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ABSTRACT Chaotic dynamics analysis of complex-variable chaotic systems (CVCSs) is an important
problem in real secure communication and encryption. In this paper, a simple one-parameter chaotic system
in complex field is proposed, whose nonlinear terms are the same as Lorenz system but the linear terms are
much simpler. The proposed system has circular equilibria and therefore multi-stability can be measured
by phase portraits, bifurcation diagrams and Lyapunov exponent spectrum. Its basin of attraction is filled
with initial points leading to chaotic behaviors. The coexistence of infinitely many attractors is found in
the proposed system, which is not reported in the existing complex-variable Lorenz system. Finally, two
complexity indexes are used to measure dynamic characteristic with respect to parameter.

INDEX TERMS Coexisting attractors, extreme multistability, complex-variable chaotic system, complexity.

I. INTRODUCTION
Up to now, chaos is a very important research topic and
received much attention in complicated nonlinear dynamics
and chaotic cryptography [1]–[4]. As a model for convection
between parallel plates, the Lorenz system with real variables
is always a paradigm of chaos. In 1982, the Lorenz system
in the complex domain was unexpectedly discovered from
laser physics and the geophysical flows [5], [6], and widely
attracted attentions of researchers in multiple fields. Since
then, complex-variable chaotic systems (CVCSs) have been
extensively investigated in various important fields, such as
detuned lasers [7], [8], fluids [9], electromagnetic fields [10]
and image encryption [11]–[13].

Due to the existence of complex variables, the dynamic
behaviors of complex system are more complex and
diverse [14], [15]. Real variable is a special case of com-
plex variable, so the conclusions of complex chaotic sys-
tem are also applicable to real chaotic system. In recent
years, the stabilization and synchronization [14]–[19] of
CVCSs stimulated a great deal of interest among scien-
tist for the wide scope of applications. Especially in the
chaotic secure communication field, the complex variable
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can increase the content and security of the transmitted
information [12], [20].

The coexistence of multi-attractors for the same group of
parameters can be observed in a number of nonlinear circuits
or systems [1], [21], [22], this phenomenon is called multista-
bility. System displays different attractors depending on the
different initial values. The coexistence of attractors exhibits
a complex diversity of attractors of a nonlinear dynamical
system. At present, the coexistence of attractors becomes
one of the hot spots in international nonlinear dynamics
research [23], [24]. Some interesting properties of multi-
ple coexisting attractors are found not only in the novel
4D-hyperjerk system [25] and 5-D memristive oscillator, but
also in the simple three-dimensional system, such as Sprott
B system [26] and Lü system [27]. Recently, it is found
that the coexistence of infinitely many attractors may be
coined when a periodic function is introduced into the offset-
boostable variable [23]. The phenomenon that system has a
great many coexisting attractors is defined as extreme multi-
stability. Bao et al. investigated the coexistence of infinitely
many attractors through analyzing the stability distribution of
line equilibrium point in a memristive circuit [28]. Similarly,
extrememultistability is also observed in an extremely simple
chaotic system [29]. It is very exciting that a memristive
hyperchaotic system without any equilibrium points can still
generate coexisting infinitely many attractors [30].
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In the literature mentioned above, the phenomenon of
coexisting attractors is widely considered in real-variable
systems. However, the coexistence of attractors, particu-
larly that of infinitely many chaotic attractors, is rarely
reported in CVCSs so far. CVCSs have more important
significance in practical application bacause they possess a
diversity of coexisting attractors and exhibit very compli-
cated basins of attraction. The main goal of present work
is to investigate coexistence of attractors in one-parameter
CVCSs.

The rest of this paper is structured as follows. In Sec. II,
we introduce the mathematical model of one-parameter
CVCSs and discuss the stability of circular equilibria, dissi-
pation and symmetry. In Sec. III, the dynamical characteris-
tics are investigated and the coexistence of infinitely many
chaotic and periodic attractors depending on initial values
are therefore discovered. In Sec. IV, spectral entropy (SE)
and C0 complexity algorithms are applied to analyze the
complexity of the CVCSs. The last section concludes
the paper.

II. THE PROPOSED COMPLEX-VARIABLE
CHAOTIC SYSTEMS
The Sprott B system is algebraically the simplest one [31].
Assigning x → −y, y→ −x, z→ −z, transform the Sprott
B system into 

ẋ = −x + y,
ẏ = −xz,
ż = xy− a,

(1)

where (x, y, z) is the real state vector, and a is a positive con-
stant parameter. The attractors of system (1) are similar to the
attractors of Lorenz and Chen systems [32]. And its simplest
4-D extension has coexisting hidden attractors [33]. In this
paper, we propose the complex extension of the system:

