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ABSTRACT Remaining useful life (RUL) prediction of lithium-ion batteries can reduce the risk of battery
failure by predicting the end of life. In this paper, we propose novel RUL prediction techniques based on long
short-term memory (LSTM). To estimate RUL even in the presence of capacity regeneration phenomenon,
we consider multiple measurable data from battery management system such as voltage, current and
temperature charging profiles whose patterns vary as aging. Unlike the traditional LSTM prediction that
matches input layer with output layer as one-to-one structure, we leverage many-to-one structure to be
flexible for various input types and to substantially reduce the number of parameters for better generalization.
Using the NASA lithium-ion battery datasets, we verify the accuracy of the proposed LSTM-based RUL
prediction. The experimental results show that the proposed single-channel LSTM model improves the
mean absolute percentage error (MAPE) by 39.2% compared to the baseline LSTM model. Furthermore,
the proposed multi-channel LSTM model significantly improves the MAPE, e.g., by 63.7% compared to
the baseline; the proposed model achieves 0.47–1.88% of MAPE while the state-of-the-art baseline LSTM
shows 0.6–6.45% of MAPE.

INDEX TERMS Lithium-ion battery, long short-term memory, remaining useful life, capacity estimation.

I. INTRODUCTION
Lithium-ion batteries are now widely used for many appli-
cations such as home appliances, smartphones, power tools,
energy storage systems and electric vehicles because of
high energy density, high electromotive force, high output
voltage, low self-discharge, low voltage drop and easy man-
agement [1], [2]. However, battery degradation begins imme-
diately after batteries are manufactured, and when 70% or
80% of initial capacity remains, batteries need be replaced
for safe operation [3]. Thus, it is important to predict when
battery life will be over [4].

Prognostics and health management (PHM) technology
collects status information frommachines, facilities, aviation,
and power plants to detect abnormalities of the system and
to optimize facility management by proactively predicting
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the point of failure through analysis and predictive verifica-
tion [1]. The PHM in the battery can be seen as predicting
the remaining useful life (RUL) to prevent losses from unex-
pected failures in advance [5], [6].

Batteries are not linearly degraded but are subject to degra-
dation with irregular regeneration. Therefore, in order to
accurately predict the RUL of battery, battery characteristics
other than the current capacity need to be considered. In addi-
tion, the battery produces electricity through electrochemical
reaction, and the total available capacity decreases as the bat-
tery is repeatedly charged and discharged. That is, the active
material that affects the output power and the available capac-
ity of battery are reduced due to repeated chemical reactions,
and this results in performance degradation. Therefore, it is
important to exploit diverse data related to battery life for
accurate RUL prediction [7].

Battery RUL prediction approaches can be categorized
into three cases: experience-based methods, model-based
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methods and data-driven methods. Experience-based
methods predict RUL using the stochastic deterioration dis-
tribution that does not require complex theories but have
the drawback of non-real-time monitoring [8]. Model-based
methods update the physical model in real-time from mon-
itored data of usage conditions/defects to predict RUL [9].
While accurate RUL prediction is possible without using a
large volume of data, there are not well-established failure
physical models. Finally, data-driven methods obtain the
relationship using machine learning techniques from the
monitored data of usage conditions/defects and extrapolate
it into future conditions.

Specifically, data-driven methods rely solely on histori-
cal capacity degradation data rather than requiring explicit
mathematical models of battery degradation or internal mech-
anisms of the battery [10]–[12]. For example, Nuhic et al.
used support vector machine (SVM) to predict lithium-ion
battery’s state of health (SoH) and RUL [10], and Liu et al.
proposed the relevance vector machine (RVM) algorithm,
an online training method, to improve the accuracy of RUL
prediction [11]. Patil et al. have devised an online multi-stage
SVM method utilizing battery voltage and temperature data
as characteristic parameters to improve the accuracy of
RUL prediction [12]. However, these algorithms require a
large amount of historical data to learn the patterns of bat-
tery capacity degradation, and in case battery degradation
data are highly nonlinear, forecasting accuracy may not be
guaranteed.

