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ABSTRACT To alleviate the problem between parking demand and supply, as well as improving urban
traffic environment, shared parking has attracted great interest among researchers, policymakers, and
entrepreneurs. Naturally, it is a prerequisite of sharing private parking spaces with public users (P-users)
that all of the owners (O-users) providing parking spaces have space to park whenever they come back, with
a unified management of all parking resources. However, it remains a challenge both in theory and practice.
To solve this problem, firstly, we introduced a management framework of shared parking resource in terms
of time and spatial dimension. Under this framework, to control the access to parking spaces of P-users,
four phases (preparatory phase, open phase, releasing phase, and reconstructive phase) are divided in time
dimension, and two types of parking spaces (the prestored parking spaces, and the shared parking spaces)
are classified in spatial dimension. Then, based on the proposed management framework, an intelligent
parking management system (IPMS) was developed to simulate the operation of shared parking considering
the uncertainties of P-users’ and O-users’ arrival and departure. Furthermore, detailed sensitivity analysis,
based on real-world data and simulations, evaluated the proposed framework and the developed IPMS in a
case study concerning parking lots in Beijing, China. The results show that the IPMS can not only realize
that there will always be enough available parking spaces satisfying O-users’ parking demand, but also
bring about vast improvements in both utilization and turnover rate of parking spaces, comparing with the
non-shared management strategy.

INDEX TERMS Agent-based simulation optimization, shared parking, parking space allocation, traffic
demand management and control.

I. INTRODUCTION
With the increasingly high ownership and usage of automat-
ics, parking has been an important issue for both government
management departments and public travellers, especially in
metropolitans, around the world [1]–[3]. It is reported that
today’s vehicles are parked nearly 95% of time [4]. Moreover,
because of limited parking resources, cruising for parking
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spaces costs additional time, money, and fuel. It momen-
tously contributes to traffic congestion and environmental
pollution. Statistically, it spends an average of approximately
8 minutes finding an available parking space [37]. And an
average of 30% of traffic congestion is caused by searching
parking spaces in the road traffic network in the major cities
around the world [4], [5]. In Chicago, cruising for parking
can generate 48,000 tons of CO2 every year, which has been
a contributing factor to creating greenhouse effect [6]. In this
context, much has been studied concerning how to alleviate
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parking problem. As a result, some innovative approaches
have been proposed from both parking demand and parking
supply.

From the demand-side of parking, the majority of research
concerns parking behavior and its influencing factors, aiming
to reduce private vehicle usage in metropolitans to satisfy
parking demand. An important means with long-term for this
purpose is to enhance the constructions of public transporta-
tion system and launch a relatively lower price of public
transportation than private vehicles to attract motorists. For
example, Washbrook et al. [7] established a model consid-
ering the parking factor to estimate commuter mode choice
behaviour based on a survey conducted in a Greater Van-
couver suburb. Another effective and auspicious alternative is
implementing traffic congestion pricing, regarding the park-
ing as an adjunctive part of trips [8]–[11]. Recently, a major
body of researches paid much attention to model traveler
response to such policies. For example, Simićević et al. [12]
developed a model to predict the effects of introducing or
changing the parking price and time limitation. Qian and
Rajagopal [13] explored travelers’ parking behaviors through
real-time data collected by smartphones and GPS navigation,
and thenmade efficient parking pricing policies. He et al. [14]
established two parking space choice models based on stated
preference survey data considering various factors that affect
shared parking choice behaviours.

From the perspective of parking supply, the conventional
methods are to expand the scale of urban parking facilities to
meet the increasing parking demand [15], [16]. However, it is
not practical in large cities, especially in the heart of many
cities, within a short period due to the limitation of space
and financing channels. Hence, one possible way is to max-
imize the utilization of the existing parking resources [17].
Geng et al. [18] constructed an integer programming model
for commercial parking resource allocation considering the
generalized parking cost. Lin et al. [20] established a smart
allocation algorithm whit the aim of maximizing the manage-
ment profit while ensuring parking service quality.

