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ABSTRACT Fuel cell/battery hybrid construction vehicles (FCHCVs) have shown great promise; however,
the complex working conditions of construction vehicles pose considerable challenges to the performance
and energy management of a fuel cell/battery hybrid system. In this paper, multiobjective optimal model
predictive control (MOMPC)-based energy management for FCHCVs is explored. A system model is estab-
lished that includes an economic model and a lifetime model. In the MOMPC framework, multiobjective
optimization is conducted to enhance fuel cell durability and battery lifetime while minimizing costs. Since
the energy management problem is a nonlinear problem with hard state constraints, it can be difficult to
resolve online. The multiobjective approach employs an adaptive weight-adjustment method based on a
fuzzy logic algorithm. An economic evaluation of the FCHCV is conducted over its life cycle with respect
to the power source size. Simulation results indicate economic savings and prolonged battery lifetime with
the MOMPC-based strategy, compared with conventional benchmarks.

INDEX TERMS Model predictive control, multiobjective optimization, energy management, fuel cell,
construction vehicle.

I. INTRODUCTION
Construction vehicles are the most commonly used equip-
ment in the construction industry. These vehicles have high
fuel consumption due to their working environment. Emis-
sions from off-highway vehicles tend to substantially exceed
those of road vehicles. As such, extensive efforts have
focused on energy-saving strategies and ways to reduce the
emissions of construction vehicles [1]. In recent years, fuel
cell hybrid construction vehicles (FCHCVs) have been devel-
oped to address these issues, as they are more environmen-
tally friendly [2]–[4].

Roland Berger Strategy Consultants recently reported the
use of commercialised fuel cells for application to numer-
ous construction vehicle types and that several government
agencies and enterprises had begun to employ fuel cell
loaders, excavators, tractors, and forklifts with this cleaner
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technology [5]. Commercial FCHCVs have also been
implemented for mining, port and airport operations.
The global fuel cell market is expected to grow to
US$24.81 billion by 2025 at a compound average growth
rate of 20.9% [6]. The first fuel cell hybrid underground
loader (FCHUL) was developed by Wagner Mining and Inco
in 2004 [2], [7]. Caterpillar and others jointly introduced a
FCHUL based on the R1300 underground loader [8], [9]; the
project demonstrated that FCHULs can reduce mining costs,
compared with those associated with battery underground
loaders [10]. The Columbia Electrochemical Energy Center
reported that the advantages of hydrogen energy for the min-
ing industry include the ability to discharge energy over a long
period of time, as well as reduced power consumption [11].
At the Port of Los Angeles, a fuel cell-powered electric top
loader project is in operation, and a fuel cell-powered con-
tainer handling truck is under development [12]–[14]. Fuel
cell-powered construction vehicle implementation is still far
from that required for large-scale commercialisation. Crown,
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Plug Power, and Raymond have developed pure fuel cell-
powered forklifts, obtaining somewhere in the performance
evaluation of hydrogen fuel cell forklifts, fuel reloading time,
and forklift design [15], [16]. However, the future prospects
for FCHCVs are promising, as the technologies and markets
for fuel cell vehicles (FCVs) mature.

Vehicle energy management strategies (EMSs) have a
major effect on vehicle performance, and, thus, have been
the focus of extensive research [17]. EMSs of FCVs can
be basically divided into rule based strategies and optimal
control strategies. A representative strategy of the former is
fuzzy logic-based strategy [18]. The latter are based on opti-
mization theories, such as dynamic programming (DP) [19],
Pontryagin’s minimum principle [20], equivalent consump-
tion minimization strategy (ECMS) [21], and model predic-
tive control (MPC). They are crucial in resolving the complex
energy management problems of FCVs. MPC is an important
feedback control tool that operates similar to a constrained
nonlinear dynamic optimization problem, with the character-
istics of rolling optimization and feedback correction. MPC
has attracted increasing attention from researchers studying
the energy management of FCVs [22]. Yazdani proposed
MPC-based EMS to control power split in FCVs. Amin
and Zhang proposed MPC-based EMSs for fuel-cell-battery-
supercapacitor hybrid system, respectively [23], [24]. Arce
presented a predictive model to improve performance and
durability [25]. Sun proposed MPC-based torque control
method to improve the performance of motor controllers for
high-speed and in-wheel motor drives [26]. For construction
vehicles, a predictive controller has been described for a
wheel loader constructed with a load power probability distri-
bution dependent on the distance driven [27]. Li presented a
novel ‘‘driving-behaviour-aware’’ modified stochastic MPC
method for a plug-in hybrid electric bus [28].