To overcome these limitations, neural network tech-
niques are employed to predict the lithium-ion battery
RUL [13]–[15]. Liu et al. introduced the adaptive recurrent
neural network (RNN) for predicting RUL by estimating the
dynamic state of battery [13]. Using NASA’s battery data
on lithium-ion degradation, the authors verified that RNN
is better than RVM and particle filter techniques. However,
RNN has the long-term dependency problem [16] as the
number of cycles (i.e., charging and discharging) increases.
Very recently, Zhang et al. [14] used long short-term mem-
ory (LSTM) to reflect long-term memories of battery degra-
dation tendency. In addition, combining LSTM and other
model is proposed for RUL prediction [15]. However, these
LSTM predictions did not capture the capacity regenera-
tion, the irregular capacity increase, which cannot be well
predicted by using capacity data only. In addition, LSTM
basically requires a large number of parameters for training.
To overcome the shortcoming of LSTM with a large number
of training parameters, Xiao et al. [17] used gated recurrent
unit (GRU) to estimate the state of charge, and Song et al. [18]
used GRU to predict the battery RUL. Song et al. found
that GRU outperforms RVM, but they do not consider using
various data as an efficient model structure.

In order to significantly improve the prediction accu-
racy even in the presence of capacity regeneration, we pro-
pose two learning methods using LSTM. We leverage
the multi-channel measurable data of voltage, current and
temperature charging profiles from battery management

system (BMS) whose patterns vary with cycles as aging.
In order to use this various data efficiently, unlike the tradi-
tional LSTM prediction that matches input layer with output
layer as one-to-one structure (the same size of capacity vec-
tors for input and output) [19], [20], we match input layer
with output layer as many-to-one structure. The proposed
LSTM-based RUL prediction method is partially related to
our previous work [7]. However, [7] was focused on capacity
estimation at the current cycle, but not on prediction. To verify
the proposed techniques, we use the NASA battery datasets
that exhibit diverse degradation patterns with different num-
ber of cycles.

We summarize our key contributions as follows.
First, unlike previous methods using single-channel data
only, i.e., capacity per cycle, we show that leveraging
multi-channel charging profiles of voltage, current, and tem-
perature significantly improves the RUL prediction accu-
racy even in the presence of capacity regeneration. Second,
we propose to use the many-to-one structure to accommodate
the multi-channel input for LSTM-based RUL prediction.
This structure change reduces the number of parameters
drastically, which is beneficial for generalization as well.
On average, the number of parameters of the baseline LSTM
is 22,295, while the number of parameters of the proposed
LSTM is 725 in the case of single-channel and 2,772 in
the case of multi-channel, which is an order of magnitude
improvement. Third, our experiments show that the proposed
methods significantly improve the RUL prediction accuracy.
In the case of using single-channel data (capacity), the pro-
posed method achieves 1.71% of mean absolute percentage
error (MAPE) while the baseline shows 2.81% of MAPE.
In the case of using multi-channel charging profiles, the pro-
posed method achieves 1.02% of MAPE, which is 63.7%
improvement over the baseline. Furthermore, the proposed
technique outperforms other deep learning-based methods
such as RNN, GRU and simple recurrent unit (SRU) [21] by
44.6%, 32.5% and 52.1%, respectively.

The rest of this paper is organized as follows. Section II
describes battery capacity degradation and its relationship
with charging profiles of voltage, current, and temperature.
Section III describes traditional RUL prediction and the pro-
posedmulti-channel LSTMmethod.We present learning pro-
cess and model selection in Section IV and the experimental
results in SectionV, followed by the conclusion in SectionVI.

II. BATTERY DATA
A. BATTERY CAPACITY DEGRADATION
We use the battery datasets of NASA Prognostics Center of
Excellence Data Repository, which consists of three different
operating profiles of charging, discharging and impedance
at room temperature [22]. Battery charging is performed
by the constant-current constant-voltage (CCCV) principle;
charging is done with the constant current of 1.5A until the
voltage reaches the limit of 4.2V, then the voltage remains
constant until the current drops to 20mA. For batteries #5, #6,
#7, and #18 (following the numbering of the NASA datasets),
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TABLE 1. Specification of batteries of NASA Prognostics center of excellence data repository.

FIGURE 1. Capacity degradation over charging/discharging cycle.

discharging is done at constant current of 2A until the cell
voltage drops to 2.7V, 2.5V, 2.2V and 2.5V, respectively.
Table 1 summarizes the charging and discharging operation.