ż1 = −z1 + z2,
ż2 = −z1z3,

ż3 =
1
2
(z̄1z2 + z1z̄2)− a,

(2)

where z1 = u1 + ju2 and z2 = u3 + ju4 are complex
state variables, z3 = u5 is real state variable, and a is
positive constant parameter. It is clear that system (2) has
the same nonlinear parts as the complex-variable Lorenz and
Chen systems, but has much simpler linear parts. Assume
that a = 4.8 and the initial values z0 = (0.5 + 0.5j,
1 + j, 1). Then system (2) has Lyapunov exponents
(0.0526, 0,−0.9533,−47.8200,−116.2680), and the corre-
sponding Kaplan-Yorke dimension DKY = 2.048. Due to
its fractional dimension and positive Lyapunov exponent,
system (2) is chaotic and the orbit is a bond chaotic attractor
as in Fig. 1. It is apparent that bond-orbital attractor [34] is
quite different from butterfly attractor in [32].

FIGURE 1. 3-D space of the bond chaotic attractor for system (2) when
a = 4.8.

System (2) can be rewritten as a real-variable system of the
form 

u̇1 = −u1 + u3,
u̇2 = −u2 + u4,
u̇3 = −u1u5,
u̇4 = −u2u5,
u̇5 = u1u3 + u2u4 − a.

(3)

System (3) has rotational symmetry with respect to the
u5-axis, due to its invariance under the coordinates transform
from (u1, u2, u3, u4, u5) to (−u1,−u2,−u3,−u4, u5). In par-
ticular, the symmetry about the u5-axis for any choice of
parameter a is accurate. The corresponding Jacobian matrix
of system (3) is

J =


−1 0 1 0 0
0 −1 0 1 0
−u5 0 0 0 −u1
0 −u5 0 0 −u2
u3 u4 u1 u2 0

 .
If u5 6= 0 and u21 + u

2
2 + u1 u3 + u2 u4 6= 0, system (3) has

the full rank because the determinant of the Jacobian matrix
is−u5(u21+u

2
2+u1 u3+u2 u4), which means that system (3)

is a real five-dimensional system.
The rate of hypervolume contraction is given by the Lie

derivative

OV =
5∑
l=1

∂ u̇l
∂ul
= −2.

Hence, system (3) is dissipative. This means each volume
element V0 containing the system trajectories shrinks to zero
when t → ∞ at an exponential rate −2. From the algebraic
equations: −u1 + u3 = 0, −u2 + u4 = 0, −u1u5 = 0,
−u2u5 = 0, u1u3 + u2u4 − a = 0, one can derive that
system (3) has infinite equilibrium points. Let u1 = u3 =√
a cos θ and u2 = u4 =

√
a sin θ , where θ ∈ [0, 2π ],

the non-isolated (nontrivial) fixed points can be described as

E = (
√
a cos θ,

√
a sin θ,

√
a cos θ,

√
a sin θ, 0).
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FIGURE 2. Bifurcation diagram and Lyapunov exponent spectrum versus
parameter a of system (3).

The characteristic equation of the corresponding Jacobian
matrix is obtained as µ(µ + 1)(µ3

+ µ2
+ aµ + 2 a) = 0.

According to Routh-Hurwitz criterion, system (3) has one
eigenvalue 0, two negative real eigenvalues and a pair of
conjugate complex eigenvalues with positive real part pro-
vided a > 0. For example, when a = 1, eigenvalues are
µ1 = −1.3532, µ2 = −1, µ3 = 0, µ4 = 0.1766 +
1.2028j, µ5 = 0.1766 − 1.2028j, which means that circular
equilibria are non-hyperbolic and saddle-foci with index 2
(unstable).

III. CHAOTIC ATTRACTORS
To verify existence of the chaotic attractors, we use two effec-
tive indexes, Lyapunov exponents and bifurcation diagram,
to characterize statistical properties. Lyapunov exponents
are the average exponential divergence rate of two closed
orbits, which are used to quantitatively express the stability
of the orbits and its sensitivity to the initial conditions. For
chaotic attractors, it possess the positive Lyapunov expo-
nents. According to the definition, Lyapunov exponents are
adopted as

λl = lim
t→∞

1
t
ln

∣∣∣∣ δul(u0, t)δul(u0, 0)

∣∣∣∣ . (4)

For the initial condition U0 = (0.5, 0.5, 1, 1, 1), the
bifurcation diagram and Lyapunov exponent spectrum versus
parameter a are plotted in Fig. 3. It can be seen from Fig. 2(a)
that the bifurcation of system (3) with respect to a is reverse
period-doubling bifurcation. Fig. 2(b) shows that system (3)

FIGURE 3. 3D views of chaotic attractors of system (3) when a = 0.12.

FIGURE 4. 3D views of the two-butterfly chaotic attractor of system (3)
when a = 3.61.

has periodic behaviors when a ∈ (0.24, 0.32), (2.4, 2.53) and
(5.02, 10). The chaotic attractors are clear for a ∈ (0, 0.23),
(0.33, 2.39) and (2.54, 5.01), respectively. Note that there
exist always two zero Lyapunov exponents in Fig. 2(b).