In the predictive EMS development of FCVs, the EMSs
commonly must solve multiobjective optimization problems
(MOPs), that achieve objectives such as energy savings, low
emissions, better power, better FCS durability, and longer bat-
tery lifetime.Multiobjective optimal model predictive control
(MOMPC) is a predictive control that specialises in solving
multiple objectives. MOMPC considers multiobjective prior-
ity processing, several iterations of optimisation, computa-
tional efficiency, real-time modifications, and other issues.
An MOMPC-based EMS that combines process economy
optimization with control performance has received much
attention [29]–[31]. MOMPC has a hierarchical MPC and a
single-layer MPC. Liu proposed a multiobjective hierarchi-
cal prediction EMS to achieve optimal fuel cell life econ-
omy and energy consumption economy for a range extended
FCVs [29]. However, the difference between the upper and
lower models results in differences regarding system optimi-
sation. When there is a time-varying disturbance, the over-
all performance and anti-disturbance ability of the control
system are poor. In a single-layer MOMPC, multiobjectives
participate in the optimization calculation of the closed-
loop control law [30]–[32]. We have explored a single-layer

MPC-based EMS for FCHCVs [22]. Due to the addition of
dynamic objectives and stability constraints, the MOMPC
can achieve higher performance than a hierarchical control
system.

In various FCVs, fuel economy is the primary objective.
Fuel cell cost and durability are the main factors restricting
various FCVs commercialisation [33], [34]. Operational costs
are more practical to the EMS development of FCHCVs.
The variable operating conditions have an important impact
on fuel cell durability [35], [36], as the complex working
conditions of engineering vehicles tend to be more severe;
therefore, fuel cell durability must be considered. Addition-
ally, the working conditions of heavy vehicles impact the bat-
tery performance of a hybrid power system. In particular, the
number of charges/discharges and the depth of discharges sig-
nificantly affect battery lifetime. FCHCV batteries must meet
peak and instantaneous power demands. High and frequent
discharge currents significantly impact battery lifetime [37].
Therefore, battery lifetime is a key factor in the EMS, as it is
directly related to the decay rate of the capacitor.

In this paper, we introduce an MOMPC-based EMS for
FCHCVs, considering the economic cost of FCHCVs, fuel
cell durability, and battery lifetime as they relate to a mul-
tiobjective optimization strategy. An important problem of
MOMPCs is that the optimization objectives tend to be incon-
sistent; therefore, it is important to prioritise the objectives
properly in solving theMOP. Traditional methods, such as the
weighted summation method, constraint method, and ranking
method, transform MOPs into single-objective optimization
problems. These methods are described below. The weighted
summation method is widely used as it is the simplest and
most efficientmethod regarding real-time response [31], [32];
however, a deep understanding of the MOPs is required
to determine the importance of each objective. The con-
straint method identifies one of the most important objec-
tives as the evaluation objective, and the other objectives are
applied as constraints [38]. The ranking method optimises
the objectives one by one, starting with the most important
objective. Additionally, there are intelligent multiobjective
optimization algorithms (IMOAs) that directly solve MOPs
using genetic algorithm [39] and particle swarm optimiza-
tion algorithm [40]. Because they can examine multiple
sets of solutions at one time, they have unique advantages
for solving large-scale MOPs. However, IMOA solutions
can be complex and difficult to achieve in real time [41];
additionally, the solutions may assume a localised solution,
as opposed to addressing the problem on a broader scale.
In this study, a weighted summation method is used to deter-
mine the importance of individual objectives using a fuzzy
logic algorithm. Each objective is assigned a variable weight
coefficient. The suitable weights are then added to the opti-
mization objectives. This optimization strategy is applied to
an MOMPC-based EMS for an FCHCV powered by a fuel
cell battery hybrid system, considering the economic cost of
the FCHCV, fuel cell durability, and battery lifetime in the
multiobjective optimization scheme.
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FIGURE 1. Fuel cell/battery hybrid construction vehicle (FCHCV) structure.

The paper is organised as follows. Section 2 establishes a
system model of the FCHCV, an economic model, and a bat-
tery lifetime model. TheMOMPC-based EMS is described in
Section 3. Simulation results and a discussion are presented
in Section 4, including economic and lifetime analyses with
power source size considerations. Finally, conclusions are
summarised in Section 5.

II. SYSTEM MODEL
A. SYSTEM DESCRIPTION
In this paper, a representative powertrain structure with a fuel
cell/battery hybrid system is used to discss the EMS of an
FCHCV. Fig. 1 presents the structure of the studied FCHCV.
The hybrid system is powered by a fuel cell stack (FCS) and
a battery pack. The FCS is connected to the DC bus through a
boost direct current (DC)/DC converter, and the battery pack
is connected to the DC bus through a bidirectional DC/DC
converter. The electric energy of the DC bus is distributed
to the traction motor and hydraulic motor via a direct cur-
rent/alternating current (DC/AC) converter, and the electronic
accessories are applied via DC/DC converters. The traction
motor drives the wheels via the powertrain (axles, transmis-
sion, and transaxle). The hydraulic motor drives hydraulic
pumps to provide power for bucket opertion and steering.

