONCLUSION
In this study, we propose a pseudo recurrent residual neu-
ral network to learn long-term temporal for improving the
performance in action recognition. The P-RRNNs architec-
ture consist of two-stream pseudo recurrent residual neural
networks for learn video feature from spatial stream and
temporal stream. We show that LSTM with pseudo residual
learning significantly improve the performance of the net-
work. In addition, P-RRNNs can obtain more robust visual

features by using holistic video clip to depict the human
action feature compares to the usage of sample frames. Exper-
imental results show that our approach achieves promising
performance on UCF101 and HMDB51 datasets, and also
obtain further improvements by fusing IDTs features.

For the future works, wewill carry out additional studies on
modelling deeper P-RRNNs to increase recognition accuracy
for action recognition. We will also learn the effective fusing
of deep learning features and hand-crafted features.
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