Parking demand modes, like other transport demand
modes, operate on a peak and off-peak schedule depending on
related land use. Distinct but complementary patterns, such as
‘‘residential parking’’ that is generally empty in the daytime
and on workdays, and ‘‘office parking’’, ‘‘hospital parking’’
that are generally fuller in the daytime, offer an opportunity
for cities to better satisfy residents and commuters without
increasing supply. Thus, shared parking was proposed [21],
[22], [38], which uses existing gaps or spaces intended for
parking vehicles when the owners are not using it, especially
with the development of communication and information
technology [2] and the rise of the sharing economy [23].
To this end, Guo et al. [24] regarded the process of sharing
parking spaces as the repurchase and proposed a manage-
ment revenue maximization model based on queue theory.
It is worth noting that once the owners that provide shared
parking spaces can get an amount of compensation payment
if their parking spaces are still occupied by other users.

But, in practice, owners of parking spaces are not willing
to participate in sharing project because they might be con-
fronted with the risk of cruising for parking spaces. Consid-
ering the utility loss of public travelers who failed to obtain
shared parking spaces by reservation, Shao et al. [1] proposed
a framework for sharing the use of residential parking spaces
between residents and public users, assuming all the owners
of parking spaces and public users arrive and depart on time.
A binary integer linear model was proposed to calculate
the maximum profit, which was tested by hypothetical data.
However, the proposed shared parking model will be inap-
plicable with unpunctual users. Xiao and Xu [25] proposed a
fair recurrent double VCG auction mechanism to avoid the
potential owners of parking spaces and public uses opting
out during sharing process. Babić et al. [26] evaluated three
parking policies based on real-world data and simulations to
meet electric vehicle charging demand and maximize parking
resource management revenue.

With the development of computer simulation technol-
ogy, Agent simulation has been succeeded in simulating the
travellers’ behaviour, such as routing choice [27], parking
lot choice [19], [28] and so on. Zhao et al. [19] developed
a parking management platform for multi-class users and
multiclass parking spaces. Ni and Sun [28] analyzed the
influence of intelligent parking reservation system on travel
time. Therefore, Agent simulation technology provides us
with an effective tool to reproduce complex behaviour.

Although there is much meaningful research on the allo-
cation and revenue management of shared parking, to ensure
that all owners sharing their parking spaces with public users
have space to park remains an open problem.. It is quite
important to make them be willing to participate in shared
parking. In addition, the uncertainty of paring duration or
other factors, in real life, makes it more difficult to achieve
the above goal [29].

To solve this problem, we developed an intelligent parking
management system (donated as IPMS) that can depict park-
ing behaviours with the uncertainty of arrival and departure of
both public users and the owners of shared parking resources.
The IPMS can control the access to parking spaces both
in time dimension by setting multiple phases and in spatial
dimension by defining shared parking spaces and prestored
parking spaces. Further, through a sufficient rounds of train-
ing based on historical parking behavior data, the optimal
assignment of shared parking spaces, as well as prestored
parking spaces, can be obtained considering stochastic park-
ing demand.

The paper identifies three main categories of contribution:
1) A novel parking resource management framework is

introduced in the context of shared parking in time and
spatial dimension, with the aim of controlling access
to parking spaces and ensuring that all of the owners’
parking demand can be met.

2) An intelligent parking management system that auto-
matically processes collected parking data and derives
the optimal management strategy by iterative trainings
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FIGURE 1. Evolution process of shared parking spaces within day.

is developed based on Agent simulation technology,
in which the stochastic and dynamic characteristics of
arrival and departure of O-users and P-users can be
represented with the help of historical parking behavior
data.

3) The optimal management strategies were obtained
through a case study. We observed an interesting
inverted S-shaped relationship between the number of
optimal required prestored parking spaces and the num-
ber of P-users, which will be beneficial to efficiently
manage and utilize parking resources.

The rest of this paper is organized as follows. Section II
describes the operation mechanism of shared parking.
Section III explains components of the IPMS which mainly
includes four modules, namely data storage and update mod-
ule, training data sampling module, training module, and
optimal strategy output module. In Section IV, the validity
and feasibility of the IPMS is verified by the case of sharing
parking space in a residential area to parking demand from a
hospital. Finally, conclusions and future research directions
are in Section V.