B. POWERTRAIN MODEL
In the working environment of construction vehicles, road
conditions can vary, and the bucket operation of the
construction vehicles may encounter additional unmeasur-
able loads. Here, we focus on the EMS of the FCHCV,
as opposed to specific vehicle dynamics. A simple system-
level energy balance-based powertrain model is established
for the FCHCV, which can be expressed as follows:

Preq (t) = PTM (t)+ PHM (t)+ PACCES (t) (1)
Preq (t) = PFC (t) · ηFCDC (t)
+PB (t) · ηBDC (t)PB (t) ≥ 0

Preq (t) = PFC (t) · ηFCDC (t)+
PB (t)
ηBDC (t)

PB (t) < 0
(2)

where Preq denotes the system demand power. PTM , PHM ,
and PACCES denote the demand power of the traction motor,
hydraulicmotor, and electronic accessories, respectively.PFC
denotes the power provided by the FCS. PB represents the
output or input power of the battery pack; the output power

is positive, and the input power is negative. ηFCDC and ηBDC
denote the working efficiency of the DC/DC convertor for the
FCS and the battery pack, respectively.

C. BATTERY MODEL
In this section, we describe the battery model, based on a
PNGV model, as follows [42], [43]:

UB (t) = UOCV (t)− IB (t) · RB (t)− UP (t) (3)

SOC (t) = SOC (tlast)−
I
Q
1T (4)

where SOC denotes the battery state of charge (SoC).
UOCV and UP denote the ideal open-circuit voltage and
polarisation voltage of the battery, respectively. IB and RB
denote the load current and internal resistance of the bat-
tery, respectively. These parameters are usually obtained by
identification [42], [43].

D. FUEL CELL MODEL
A representative fuel cell model is established, which can be
expressed as a semi-rational formula of a polarisation curve,
as follows [29], [44]:

UFC (t) = UOC (t)− r ·
IFC (t)
A
− AT · ln

(
IFC (t)
A

)
+B · exp

(
C ·

IFC (t)
A

)
(5)

where UOC denotes the reversible open circuit voltage, and
IFC denotes the FCS current.AT denotes the slope of the Tafel
line, and r represents the area-specific resistance. A denotes
the active area of the fuel cell, and B and C are constants in
the mass-transfer overvoltage equation.

E. LIFETIME MODEL
In this section, a fuel-cell-lifetime model and battery-lifetime
model are established. The load of construction vehicles
can vary, sometimes changing frequently and/or violently, as
opposed to the loads experienced by passenger cars or trucks.
Therefore, the fuel cell durability of an FCHCV may face
some severe challenges. Studies have shown that start–stop,
cyclic loading, and idling operations directly affect FCS dura-
bility [29], [44]–[46]; additionally, there is extensive research
on the decay model of fuel cells, which has been widely
adopted [47]. Quantitative load effects on FCSs have revealed
that high power loads and large-range cyclic load changes
have the greatest impact on fuel cell durability and life-
time [45], [48], [49]. This paper focuses on EMSs; therefore,
only the impact of high power loads and large-range cyclic
loads on fuel cell durability will be considered. A simplified
evaluation of fuel cell lifetime is given below [50].

TFC =
1P

kdeg ·
(
deg1 ·nFCcyc + deg2 ·th

) (6)

where 1P is the limited decreasing value of fuel cell per-
formance, kdeg is the accelerating coefficient associated with
the difference between laboratory and road tests. deg1 and
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FIGURE 2. Battery state of charge (SoC) depth of discharge.

deg2 represent the performance deterioration rate of the fuel
cell due to large-range load change cycling and high power
load conditions, respectively. NFCcyc and th represent load
changing cycle times and the high power load time per hour,
gained from the vehicular driving cycle.

The capacity degradation of a battery is usually defined
as the capacity loss over a certain period of operation [37].
It is generally thought that when the available capacity of
the battery decreases to 80% of the rated capacity, the ser-
vice life of the battery ends. The external factors affecting
battery lifetime and performance include charge–discharge
voltage, charge–discharge ratio, working temperature, depth
of discharge, and cycle time. To ensure the economy and
performance of the battery in use, it is necessary to estimate
the battery lifetime [51]. There are many factors that affect
battery lifetime; given the characterised load of the FCHCV,
this paper is concernedmainlywith the depth of discharge and
cycle time. Battery lifetime is closely related to its working
load. In this study, the depth of battery discharge is calculated
using the rain current counting method [52]. In the litera-
ture [51], the relationship between battery cycle time and
depth of discharge shows that the deeper the depth of dis-
charge, the shorter the cycle life. Therefore, the relationship
between battery cycle time and depth of discharge can used
to predict battery life.