To quantify battery degradation, state of health (SoH) is by
defined using capacity as follows [23]:

SoH (%) =
Ck
C0
× 100 (1)

where C0 is the initial capacity and Ck is the measured
capacity at cycle k . Starting from the different initial capac-
ities, the batteries continuously degrade over time, and the
final capacity of batteries #5, #6, #7, #18 are 70.5%, 57.7%,
75.2%, and 73.0%, respectively as shown in Table 1. The
end of battery life is defined when the remaining capacity is
70 to 80% of the initial capacity, depending on applications.
To fully utilize all four battery datasets, we set the end of
life as the maximum retention at the last cycle. Fig. 1 shows
the capacity degradation over cycle. Note that battery #5, #6,
#7 has data measured up to 167 cycles while battery #18 has
data measured up to 130 cycles only.

B. DATA ACQUISITION FROM CHARGING PROCESS
During charging, lithium-ions escape from the electrode
particles, and conversely, lithium-ions enter the electrode
particles during discharging. Lithium-ions are scattered irreg-
ularly across the surface of battery particles. The larger the

irregularity, the more the battery particles are affected, and
battery life becomes shorter. Thus, to predict the RUL of bat-
tery, we identify the characteristics of charging or discharging
process using data. During discharging process, it is difficult
to accurately measure or calculate the internal parameters
because current varies rapidly over time. In addition, dis-
charging pattern contains high randomness depending on the
battery owner’s usage pattern. By contrast, charging process
is usually based on preset protocols, and the external electri-
cal performance can be easily measured. Hence, in order to
capture how internal battery parameters change along with
aging, we leverage data from charging cycle.

C. MULTI-CHANNEL CHARGING PROFILES OF VOLTAGE,
CURRENT, AND TEMPERATURE
Fig. 2 shows the charging profiles of voltage, current and tem-
perature for different remaining capacities (i.e., SoH of 100%,
90%, 80% and 70%). As can be seen, the voltage of the aged
battery reaches 4.2V earlier than the fresh one, and the current
of the aged battery begins to drop from the constant current
earlier than the fresh one. In addition, the aged batteries
reach the maximum temperature faster than the fresh battery.
This shows that the charging profiles of voltage, current, and
temperature depend on SoH, and we leverage these multi-
channel charging features to predict the remaining battery
capacity in addition to historic capacity data {Ck}.

D. CAPACITY REGENERATION
Lithium-ions collected in the negative electrode move to the
positive electrode during discharging, and electricity is gen-
erated. On the contrary, lithium-ions move from the positive
electrode to the negative electrode during charging. As the
lithium-ions move, unnecessary movement of negative-ions
can cause unwanted secondary reactions on the electrode
surface, resulting in poor battery performance, and degrada-
tion occurs. Interestingly, however, there is a re-balancing
phenomenon of active materials and relaxation of gradients
produced due to the current flow in the rest time, which
increases the usable capacity of the next cycle [24]. This
phenomenon is called capacity regeneration. Capacity regen-
eration alters the tendency of capacity degradation curve and
affects the performance of the RUL prediction model. Hence,
it is crucial to consider the capacity regeneration phenomenon
in battery RUL prediction.
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FIGURE 2. Battery charging profiles for various state of health.

III. METHODOLOGIES
A. LONG SHORT-TERM MEMORY
LSTM has been widely used for RUL prediction because
LSTM is good for time series prediction [1], [15], [19], [20].
The basic structure of LSTM is as follows. Let xk denote the
input at the current time step k and hk−1 denote the output
of the hidden layer at the previous time step k − 1. The
LSTM network architecture is shown in Fig. 3. The core of
LSTM is the cell state ck , which corresponds to the upper

FIGURE 3. The cell structure of LSTM.

horizontal line in Fig. 3. The cell state allows the gradient to
be well propagated even though the state has elapsed for quite
a long time, and thus LSTM alleviates the vanishing gradient
problem of the basic RNN.