The Lyapunov exponents of system (3) are (0.0197, 0,
−0.0113,−0.987,−1.0127) when a = 0.12. The chaotic
attractor and the infinite equilibria when a = 0.12 are
shown in Fig 3, where red circle represents the equilibrium
points, gray plots are projections of the attractor onto the dif-
ferent planes. Interestingly, a two-butterfly chaotic attractor
with Lyapunov exponents (0.2866, 0, 0,−0.9983,−1.2876)
is found when a = 3.61, as shown in Fig. 4.

IV. COEXISTING ATTRACTORS
A. COEXISTENCE OF TWO ATTRACTORS
The coexisting bifurcation diagram and coexisting Lya-
punov exponent spectrum are used to examine the coex-
isting attractors of the system. The coexisting bifurcation
diagram about state variable u3 and coexisting Lyapunov
exponent spectrum versus a ∈ (0, 8) are plotted in Fig. 5,
respectively. As shown in Fig. 5(a), the initial values for the
blue orbit is U0 = (0.5, 0.5, 1, 1, 1), while those for the
blue one is U1 = (0.5, 0, 0.5, 0.1, 0.1). It is obvious that
|max(u3)| starting from U1 is larger than that from U0 at
a ∈ (0, 0.23),(0.33, 2.39) and (2.54, 5.01), which means that
there are two different amplitudes attractors. In Fig. 5(b),
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FIGURE 5. Coexisting bifurcation diagram and coexisting Lyapunov
exponent spectrum of system (3) for the initial conditions
U0 = (0.5, 0.5, 1, 1, 1) and U1 = (0.5, 0, 0.5, 0.1, 0.1).

the blue and green trajectories express the first two Lyapunov
exponents of the system with initial value U0, while the red
and pink trajectories represent the case with U1.
It is very interesting that coexisting butterfly attractors

with asymmetric initial conditions are shown in Fig. 6, where
green attractors start form red initial conditions U0 and pink
attractors start form blueU1. Fig. 6 illustrates the coexistence
of periodic attractors when a = 2.4, coexistence of periodic
attractor and chaotic attractor when a = 2.5, coexistence of
two-butterfly chaotic attractors when a = 3.61 and coexis-
tence of chaotic attractors when a = 4.56.

B. COEXISTENCE OF SIX CHAOTIC ATTRACTORS
The basin of attraction is a useful method to examine the
coexisting attractors of the system, which changes with the
initial values [28], [33]. When parameter of the system is set
as a = 4 and the initial value is given as (0.5, 1, u3, 1, u5),
the basin of attraction with respect to initial values is shown
in Fig. 7(a). The chaotic sea is filled with points leading to
chaotic attractors when u3 ∈ [−10, 10] and u5 ∈ [−10, 10],
where different colors represent different chaotic attractors
in Fig. 7(a), respectively.

Fig. 7(b) depicts six typical chaotic attractors which
are observed in the basin of attraction. And the initial
values of the attractors are selected from different color

FIGURE 6. Coexistence of attractors in the (u2, u5) plane for the initial
conditions U0 = (0.5, 0.5, 1, 1, 1) and U1 = (0.5, 0, 0.5, 0.1, 0.1).

points in the basin of attraction. In Fig. 7(b), the red
attractor corresponds to the initial value (0.5, 1, 1, 1,−6)
with LEs (0.2066, 0, 0,−1.0036,−1.2121), the blue attrac-
tor corresponds to the initial value (0.5, 1, 4, 1,−6) with
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FIGURE 7. The basin of attraction and the coexisting chaotic attractors
with initial condition (0.5, 1, u3, 1, u5) when a = 4.

LEs (0.2371, 0, 0,−0.9983,−1.2396), the green attractor
corresponds to the initial value (0.5, 1,−2.8, 1, 6) with
LEs (0.2269, 0, 0,−0.9977,−1.2330), the yellow attractor
corresponds to the initial value (0.5, 1, 6, 1, 6) with LEs
(0.2053, 0, 0,−1.0034,−1.2048), the cyan attractor cor-
responds to the initial value (0.5, 1, 8, 1,−3) with LEs
(0.2497, 0, 0,−0.9978,−1.2482) and the pink attractor cor-
responds to the initial value (0.5, 1, 6.8, 1,−10) with LEs
(0.2061, 0, 0,−1.0012,−1.2001), respectively.

C. THE COEXISTENCE OF INFINITELY
MANY ATTRACTORS
Extreme multi-stability means that the coexistence of an
infinite number of attractors exists in a nonlinear system.
And it can be obtained in a nonlinear dynamical circuit or
system [28], [33], [35]. To further confirm the infinite number
of coexisting attractors, the coexisting bifurcation diagrams
with the change of initial conditions and phase diagram of
attractors with different amplitudes are drawn.