II. DESIGNING OF SHARING EVOLUTION PROCESS
Before the implementation of shared parking, in general, only
the owners have access to their private parking spaces. Hence,
the fact is that when these residents drive their cars out to
work or do other activities, their parking spaces will be idle.
In this context, if (some of) the residents (denoted as O-users)
are willing to share their parking spaces with other motorists
(denoted as P-users) who need parking spaces, this can be
a win-win strategy for both O-users and P-users, because
O-users will benefit from the sharing, and P-suers can avoid
cruising for parking [1], [30].

In order to effectively manage these shared parking
resources, the use right of O-users’ parking spaces ismanaged
by the IPMS that processes parking space allocation and

management based on the relevant information from O-users,
P-users, and parking spaces. The IPMS works based on a
staged and hierarchical framework of shared parking space,
see Figure 1.

The proposed framework includes three layers and four
phases. From the bottom to up, three layers are phase layer,
booking access and allocation layer, and status of park-
ing space layer, respectively. In the phase layer, the period
of 24 hours within a day is divided into four phases: prepara-
tory phase, open phase, releasing phase, and reconstructive
phase, respectively. Tb,Ts, and Te respectively present the
beginning time point of the shared parking spaces, the timing
point that ceases P-users entering the shared parking lot and
the deadline of permissible parking for P-users. And the com-
bination of open phase and releasing phase is named sharing
phase. During the sharing phase, the P-users will have access
to parking resources. During open phase, P-users can both
enter and leave the shared parking lots. But during releasing
phase, P-users can only leave the shared parking lots, namely
entering is prohibited. For all O-users, they have access to
parking spaces at any time within a day, which means that
they can enter and leave at any time. This is the so-called
control strategy in the time dimension. The access for O-users
and P-users are shown in the booking access and allocation
layer in Figure 1.

Besides, to meet O-users’ stochastic parking demand,
some prestored parking spaces (denoted as PPSs) among
all parking spaces are defined in case parking spaces are
occupied by excessive P-users, and these PPSs can only be
used by O-users. Parking Spaces except PPSs are called the
shared parking spaces (denoted as SPSs). This is the so-called
control strategy in the spatial dimension since parking spaces
are spatially independent of each other.

For all O-users, they need to submit their unique codes
of the parking space that had been occupied by them to the
IPMS when they leave. Of course, with the help of intelligent
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parking locks, the submission can be automatically pro-
cessed. After receiving these codes, the IPMS changes the
statue of corresponding parking spaces from ‘‘Occupied’’ to
‘‘Vacant’’ instantly. And when O-users come back, they need
to request the codes of currently vacant parking spaces from
the IPMS. To maximize the utilization of parking spaces,
O-users are preferred to be assigned to PPSs when PPSs are
available. By doing this, P-users can obtain as many opportu-
nities as possible to utilize the SPSs. Otherwise, O-users are
assigned to SPSs.

For P-users, only with successful reservations can they
obtain the unique codes of vacant parking spaces during the
Open Phase. The IPMS will automatically change the statue
of parking spaces from ‘‘Vacant’’ to ‘‘Occupied’’. When
leaving the parking spaces, P-users also need to submit the
unique codes of parking spaces they used. After receiving
these codes, the IPMS automatically change the statue of
parking spaces from ‘‘Occupied’’ to ‘‘Vacant’’ instantly.

The main designed functions of IPMS are listed as follows:

1) The IPMS save the status data of parking spaces and
control P-suers’ access to parking spaces during differ-
ent periods.

2) The IPMS can reproduce previous parking behaviors
based on historical data, and train the allocation model,
and obtain the optimal management strategy (more
details in the next section).

3) The IPMS can decide to whether or not allocate park-
ing spaces to P-users, according to real-time dynamic
information about parking spaces.

4) The IPMS can guide all users, namely P-users and
O-users, their assigned parking spaces by online guid-
ance precisely according to their unique coding.