The first unit of LSTM is the forget gate fk , and the input
gate specifies the information to update. The new candidate
value gk is temporarily saved before a new cell state value is
updated. At each stage, hk−1 and xk are received as input, and
the output is calculated with the parameters of weights and
biases, and the sigmoid or rectified linear unit (ReLU) activa-
tion function. We use ReLU activation function to overcome
the vanishing gradient problem. The gates are calculated as
follows:

fk = σ (W f
x xk +W

f
h hk−1 + b

f ). (2)

ik = σ (W i
xxk +W

i
hhk−1 + b

i), (3)

gk = ReLU (W g
x xk +W

g
h hk−1 + b

g). (4)

Then, the forget gate fk is mixed by elementwise product with
the cell state at the previous time step ck−1, and the input
gate ik is mixed by elementwise product with new candidate
value gk . The sum of these two determines the cell state ck ,

ck = fk � ck−1 + ik � gk . (5)

The last unit is the output gate ok . This gate determines the
information to output. Similar to the previous steps, the output
gate is calculated as follows:

ok = σ (W o
x xk +W

o
h hk−1 + b

o). (6)

Finally, the hidden state ht is computed by

hk = ok � ReLU (ck ). (7)

In using LSTM for RUL prediction, the state-of-the-
art technique uses only the historic capacity data {Ck} as
input [1], [15], and the input and output sizes are same [19],
[20]. However, the same size of input and output implies
that the data type of input and output should be identical.
Thus, the traditional input and output formats of LSTM-based
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FIGURE 4. Input/output format of LSTM-base RUL prediction.

RUL prediction is given by
(Ck+2−L , . . . ,Ck+1)
(Ck+3−L , . . . ,Ck+2)
· · ·

(Ck+1, . . . ,Ck+L)

→ (Ck+L+1, . . . ,Ck+L+P) (8)

where L is the input size, and P is the prediction interval.
In this one-to-one structure, the length of the input is the same
as that of the output, i.e., L = P. The LSTM of using (8)
[19], [20] serves our baseline hereafter, and its structure is
shown in Fig. 4(a).

B. PROPOSED LSTM MODEL FOR RUL PREDICTION
In one-to-one structure, training is based on a single type of
time series data. However, it may not be efficient for RUL
prediction when training data are limited. Furthermore, addi-
tional data such as voltage, current, and temperature cannot
be used for input, either. Thus, we propose to use another
structure, as shown in Fig. 4(b). In this many-to-one struc-
ture, four different types of input vectors (voltage, current,
temperature, and capacity) are associated with single output
value (capacity), which also greatly contributes to reducing
the number of parameters.

1) MC-LSTM
The input of the proposed model takes the following
multi-channel charging profiles of voltage, current, and tem-
perature in addition to capacity as follows:

Dk =


V 1
k ,V

2
k , . . . ,V

S
k

I1k , I
2
k , . . . , I

S
k

T 1
k ,T

2
k , . . . ,T

S
k

Ck

(9)

(Dk+1, . . . ,Dk+L) → Ck+L+P (10)

where V s
k , I

s
k , and T

s
k are the s-th sample point of voltage,

current, and temperature at k-th cycle, respectively and S is
the number of sample points during one charging profile. The
proposedmethod is calledmulti-channel LSTM (MC-LSTM)
and can take various features that affect the capacity change.

2) SC-LSTM
In order to investigate the advantage of structural change,
we also consider the case of Dk = Ck i.e., a simplified
version of many-to-one structure without usingmulti-channel
charging profiles. This is called single-channel LSTM
(SC-LSTM), and we will see SC-LSTM is also better than
the baseline LSTM.

IV. LEARNING PROCESS AND MODEL SELECTION
A. OVERALL FRAMEWORK
In Fig. 5, we overview the proposed framework for predicting
battery RUL exploitingmulti-channel charging profiles based
on LSTM. This framework consists of three steps: data pre-
processing, training, and test. In the first step, abnormal data
is removed by data cleansing, and we average the data over
sampling interval to prevent oscillation in short time interval.
Then, we performmin-max normalization and divide the data
into training set, validation set and test set. In the second
step, the model selection is performed by determining the
hyperparameters through cross-validation. In the third step,
we use the model determined in the previous step to perform
the RUL prediction and progress performance evaluation.

B. DATA PREPROCESSING
To obtain the four capacity degradation curves as shown
in Fig. 1, data cleaning is first performed. Before using capac-
ity degradation data for the experiment, abnormal values are
replaced by the average of highly correlated data. For efficient
learning of LSTM, it is not desired to utilize all data, even
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FIGURE 5. An overall framework of the proposed RUL prediction.

if there are many voltage, current and temperature points
in the charging process according to the BMS’s settings.
We choose S = 10 in (9), i.e., 10 sample points for each
charging profile of voltage, current and temperature as done
in [7], [25]. The corresponding input data format is shown
in Fig. 6.