The equivalent battery cycle life is calculated according
to the relationship between the depth of discharge and cycle
life [53]. The rainflow countingmethod is applied to calculate
the battery depth of discharge in the working cycles. The
main function of the rainflow counting method is to resolve
the nonlinear counting relationship between strain and time,
i.e., to determine a group of non-periodic cycles of the data
sample using the rainflow counting method. Fig. 2 shows the
change in the battery SoC in representative working cycles
of the FCHCV; the rainflow counting method is used to
identify the depth of discharge. From this, the working cycles
of the battery can be decomposed into a series of cycles with
different depths of discharge. The equivalent cycle life can be
expressed as (8). The life loss, obtained from the equivalent
cycle life, is used to predict the battery service life. In the
actual calculation, the last several cycles of load data are
applied to calculate the battery lifetime in real time.

LB =
k=n∑
k=1

L (Dk) =
k=n∑
k=1

Ncyc
(
Dfulf

)
Ncyc (Dk)

(7)

TB =
Ncyc

(
Dfull

)
LB

(8)

where n denotes the number of decomposed cycles with
different discharge depths. Ncyc denotes battery cycle times.
Dk andDfull denotes the battery cycles at k-th and 100%depth
of discharge, respectively. TB and LB denotes the battery
equivalent cycle life and service life, respectively.

F. ECONOMIC MODEL
Life cycle cost (LCC) is used to assess the product cost over
the entire life cycle. LCC usually includes costs associated
with investment, operation and maintenance, and retirement
residual value. Here, the LCC of the FCHCV is used to
identify the characteristics of an economic model of the
FCHCV. Due to the high price and limited lifetime of the
FCS and battery, the investment cost of the LCC in this
study consists mainly of three parts: the FCS cost, battery
pack cost, and machine cost. The cost of replacing the FCS
and the battery pack are considered over the lifetime of the
FCHCV, along with future price changes. The operation and
maintenance costs include hydrogen consumption, FCS oper-
ational costs, and regular vehicle maintenance. The operating
cost of the FCS is related to hydrogen consumption [45].
Only mechanical components recovery is considered in the
retirement residual value cost. The LCC can be calculated
using (9)–(12):

Ccost = Cinvest + Copera − Cret (9)

where Ccost , Cinvest , Copera, and Cret denote the LCC, invest-
ment cost, operation and maintenance cost, and retirement
residual value cost, respectively.

Cinvest = CFCS + CB + CMACH

= nkw ·
i=nFCS−1∑

i=0

(
pr−i·cfcFCS

)
+ nkwh

·

i=nB−1∑
i=0

(
pr−i·cbB

)
+ prMACH (10)

where CFCS , CB, and CMACH denote the FCS cost, battery-
pack cost, andmachine cost, respectively. nkw and nkwh denote
the FCS power (kW) and battery power (kWh), respectively.
prFCS and prB represent the unit price of the FCS and bat-
tery pack, respectively. prMACH is the price of the machine.
nFCS and nB denote the replacement times of the FCS and
battery pack, respectively. cfc and cb represent price change
coefficients of FCS and battery. Due to the gradual progress
of science and technology, the cost of the product will be
reduced. Future prices change of components replacement are
considered during the life cycle of FCHCV. It assumes that
the costs of FCS and battery are gradually reduced. According
to literatures [54], [55], the price change coefficients of FCS
and battery are set to 0.015 and 0.025, respectively.

Copera = CH2 + Caux + Creg
= prH2 · (1+ kaux) · mH2 + nreg · prreg (11)
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where CH2, Caux , and Creg denote the hydrogen cost, cost
of FCS auxiliary equipment (including humidification water,
cooling water, etc.), and vehicular regular maintenance cost,
respectively. mH2 denotes the hydrogen consumption of the
FCS. prH2 and prreg represent the price of hydrogen and
vehicular regular maintenance, respectively. kaux is a coef-
ficient, and nreg represents the number of vehicular regular
maintenance events.

Cret = kreMA · prMACH (12)

where kreMA represents the residual price ratios.

III. MOMPC BASED EMS DEVELOPMENT
A. MPC CONTROLLER DEVELOPMENT
In this section, we propose an MOMPC-based EMS for an
FCHCV. The multiobjective of the MOMPC focuses mainly
on improving the economic benefit, FCS durability, and bat-
tery lifetime of the FCHCV. The future power demand of the
FCHCV is predicted in real time using the Elman neural net-
work method and a historical power demand sequence. In the
MOMPC framework, the batter SoC is a state variable, FCS
power is used as the control variable, and the future demand
power is represented as the disturbance. In the MOMPC
framework, the optimal reference trajectory (battery SoC
reference trajectory) is obtained by solving the MOP. Then,
the MPC can track the reference trajectory to address the
impact of a disturbance on the system.