III. SYSTEM MODULE
In this section, we present an agent-based simulation
approach for reproducing dynamic and stochastic character-
istics of arrival and departure from both O-users and P-users
the shared parking lot based on MATLAB environment [31].

The IPMS consists of four modules, which are illustrated
in Figure 2. The first module is the data storage and update
module by which the collected parking behaviour data will be
preprocessed and stored. The second module is the training
data sampling module, which is basic for the model training
in the next step. The third module is the training module.
By setting a sufficiently large number of training iterations,
an optimal allocation strategy can be obtained. The last
module is named output module, which outputs the optimal
strategy generated in the previous training module. Because
this function is relatively simple to implement, here we only
explain functions of first three modules of the IPMS in detail.

A. DATA STORAGE AND UPDATE MODULE
As the first part of the IPMS, the data storage and update
module has three important functions: collecting, preprocess-
ing, and storing parking behaviour data. As a result, we can

FIGURE 2. Modules of the proposed IPMS.

effectively reproduce both O-users’ and P-users’ stochastic
characteristics of parking using random sampling technique,
rather than defining the parking behaviors by standard deter-
ministic mathematical models [1]. Thanks to intelligent park-
ing locks, the status of parking spaces can be effectively
monitored. And then, parking users’ behaviour data and sta-
tus of parking spaces data can be transmitted to the IPMS
by advanced communication technology. The collected data
items include Users’ Types (namely, P-users, or O-users),
Users’ IDs (which is a desensitized information given the
private-preserving scheme [32]), reservation time, parking
start time, parking departure time, and so on.

However, due to system errors of sensors and other
uncontrolled factors during data collection and transmission,
the raw collected data can not be directly applied by the
subsequent processes. It is necessary to clean and filter some
invalid data.

Through the analysis of collected data, it is found that the
invalid data can be divided into two categories: unreasonable
parking duration time data and incomplete parking behavior
data. For the first category of invalid data, it can be further
divided into two subcategories: too short parking time data
and too long parking duration time data. Because the collec-
tion time interval is 30 seconds, so we deservedly assorted
the data of parking duration time less than 30 seconds as the
first subcategory of invalid data. Since shared parking takes
place on a daily basis, parking duration that exceeds 24 hours
is defined here as the second subcategory of invalid data.
In the follow-up analysis, parking user types, parking start
time, and parking end time are three essential elements for
a data item, therefore, we define the data item that missing
any one of the three items as the second category of invalid
data.

After deleting the invalid collected data, the valid data
will be uploaded and used as the basic original sampling
dataset for the sub-sequential sampling module. Details
on the function of sampling module is discussed in later
sections.

B. TRAINING DATA SAMPLING MODULE
In the basic original sampling dataset, each piece of informa-
tion contains the stochastic behaviours of previous parking
users that are naturally random and authentic. Thus effec-
tively utilizing these samples is a feasible way of representing
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Algorithm 1 Random Sampling Based on Mersenne
Twister Algorithm
Input: NP−users-Number of P-users’ sampling;
NO−users -Number of O-users’ sampling;
Ts - Start time of sampling time period;
Te - End time of sampling time period;
�(P− users)-Original dataset of P-users;
�(O− users)-Original dataset of O-users.

1 Generate original sampling dataset of P-users:
�′(P− users) from truncated �(P− users) during Ts to
Te;

2 Calculate the size of P-users’ samples: N (�′(P−users));
3 Generate N(�′(P− users)) unequal random integers
based on Mersenne Twister Algorithm;

4 Assign N (�′(P− users)) unequal random integers to
every sample in �′(P− users) as their IDs;

5 Sort �′(P− users) by increasing order of their IDs;
6 Truncate the first NP−users samples as training dataset of
P-users: �′′(P− users);