After data cleansing, we proceed with data normalization
because voltage, current, temperature, and capacity have dif-
ferent scales. In our work, min-max normalization is used as
follows [26]:

zsk =
xsk −min(x)

max(x)−min(x)
s ∈ {1, . . . , S} (11)

where x is a collection of all charging cycles
{
xsk
}
. The values

of voltage, current, and temperature in (10) are the ones after
min-max normalization. When presenting the final estimated
capacity results, denormalization is performed.

C. MODEL SELECTION
Since acquiring battery charging and discharging data is an
expensive process both in terms of time and cost, the NASA
datasets of battery charging and discharging are commonly
used as a common reference [7], [27]–[29]. Since the avail-
able data is limited, we use cross-validation to determine
hyperparameters. Specifically, for example, when the bat-
tery #5 is used for a test set, two battery sets out of batteries
#6, #7, and #18 are used for training set, and the remain-
ing one is used for validation set. This process is repeated
three times for each validation set, i.e., we apply 3-fold
cross-validation. The detailed process is illustrated in Fig. 6.
The hyperparameters are the learning rate, the number of
iterations, the number of LSTM cells, and the size of hid-
den nodes. For the performance metric, we mainly use the
mean absolute percentage error (MAPE) while the root mean
square error (RMSE) and the mean absolute error (MAE) are

FIGURE 6. Input format and configurations for training, validation and testing.
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TABLE 2. Cross-validation error (MAPE) in determining the number of
LSTM cells.

TABLE 3. Cross-validation error (MAPE) in determining the number of
hidden nodes.

also considered:

MAPE(%) =
100
K

K∑
k=1

∣∣∣Ck − Ĉk ∣∣∣
Ck

, (12)

RMSE =

√√√√ 1
K

K∑
k=1

(Ck − Ĉk )
2
, (13)

MAE =
1
K

K∑
k=1

∣∣∣Ck − Ĉk ∣∣∣ (14)

where Ck is the ground-truth capacity, Ĉk is the estimated
capacity, and K is the number of cycles.
Now we determine the learning model. All frameworks

are built by Tensorflow in Python [30] with the Intel
i7-7700 CPU of 3.60 GHz and 16 GB memory, and the aver-
age training time is less than 20 seconds. The iterations are
set to 500 using early stopping [31]. The model is optimized
using the Adam-optimizer with a recommended learning
rate of 0.001 [32]. For an activation function, ReLU [33] is
adopted. The selection process of sequence length (the num-
ber of LSTM cells) is shown in Table 2. The number of hidden
nodes specifies the vector size of the LSTM internal values,
and shown in Table 3. We determine the hyperparameters for
each test battery separately, and in the Table 2 and Table 3 we
show them in 5 or 10 units, but in the experiment, we compare
MAPE every 1 unit. As a result, our final learning model is
such that the number of LSTM cells is 10, the number of
hidden nodes is 9 for battery #5, 58 for battery #6, 13 for
battery #7, and 4 for battery #18. The final model is shown
in Table 4.

V. EXPERIMENT RESULTS
In this section, we provide the experimental results for
the cases of battery test sets #5, #6, #7, and #18, respec-
tively. Among various neural network techniques, we use the

TABLE 4. Selected structure.

LSTM in [1], [15], [19], [20] as our baseline since LSTM
is known to outperform other methods such as deep neural
network (DNN) or convolutional neural network (CNN) for
battery capacity estimation [7].

A. CAPACITY REGENERATION AND RUL PREDICTION
1) MODERATE CAPACITY REGENERATION
We first consider the case when the capacity regeneration
is moderate, which is observed in battery #5. In this case,
the baseline LSTM is slightly better than the proposed one;
the MAPE of the baseline is 0.6% while MC-LSTM achieves
1.05% as summarized in Table 5. As can be seen in Fig. 7(a),
battery #5 has a rather regular capacity degradation pat-
tern without showing noticeable capacity regeneration, and
thus, the baseline LSTM using one-to-one structure works
well. However, capacity regeneration occurs typically in
lithium-ion batteries [1], [7], [15] as we will see in the cases
of batteries #6, #7, and #18.