Neural networks have been applied to predict the driv-
ing parameters in a predictive EMS for various vehicles.
We have explored the prediction performance of neural
network-based predictors andMarkov chain-based predictors
in literature [22]. This paper focused on the multiobjective
predictive control, so we briefly introduced a neural network-
based predictor. We selected three-layer-structured Elman
neural network predictor to predict the power demands of
the FCHCV; the input and output of the neural network
correspond to the historical power sequence and the predicted
power sequence, respectively. The activation function of the
neural network is the sigmoid function. The number of input
nodes and output nodes are 50 and 5, respectively. It means
that the neural network prediction model predicts the future
0.5 second power according to the historical power sequence
in the last 5 seconds, each 0. 1 second corresponds to an
input or output node. The detailed processes of the predictor
can be found in the literatures [22], [56].{
Ppre (k + 1) ,Ppre (k + 2) , . . .Ppre (k + h)

}
= fNN

(
Preq (k − q) , . . .Preq (k − 2) ,Preq (k − 1)

)
|t=k

(13)

where Ppre denotes the predicted future demand power, and
fNN denotes the neural network predictor. h and k denote the
number of input nodes and output nodes, respectively.

The MOMPC-based EMS for an FCHCV must meet
several objectives: vehicular dynamic performance, system
economy, and FCS durability and battery lifetime. The EMS

should satisfy the power demand of the FCHCV in real time
for driving and operation. It should also operate efficiently to
optimise system economy. The EMS must strive to achieve
an ideal state for the FCS and battery, avoiding large currents
and varying the current frequently to prolong FCS lifetime.
Additionally, to prolong battery lifetime, a deep SoC depth
of discharge and large current should be avoided. Therefore,
in this paper, the multiobjectives of the MOMPC are as
follows:

min J = [JE , JFC , JB] (14)
JE = Ccos t_sim

∫ t

0

1
TL
dt

JFC = α1 · PFC + α2 · |PFC − PFClast |

JB = β1 · (SoC − SoCmed )2 + β2 · |IB|

(15)

JE = (CH2 + Caux + CeH2 + CFCS + CB)
∫ t

0

1
TL
dt

= prH2 ·

∫ t

0

(
(1+ kaux) ·

.
mH2+

.
emH2

)
dt

+
CFCS · t
nFCS · TFC

+
CB · t
nB · TB

(16)

where JE , JFC , and JB denote objectives related to the system
economy, FCS durability, and battery lifetime, respectively;
emH2 and CeH2 are the equivalent hydrogen consumption
and its cost, respectively; TL denotes the total lifetime of the
FCHCV; α1, α2, β1, and β2 are coefficients; PFClast is the
fuel cell power at the most recent measurement; and SoCmed
represents the median SoC.

The multiobjectives of the MOMPC consist of system
economy, FCS durability, and battery lifetime. The economic
objective JE is a simplified form of LCC, which only consid-
ers the cost of hydrogen, FCS auxiliary equipment, equivalent
hydrogen consumption (from battery quantity change), and
cost loss of fuel cell and battery during the optimization
period. Notably, the consumed hydrogen accounts for the
excessive hydrogen consumed by the FCS and the equivalent
hydrogen consumption by the battery. The energy change in
the battery is essentially derived from the energy of the FCS,
another consideration. The FCS durability objective JFC is
actually to limit the FCS power and the change rate of power,
so as to improve the durability of FCS. The battery lifetime
objective JB is actually to limit the battery SoC (avoiding
overcharge or undercharge) and the battery working current.
Notably, the lifetime of fuel cell and battery has been incor-
porated into in JE , and the three objectives work together to
achieve the multiobjectives in this paper.

In the process of solving the MOP, the following con-
straints, including inherent characteristics of the FCS and
battery, must be enforced:

SoC ∈ [SoCmin, SoCmax]
IB ∈ [IBmin, IBmax]
PFC ∈ [0,PFCrate]
|PFC − PFClast | ≤ PFCSRate

(17)
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where SoCmax ,SoCmin, IBmax , and IBmin denote the limits of
the battery SoC and battery current.

B. MULTIOBJECTIVE OPTIMIZATION SOLUTION
The MOMPC-based EMS for FCHCV is a nonlinear MOP.

In an FCHCV, the system economy is a primary opti-
mizing objective. However, fuel cell durability and battery
lifetime must be considered. These objectives are unre-
lated and, at times, may even conflict with each other.
Solving the Pareto optimal solution set is a complex and
time-consuming computational procedure. In recent years,
multiobjective optimization algorithms with objective pri-
ority regulation have had many applications in predictive
control [38], [40]. Solving the objective priority problem is
an important step in the MOP. Here, to determine an optimal
solution, an adaptive weight method based on a fuzzy logic
algorithm is used to construct a new single-objective function.
The adaptive weight method can dynamically and reasonably
assign weights. According to this methodology, the multiob-
jective function of the MOMPC can be converted to a single-
objective function, which is expressed as below.