7 Generate original sampling dataset of O-users
�′(O− users)from truncated �(O− users) during
during 00:00 to 24:00;

8 Calculate the size of O-users’ samples:
N (�′(O− users));

9 Generate N (�′(O− users)) unequal random integers
based on Mersenne Twister Algorithm;

10 Assign N (�′(O− users)) unequal random integers to
every sample in �′(O− users) as their IDs;

11 Sort �′(O− users) by increasing order of their IDs;
12 Truncate the first NO−users samples as training dataset of

O-users: �′′(O− users);
13 Combine �′′(O− users) and �′′(P− users) as training

dataset: �′′(O− users,P− users);
14 Update �′′(O− users,P− users) by the increasing

order of parking starting time of P-users and O-users.
Output: �′′(O− users,P− users)

the parking behaviours of both P-users and O-users. To this
end, the key is to effectively sampling from the valid collected
dataset.

Random sampling is a common technique that culls a
smaller sample size from a larger population and use it to
research and make generalizations about the larger group in
real life. Because its fast generation of high-quality pseu-
dorandom integer passes numerous statistical randomness
tests, Mersenne Twister algorithm [33] has been widely
used in many commercial software systems, such as Maple,
MATLAB, Python, R, and so on.

To prevent over-sampling or under-sampling problems,
we respectively sampled O-users’ bahavior data and P-users’
behavior data, based on Mersenne Twister algorithm. After
that, the combination of P-users’ sample dataset and O-users’
sample dataset is used as train data. The procedures of random
sampling based on mersenne twister algorithm are as follow-
ing Algorithm 1.

C. TRAINING MODULE
Using training dataset �′′(O − users,P − users), training
module aims to obtain the optimal control strategy π∗ =
{NO−users,NO−users,N ∗PPSs} that includes through enough
rounds of simulation for the shared parking spaces reservation
and allocation process. During simulations, parking users’
arrival and parking behaviour can be regarded as a queuing
system [24], [34] in which parking spaces can be considered
to be server agents; O-users and P-users can be viewed as
customer agents. In addition, for real-time (first-come-first-
serve) parking resource management, the IPMS only needs to
update idle and occupied information on parking spaces for
specific time periods, a P-user can park his/her car if available
upon arrival, without advanced booking through the platform.

Due to the stochastic scenario or behavior of O-users’ and
P-users’ arriving and departure, it is somewhat difficult to
solve analytical results [24]. Here, multi-agent-based shared
parking spaces simulation system is developed based on
discrete-event simulation toolbox of MATLAB R2019b [35],
which is widely used in data science, computational mathe-
matics, engineering, and so on, to present discrete dynamic
parking behaviours. The interface of multi-agent-based sim-
ulation is shown in Figure 3. The system consists of six types
of blocks. The unidirectional arrows represent the transitive
direction of data flow.

Using multi-agent-based shared parking spaces sim-
ulation system, the optimal control strategy π∗ =

{NO−users,NO−users,N ∗PPSs} that means theN ∗PPSs with a given
number of P-users and O-users can be obtained by a large
enough number of rounds of training simulations, similar to
the method in Reference [36].

Figure 4 illustrates the iterative processes for obtaining the
optimal control strategies. At the beginning of simulation,
several initial parameters should be set:

• N ∗PPSs: The optimal required PPSs;
• NPPSs = 0 :The number of PPSs;
• Nite = 0 :The number of current iterations;
• i = 0 :The number of samples;
• �′′(O-users, P-users) :The sample dataset for training;
• Nmax_ite :Max number of iteration for training tests with
the optimal strategy;

• NRe−O−users = 0 :The number of O-users without park-
ing spaces after their returns.

IV. CASE STUDY
In this section, we present some simulation results to illustrate
the essential ideas in the paper.

A. SCOPE OF STUDY
The empirical data we used here was collected by smart
parking systems of ETCP company that is the largest intel-
ligent parking company. The P-users’ parking behaviour
data was collected in Second Artillery General Hospital in
Beijing, China, where physicians and patients usually cruise
for parking spaces. The O-users’ parking bahaviours data was
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FIGURE 3. Interface of multi-agent-based shared parking spaces simulation system.

collected in a community located at Xinjiekou Outer street,
A No.25, Beijing, China. The distance between the hospital
and the community is 300 meters, which is within acceptable
range of walking distance. The totally valid sample sizes
of P-users and O-users are 1,958 and 1,640 respectively,
accounting for 96.8% and 98.1% of the collected raw data.
Figure 5 presents the characteristics of idle parking spaces
of O-users. Figure 6 shows the characteristics of parking
demand from P-users.