2) CONSPICUOUS CAPACITY REGENERATION
Noticeable capacity regeneration is observed in
batteries #6, #7 and #18. To accurately capture this regen-
eration phenomenon, we apply two techniques as proposed
in Section III-B: many-to-one input/output structure and
multi-channel charging profiles. Since RUL prediction is
important at every cycle, many-to-one structure is preferred
rather than the commonly used many-to-many or one-to-one
(baseline) [19], [20]; many-to-many or one-to-one structure
shows excellent performance in time-series forecasting, but
training in such a way cannot capture the exact regeneration
pattern. To demonstrate this, we first show the result of many-
to-one structure but without using multi-channel charging
profiles, i.e., SC-LSTM. In overall, the proposed SC-LSTM
has 39.2% of MAPE improvement compared to the baseline
LSTM. Specifically, as shown in Table 5, the MAPEs are
reduced from 2.38% to 0.75% (battery #6), from 1.80% to
1.53% (battery #7), and from 6.45% to 3.09% (battery #18),
respectively. MAPE is more noticeably reduced when capac-
ity regeneration is conspicuous, see Figs. 7 (b) and (d), which
shows the significance of many-to-one structure in using
LSTM for RUL prediction.
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TABLE 5. RUL prediction result.

FIGURE 7. RUL prediction result.

Performance improvement is further significant when
multi-channel charging profiles of voltage, current and
temperature are collectively incorporated. In overall, the pro-
posed MC-LSTM outperforms the baseline LSTM; the per-
formance has been enhanced by up to 63.7% in terms of
MAPE. Specifically, the MAPE of the proposed MC-LSTM
is 0.70% for battery #6, 0.47% for battery #7, and 1.88%
for battery #18, which are substantially lower than those
of the baseline. Interestingly, capacity regeneration immedi-
ately occurs at the first RUL prediction cycle in the case of
battery #6, see Fig. 7(b). Nevertheless, MC-LSTM closely

follows the true values while the baseline does not catch them
at all. In the case of battery #18, RUL prediction is challeng-
ing because the capacity degradation pattern is different from
others, see Fig. 1. Nevertheless, the proposed methods show
much smaller MAPEs than that of the baseline.

B. COMPARISON WITH VARIOUS RNN MODELS WITH
MULTI-CHANNEL CHARGING PROFILES
Onemight wonder if other RNNbasedmodels would perform
better for RUL prediction. To investigate this, we further com-
pare the proposed LSTMmethod with basic RNN, GRU, and
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TABLE 6. Comparison with various RNN based models with multi-channel charging profiles.

FIGURE 8. Comparison with various RNN based models with multi-channel charging profiles.

SRU, all of which also use multi-channel charging profiles.
The structures of RNN, GRU, and SRU are determined by
cross-validation aswe did in Section IV-C. The selected struc-
ture and hyperparameters are the same as the case of LSTM
except for the number of hidden nodes, which are 25.25,
33.75, 34.25 for RNN, GRU, and SRU, respectively. Since
many-to-one structure shows better RUL prediction, we apply
that to all models. The result is summarized in Table 6. As can
be seen, MC-LSTM outperforms all MC-RNN, MC-GRU,
andMC-SRU; for example, in the case of MAPE,MC-LSTM

is better than the best of three by 32–52%. The average
MAPEs for all batteries are summarized in Table 7; the results
are 1.84%, 1.51% and 2.13%, and 1.02% for MC-RNN,
MC-GRU, MC-SRU, and MC-LSTM, respectively. Since
RNN has the simplest structure out of four, the highest error
performance is not unusual. In the case of GRU, the reason
for high error comes from that GRU has only two gates
while LSTM has three. The internal memory cell of GRU
is not different from the hidden state value seen from the
outside, so the LSTM is more powerful and flexible. In the
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FIGURE 9. Comparison with various training set ratios.

TABLE 7. Model complexity and MAPE comparison.

case of SRU, most of RNN’s operations are independent of
recurrence, which is good for fast computation. However,
it results in poor accuracy in the presence of capacity regener-
ation. Fig. 8 shows the RUL prediction of four methods, and
MC-LSTMmore closely follows the real data than other three
methods.