As described in the introduction section, a weighted
summation method is used to solve the above MOP as
formula (18), which is simplest and most efficient regard-
ing real-time response. Each objective is assigned a variable
weight coefficient. The suitable weights are added to the
optimization objectives. For a single-objective constrained
optimization problem, the solution is relatively simple. The
search method can be used to solve the problem quickly in a
limited interval, with high computational efficiency and good
real-time performance.

J = wE · JE + wFC · kFC · JFC + wB · kB · JB
(wE + wFC + wB = 1) (18)

where wE , wFC , and wB are weight coefficients, and kFC and
kB are normalisation coefficients.

As can be seen, the cost function J is the weighted sum-
mation of JE , JB, and JFC . Obviously, the control effect of
the multiobjective optimal energy management is different
with different weight coefficients. Different vehicle load and
different battery SoC condition require different performance
constraints. The adjustment of weight coefficients should
meet the real-time requirements of the vehicular working
condition. For examples: (1) When the load is heavy and
the battery SoC is high, fuel cell and battery provide power
together. Fuel cell needs to output more power and its power
will change greatly, which has a negative impact on fuel cell
performance and should be constrained. At the same time, the
battery power will have a large change, which has a negative
impact on battery performance. Therefore, weights of JFC
and JB (wFC andwB) should be set to a larger value, in order to
strengthen the constraint of fuel cell and battery performance.
(2) When the load is light and the battery SoC is medium,
fuel cell will provide the main power, the output power of the
fuel cell is low. Battery will provide auxiliary small power,

FIGURE 3. Structure of the fuzzy logic models for the weights of JFC
and JB.

the charge and discharge power of the battery will be small.
This condition has little impact on the fuel cell and battery
performance. Therefore, weights of JFC and JB (wFC andwB)
can be set to a smaller value.

The most important step in weighted summation method
is to set the weights to reflect the priority of the objectives
properly. Fuzzy logic is a rule-based algorithm that uses the
method of fuzzy sets to study problems. Fuzzy logic con-
trol systems show robustness and are especially suitable for
nonlinear and time-varying systems. Therefore, an adaptive
weight adjustment based on fuzzy logic is adopted to adjust
the weight dynamically according to the real-time load and
battery SoC, so that the energy management control strategy
can better meet the actual working condition.

This paper establishes two fuzzy logic models to obtain
the weights for JFC and JB. The structure of the fuzzy logic
models is shown in Fig. 3. The inputs of the model are the
normalised battery SoC and vehicle load, and the output of
the model is the weight value. A Gaussian function is used as
the membership function in fuzzy logic models; the surfaces
of the fuzzy regulars are shown in Fig. 4. The advantage of the
proposed adaptive weight adjustment method is that a Pareto
optimal solution set is not required; additionally, the priority
of the multiobjectives can be set in the objective function.

The calculation process of the MOMPC is shown in Fig. 5.
Future demand power prediction method (neural network-
based predictor) and function weights calculation method
(fuzzy logicmodel) have been presented in the paper. Accord-
ing to the vehicle history and current load data, the future
demand power can be obtained through the neural network
predictor; the weights of the cost function JFC and JB can
be acquired through the fuzzy logic model; and the fuel
cell and battery lifetime can be approximated according to
formulas (7) and (8). It should be noted that there is only
one control variable (FCS power PFC ) in this multiobjective
optimization problem. The univariate optimization problem
can be solved by one-dimensional search method, population
algorithm, genetic algorithm and so on [57]. In this paper,
after deriving and simplifying the cost function J , this cost
function is a univariate quadratic function of FCS power.
Therefore, the solution of the control variable (FCS power)
in the energy management strategy is simple. Given the SoC
reference trajectory and the predicted demand power, MPC
can solve the optimal FCS power trajectory within the pre-
dicted period by minimising the cost function.

J∗ = min
k+h∑
t=k

J (t) (19)
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FIGURE 4. Surfaces of fuzzy regulars for weights of JFC (a) and JB(b).

IV. SIMULATION AND DISCUSSION
In this section, we compare the proposed MOMPC-based
EMS with other representative prediction methods through
simulations. Economic and lifetime analyses of the FCHCV
were conducted with different sizes of power source. All
of the simulations were performed using the representative
driving cycles of a 5-ton wheel loader.