The distributions of probability of P-users and O-users at
different times are shown at the top and right of each graph.
The upper bar graph represents the proportion of users whose
start time corresponds to the horizontal axis at the bottom.
The right bar graph represents the proportion of users whose
end time corresponds to the left vertical axis.

From the top bar graph in Figure 5, it can be seen that
the parking supply period concentrated between 6 a.m. and
24 p.m. By the same way, we can find the parking demand
concentrated between 6 a.m. and 23 p.m in Figure 6. This
implies that it is feasible to satisfy some of the parking
demand by sharing these idle parking spaces in the residential
areas. Furthermore, no P-users arrived after 9 p.m., and the
end parking time of P-users was no later than 23 p.m.

In order to quantify distributions of probability of P-users
and O-users at different times, the mixed Gaussian distri-
bution models are adopted. The fitting results are shown
in Figure 7. The probability shown by solid blue line equals
to the sum of the probability represented by solid red line
and solid green line. The R-squares of four fitting models are

greater than 0.96, which indicated that the fitting results are
reliable.

B. PARAMETER DESIGN
To evaluate the proposed framework and simulation model,
numerical experiments are conducted based on the empirical
supply and demand data. Table 1 summaries the parame-
ters’ design. Totally 120 residential parking spaces are used
to share with P-users in the tested simulation environment.
When P-users and O-users swipe their smart cards for both
check-in and check-out, all necessary information, which
will be applied in the simulation, such as user types, arrival
time, and departure time, can be recorded through the ETCP
parking information collection system.

Given that residents go out regularly during working days,
and can provide effective parking resources for sharing,
we here only focused on the shared parking during work-
ing days. The collected data from Monday, April 2, 2018,
to Friday, April 6, 2018. Based on the previous analysis of
Figure 5 and Figure 6, the simulation parameters are set as
in Table 1.
Sensitivity analysis is the study to measure the impacts of

fluctuations in parameters of the IPMS on the optimal control
strategies. To this end, ten different levels of NP−users, which
means the total daily parking demand of P-users, are defined.
An estimated maximum total daily parking demand of this
hospital is 1,800, which includes medical staff, patients, visit-
ing groups, according to ‘‘Beijing’s trip generation manual’’.
Some of them can use the parking spaces in the hospital
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FIGURE 4. Logic flowchart of shared parking spaces simulation system operation.
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FIGURE 5. Characteristics of idle parking spaces from O-users.

FIGURE 6. Characteristics of parking from P-users.

yards, the maximum of travelers without parking spaces is
appropriately 650. Hence, the highest value of NP−users with
1,000 is enough to represent the parking demand from this
hospital.

C. RESULT ANALYSIS
Here, we explain the results of simulations in details in
terms of the optimal control strategy, total parking time, and
turnover of the parking spaces.
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FIGURE 7. Fitted distributions of probability of P-users and O-users at different times.

1) THE OPTIMAL CONTROL STRATEGY
Figure 8 shows the relationship between NRe−P−users and
NPPSs. On the whole, with certain NP−users,NRe−O−users
decreases with the increased NPPSs. In addition, with given
NP−users and given NPPSs,NRe−P−users presents a distribution
character, not a constant, which indicates that NRe−P−users
was affected by stochastic parking characteristics in the sim-
ulation.

More specifically, the following conclusions can be drawn
from Figure 8:

1) At a low public parking demand level, only a small
NPPSs will guarantee that there are enough parking
spaces for O-users when they returned. As shown
in Figure 8-(a) and Figure 8-(b), given with 100, and
200 P-users, the N ∗PPSss were merely 2 and 3, respec-
tively. More than 96% of O-users’ parking spaces can
be shared with P-users.