Here, the parameter a = 5 is set and the initial
conditions versus b are considered. When b is gradually
increased from −2 to 2, coexisting bifurcation diagrams are
shown in Fig. 8, where the green, cyan, pink, red and blue
branches are yielded from initial conditions (b, 0.5, 0.5, 1, 1),
(0.5, b, 0.5, 1, 1), (0.5, 0.5, b, 1, 1), (0.5, 0.5, 0.5, b, 1) and
(0.5, 0.5, 0.5, 1, b), respectively. The coexistence of attrac-
tors with different amplitudes is found, which means that
coexistence phenomenon of infinitely many attractors in the

FIGURE 8. Coexisting bifurcation diagram versus initial conditions when
a = 5.

proposed system. We only pick initial values selected ran-
domly in Fig. 8, and the coexistence of infinitely many attrac-
tors as plotted in Fig. 9.

In Fig. 9, the coexistence of infinitely many chaotic
attractors at a = 5 and the the coexistence of infinitely
many periodic attractors at a = 7 with different initial
conditions are discovered, where the black attractors match
the initial value (0.5, 0.5, 0.5, 2, 1), the yellow attractors
match (0.5, 0.5, 0.5, 1, 1.5), the blue attractors match (0.5,
0.5, 0.5, 0, 1), the purple attractors match (0.5, 0.5, 0.5,
1,−1.6), the pink attractors match (0.5, 0.5,−1.4, 1, 1),
the green attractors match (0.5, 0.5, 0.5, 1, 1), the cyan attrac-
tors match (0.5, 2, 0.5, 1, 1) and the red attractors match
(0.5,−1.5, 0.5, 1, 1). In fact, for more different initial values,
more attractors could be found. Fig. 9 clearly disclose the
coexistence of infinite many chaotic and periodic attractors,
which indicates that there indeed exists extrememultistability
in system.

It is worth mentioning that the proposed system (2) has
the coexistence of infinitely many attractors because of its
infinite equilibrium points. This property of extreme multi-
stability is not reported in the Lorenz CVCSs in [15], [16],
[19] and the real-variable systems in [28], [31]–[33], [35].

V. SPECTRAL ENTROPY (SE) AND C0 COMPLEXITY
Complexity is an important reference to measure dynamic
characteristics of a chaotic system. Up to now, there are
several main algorithms for measuring the complexity of
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FIGURE 9. Coexisting infinitely many attractors when a = 5 and a = 7,
respectively.

FIGURE 10. SE and C0 complexity versus parameter a for the initial
condition U0 = (0.5, 0.5, 1, 1, 1).

chaotic sequences, such as intensive statistical method [36],
multiscale entropy (MSE) [37], spectral entropy (SE) [38],
and C0 complexity [39]. In particular, C0 and SE complexity

algorithms often have been used to analyze information secu-
rity of the system in chaotic secure communication, because
of their less parameters, faster calculation speed, and higher
accuracy [20]. The SE value is obtained through the energy
distribution in the Fourier transform domain and Shannon
entropy. The main idea of C0 complexity is to decompose
the sequence into regular and irregular components. And
its measure value is the proportion of irregular components
in the sequence. Here, the SE and C0 complexity of the
complex system versus parameter a at the initial condition
U0 = (0.5, 0.5, 1, 1, 1) are shown in Fig. 10, they have
the similar changing trend, although the values are differ-
ent. Compared with the Lyapunov exponent spectrum and
bifurcation diagram in Fig. 10, SE and C0 complexity are
consistent, which means that complexity can also reflect the
dynamic characteristics of a chaotic complex system.

The value of SE complexity for proposed CVCSs has
obvious change for the period, whereas it has relatively small
change for the chaos like the real-variable system [21]. The
value of C0 complexity has obvious change for both period
and chaos. It is noted that the SE complexity of two-butterfly
attractor at a = 3.61 is biggest in Fig. 10(a), and the C0
complexity of chaotic attractor with a = 4.56 is the biggest
in Fig. 10(b).

VI. CONCLUSION
This paper studied dynamical properties of complex-variable
chaotic systems with circular equilibria. Numerical simula-
tions displayed that the proposed system had a number of rich
and interesting dynamic phenomenon. Furthermore, chaotic
sea about chaotic attractors was revealed in the basin of
attraction. In particular, the coexistence of infinitely many
chaotic and periodic attractors with different values of control
parameter were discovered in coexisting bifurcation diagram
versus initial conditions. The results of spectral entropy (SE)
and C0 complexity were matched well with Lyapunov expo-
nent spectrum and bifurcation model. Only some prelimi-
nary and empirical experimental results were reported, much
more underlying dynamical properties and their applications
deserve further exploration.
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