A. MOMPC-BASED EMS EVALUATION
This paper evaluates the proposed MOMPC-based EMS by
comparing it with two other representative strategies: a fixed-
weight MPC (FWMPC) and a prescient MPC (PMPC). The
former is the same as the proposed MOMPC with fixed
weights. The latter is a special form of the proposedMOMPC
that exploits a priori knowledge of future load, which can
be regarded as the optimal control effect of the proposed

FIGURE 5. Calculation process of MOMPC.

TABLE 1. Vehicle specifications.

MOMPC. These EMSs use the proposed neural network-
based prediction model. The prediction horizon length of
these MPC-based EMSs is 5, which is the same as the
prediction horizon length of the neural network predictor,
and the control horizon length of these EMSs is one step,
0.1 second per step. To verify the proposed EMS, a mathe-
matical model of FCHCV is established based on CLG856
5-ton wheel loader. The FCHCV specifications are listed in
TABLE 1. FCS parameters are derived from literature [4];
battery parameters are from ANR26650M1-A cell [58]. The
prices in TABLE 1 refer to the current market prices of
e-commerce platform [59]. The representative driving cycles
of a 5-ton wheel loader from the literatures [27], [60] were
used as the common operating mode of the FCHCV. Simu-
lations were performed in MATLAB; the results are shown
in Figs. 6–8. The hydrogen consumption and LCC under
the above driving-cycle conditions are listed in TABLE 2,
in which the energy changes of the battery have been con-
verted into hydrogen consumption. In each control cycle,
the cost of consumed hydrogen and the equivalent con-
sumed hydrogen is calculated. Then, cost in TABLE 2 is the
cumulative cost during the whole simulation period. This cost
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TABLE 2. Hydrogen consumption and life cycle cost.

FIGURE 6. Fuel cell stack power.

FIGURE 7. Battery power.

is equivalent to a cost function value, which can better show
the superiority of the proposed EMS.

Figs. 6 and 7 show the FCS power and battery power,
respectively. Generally, all of the strategies can meet the
vehicle-load requirements. In a fuel cell/battery hybrid
system, the FCS provides the main power, and the battery
provides auxiliary power. As can be observed from Fig. 6,
the FCS sometimes provided a maximum power of 100 kW,
under heavy vehicle-load conditions and low-battery SoC
conditions; in this case, the vehicle’s power demand is much
greater than the FCS-rated power (100 kW), and the battery
capacity is limited. Under different EMSs, the FCS power
trajectories showed some differences. The FCS trajectory
of FWMPC was quite different from that of PMPC. This
is because FWMPC is a constant value prediction, which
leads to the difference between constant prediction and real
load. The FCS trajectory of MOMPC was very similar to
that of PMPC, especially in the first 90 s. After 90 s, the
FCS trajectories of MOMPC and PMPC had some differ-
ences during FCS power up and power down phases. This
is because MOMPC has a certain prediction error. With the
accumulation of time, the cumulative error leads to the differ-
ence of MOMPC and PMPC. In general, under the mode of
MOMPC and PMPC, the FCS power change was small and
the fluctuation was smooth, therefore, the fuel cell durability
was better than that of FWMPC.

FIGURE 8. Battery state of charge.

The battery power varied and adjusted the FCS power
to meet the vehicle’s power demand, as shown in Fig. 7.
The battery power trajectory under the FWMPC strategy
was different from those of the other strategies, and the bat-
tery power spanned from approximately −57.7 to 69.4 kW.
The battery power change of FWMPC was obviously larger
than that of other EMSs, with larger fluctuations and more
extreme values. The proposed MOMPC is very similar to
the PMPC, and the battery power spanned from approxi-
mately −19.1 to 69.4 kW. When the vehicle load was heavy,
the battery power was high, and when the load was light,
the energy was stored in a moderate way. Similar to the
FCS power performance, the battery power trajectories of
MOMPC and PMPC were basically the same before 90 s,
and they had some differences after 90 s. It should be noted
that the battery power trajectories under the MOMPC and
PMPC were smooth and changed gradually. This shows that
under MOMPC, the battery power changes smoothly and the
battery current fluctuates little, which is helpful to improve
the battery lifetime.

Fig. 8 shows the battery SoC, which is directly related to
the battery power in Fig. 7. The battery SoC remained within
the set reference range (0.65–0.85), and the fluctuation ranges
were not large. The change of battery SoC is directly related
to the change of battery power. The battery SoC trajectories
were similar, with the proposed MOMPC between those of
the others. Notably, when the FCHCV load changed dramat-
ically, the battery SoC reached the upper and lower limits
basically every cycle. Therefore, the battery SoC must be
constrained during the development of the EMS for heavy-
duty vehicles.