C. MODEL COMPLEXITY AND RUL PREDICTION
Table 7 also shows the number of parameters (i.e., the model
complexity) and RUL prediction accuracy; LSTM has an
iterative structure in time, and the number of parameters is
affected by the size of input data and the size of hidden
nodes. Since the proposed LSTMuses many-to-one structure,
the number of required hidden nodes is much smaller than
one-to-one structure of the baseline LSTM. This significantly
reduces the number of parameters, e.g., by 8 to 30 times
smaller than that of the baseline, and this is also beneficial
for better generalization. In the case of MC-RNN, MC-GRU
and MC-SRU, the number of hidden nodes is determined by

cross-validation, and it results in the increased number of
parameters as can be seen in Table 7.

D. PREDICTION ACCURACY WITH VARIOUS STARTING
POINTS
As the starting point of RUL prediction shifts to early cycles,
the models can leverage fewer data (i.e., small training
set), which makes RUL prediction harder. To investigate the
impact of varying the size of training set, we perform exper-
iment by setting the size of training set as 80%, 60%, 40%
and (around) 20% of the whole cycles. As we discussed in
Section IV-C and Fig. 6, for one test battery set, three other
battery sets are used for training and validation sets. Since
the number of available cycles is different for four batteries,
the smallest size of training set is either 24% or 30%, depend-
ing on the types of test batteries. The earliest starting point is
40th cycle because the number of LSTM cells is 10 and the
prediction interval is 30. The corresponding results are shown
in Fig. 9, Table 8, Table 9, Table 10, and Table 11.

E. ESTIMATING THE END OF LIFE
Finally, we estimate the end of life (EoL), i.e., when battery
capacity reaches the failure threshold; this is themain purpose
of RUL prediction. We compare the estimation accuracy of
EoL, and the result is summarized in terms of mean, standard
deviation, and 95% confidence bound in Table 12. It should
be noted that, due to capacity regeneration, EoL need to be
defined as the last moment to hit the EoL threshold, rather
than the first moment. Recall that we set the EoL when
SoH reaches 75.2%. As can be seen in Table 12, the base-
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TABLE 8. Comparison with various starting points (Battery #5).

TABLE 9. Comparison with various starting points (Battery #6).

TABLE 10. Comparison with various starting points (Battery #7).

TABLE 11. Comparison with various starting points (Battery #18).

TABLE 12. End of life (EoL) accuracy in terms of mean, standard deviation (STD) and confidence bound (CB).

line estimates the EoL too early. For example, in the case
of battery #6, the true EoL is at 92th cycle, but the base-
line’s estimation is at 75th cycle. In the case of battery #18,
the true EoL is at 124th cycle, but the baseline’s estimation
is at 98th cycle. Considering that lithium-ion batteries are
expensive, precocious estimation of EoL results in wasting
usable batteries. By contrast, MC-LSTM estimates the EoL
of batteries accurately, and also before the true EoL, which
is important for safe operation; for example, in the case of

batteries #6 and #18, MC-LSTM’s estimation is at 90th cycle
and at 119th cycle, respectively, which are only a few cycles
ahead of the true values. This demonstrates that accurate EoL
estimation is possible under the presence of capacity regen-
eration. In the case of MC-RNN, MC-GRU and MC-SRU,
the end of life prediction is better than the baseline LSTM
or SC-LSTM, but in overall, MC-LSTM predicts the most
accurately, i.e., the closest to the true EoLwhile not exceeding
that.
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VI. CONCLUSION
In this paper, we proposed data-driven LSTM-based RUL
prediction methods for lithium-ion batteries. We proposed to
use the many-to-one structure instead of the one-to-one struc-
ture to accurately predict RUL. We demonstrated that this
structure change is effective to capture the capacity regenera-
tion phenomenon. In addition, the many-to-one structure sig-
nificantly reduces the number of parameters, which is desired
for better generalization.We then exploited the multi-channel
charging profiles of voltage, current, and temperature, which
are the essential features for RUL prediction. Experiments on
NASA lithium-ion battery datasets verified that the proposed
methods predict RUL accurately. The proposed MC-LSTM
improves the MAPE by 63.7% compared to the baseline and
achieves 0.47%–1.88% of MAPE in overall. Furthermore,
MC-LSTM is significantly better than the baseline in esti-
mating the EoL, which leads to utilizing batteries without
prematurely declaring the end of use.
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