To better explore the differences between MOMPC and
PMPC, an actual demand power of 30 s and its predicted
power of five steps per second are shown in Fig. 9. It can
be seen from Fig. 9 that the actual load and the predicted
power have similar trends. When the load changed rapidly,
the prediction power was very close to the actual load.
However, when the load changed slowly and fluctuated, there
were obvious differences between the actual and predicted
power. As time goes on, the prediction error accumulates,
which makes the control effect of MOMPC and PMPC has
some differences.

TABLE 2 shows that under the given drive cycles,
the hydrogen consumption of the proposed strategy was
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FIGURE 9. Actual and predicted demand power.

FIGURE 10. Hydrogen consumption with different power source sizes.

reduced by 2.83% compared with the FWMPC and was close
to that for the PMPC. The operating cost (cost of hydrogen,
cost of FCS auxiliary equipment, and cost loss of FCS and
battery) of the proposed approach was reduced by 2.75%.
Thus, the MOMPCmethod demonstrates good fuel economy
and cost efficiency, confirming its superiority.

B. ECONOMIC EVALUATION
Economic evaluation is important when evaluating an EMS
for FCHCV applications. The literature implies that the EMS
and power source sizing are always coupled with regard
to various HEVs and electric vehicles [61], [62]. The size
of the FCS and battery have non-negligible effects on the
economic performance of the EMS. Reasonable power source
sizes can reduce hydrogen consumption, improve system
economy and FCS durability, and prolong battery lifetime.
In this study, a power source sizing method based on a power
source map was used to evaluate the economic operation
of the proposed MOMPC-based EMS, including hydrogen
consumption, battery lifetime, and LCC. The model assumed
that the FCHCV repeatedly performed its drive cycles over
its lifetime, working for 8 hours per day, 40 hours per week,
for an entire lifetime of 10,000 hours [63]. The economic
evaluation results are shown in Figs. 10–12.

From Fig. 10, an obvious characteristic is that the hydro-
gen consumption increased with an increase in the FCS
power before reaching 100kW, then, the hydrogen consump-
tion had little change after 100kW. Another characteristic is
that the hydrogen consumption decreased with an increase
in the battery capacity. The reduction speed is fast from

FIGURE 11. Battery lifetime with different power source sizes.

FIGURE 12. Life cycle cost with different power source sizes.

10 to 20 kWh, and the reduction speed is slow during
20-30 kWh.Maximum hydrogen consumption is 46,701.7 kg
at (110kW, 10 kWh), and the minimum is 41,930.2 kg at
(80kW, 30 kWh), the difference between maximum and
minimum is 10.22 %.

As can be observed from Fig. 11, the larger the battery
capacity and FCS power, the higher the battery lifetime.
This is because larger battery capacity makes the battery
depth of discharge smaller, which is conducive to improving
the battery lifetime. At the same time, larger FCS power
makes FCS have enough ability to provide more power, and
the power component of the battery will be reduced. The
minimum battery lifetime is about 32,343 cycles at (120kW,
30 kWh); the maximum battery lifetime is about 1,653 cycles
at (80kW, 10 kWh), which is nearly 20 times of the minimum.
Therefore, the battery lifetime is very important, which must
be considered in the EMS development and power source
sizing of FCHCV.

Fig. 12 illustrates the LCC with different power source
sizes, the larger the battery capacity, the lower the LCC; the
larger the FCS power, the lower the LCC. ThemaximumLCC
is about $ 1,286,156.6 at (80kW, 30 kWh); theminimumLCC
is about $ 700,689.2 at (80kW, 10 kWh). As can be observed
from Fig. 11 and Fig. 12, LCC and battery lifetime have an
inverse relationship, which indicates that the battery lifetime
is the primary factor related to LCC.
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V. CONCLUSION
In this paper, we propose an MOMPC-based EMS for a
fuel cell/battery hybrid system of an FCHCV. Cost economy,
fuel cell durability, and battery lifetime are combined in the
MOMPC.An adaptiveweight adjustmentmethod via a fuzzy-
logic algorithm is proposed for the MOP in the MOMPC.
MATLAB simulations of representative driving cycle envi-
ronments demonstrated the enhanced performance of the
MOMPC compared with other benchmarks. The hydrogen
consumption was reduced by 2.83 % compared with the
FWMPC and was close to that for the PMPC. The operating
cost of the proposed EMS was reduced by 2.75%. A life-
cycle economic evaluation of an FCHCVwas conducted with
respect to power source size. The difference between maxi-
mum and minimum hydrogen consumption is 10.22 % with
different power source sizes. Larger battery capacity and FCS
power were conducive to higher battery lifetime, and the dif-
ferencewas nearly 20 times. The proposed EMS showed good
control performance, low fuel consumption, long battery life-
time, and good use-cost economy, all of which are important
for practical applications. Future research will focus on the
optimization solution for the MOP of FCHCVs.
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