2) At a medium public parking demand level, like
NP−users = 600, that six times NSPSs, the maximum

NRe−O−users went up to 13 with no PPSs equipped,
as shown in Figure 8-(c). Moreover, the means of
NRe−O−users went down gradually with increased
NPPSs. 24 PPSswere required to ensure all O-users have
space to park, which was the optimal control strategy.

3) At a high public parking demand, like NP−users =
1000, the maximum NRe−O−users increased to 18 if
there is no PPSs for O-users. To guarantee all O-users
have parking spaces, N ∗PPSs equals to 31, as shown
in Figure 8-(d).

When the NP−users has doubled from 100 to 200, the N ∗PPSs
increased by (3 − 2)/2 × 100% = 50% from 2 to 3.
When the NP−users has tripled from 200 to 600, the N ∗PPSs
has increased by (24 − 3)/3 = 7 times. When the NP−users
increased to (1000 − 600)/600 × 100% ≈ 66.7% from
600 to 1,000, the N ∗PPSs increased by (31−24)/24×100% ≈
29.2% from 24 to 31. Above analysis implies that there
might be a little complex relationship between N ∗PPSs and
NP−users.
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FIGURE 8. The relationship between NRe−O−users and NPPSs under different demand levels.

For a given community, generally, the number of O-users’
parking spaces remains stable in the short term. Under this
condition, the relationship between NP−users and N ∗PPSs is
represented in Figure 9. The horizontal and vertical axis rep-
resent the number of P-users and the optimal number of PPSs,
respectively. The squares filled with green is the results of
simulations. On the basis of these results, it can be concluded:

1) On the whole, the optimal number of PPSs increases
with the increased number of P-users, therefore, there
is a positive correlation between the number of P-users
and the number of PPSs.

2) When the number of P-users is relatively small (less
than 300), the number of PPSs increases slowly as the
number of P-users increases. The reason for this is there
are sufficient idle parking spaces that can be used by
O-users when they come back.

3) As the number of P-users increasing, the number of
PPSs increases faster than before. This is because

the number of parking spaces occupied by P-users
gets biger and biger. Hence, more parking spaces are
assigned as PPSs to meet O-users’ parking demand.

4) When the number of P-users is extremely large (more
than 600), the growth rate of the number of PPSs slows
down again. This means the use of parking resources
achieve maximum efficiency, and excessive P-users
cannot obtain parking spaces. Thus, there is no need
to take much more SPSs as PPSs.

Given the positive relationship between the optimal num-
ber of PPSs and the number of P-users, two types of fitting
models, namely a linear function and a non-linear model
(Boltzmann model), are adopted to fit the curve of simulation
results. The two fitting models can be represented as follows:

N ∗PPSs = A+ B× NP−users, (1)

N ∗PPSs = C +
D− C

1+ exp
(
NP−users−E

F

) , (2)
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TABLE 1. Parameters stetting in simulations.

FIGURE 9. The relationship between N∗

PPSs and NP−users.

where exp(·) is an exponential function; A,B,C,D,E , and F
are constants, respectively.

The results of fitting are presented in Figure 9 and Table 2.
The R-squares of linear fitting model and nonlinear fitting
model are 0.93624 and 0.99101, respectively, which indicates
that the Boltzmann fitting model is much better. Hence, to be
precise, the inverse ‘‘S’’ relationship lies between the number
of PPSs and the number of SPSs.

To further distinguish the difference between the fitting
results of linear model and non-linear model, we firstly define
linear residuals between fitted results and simulations, it can
be formulated as following:

RlinearNP−users = N linear
PPSs,NP−users − N

∗
PPSs,NP−users , (3)

RnonlinearNP−users = N nonlinear
PPSs,NP−users − N

∗
PPSs,NP−users , (4)

TABLE 2. Parameters of fitted models.

FIGURE 10. The residuals between fitted and simulated results.

where RlinearNP−users is the residual between the result of lin-
ear fitted model and that of simulation with NP−users
P-users; RnonlinearNP−users is the residual between the result of non-
linear fitted model and that of simulation with NP−users
P-users.

Figure 10 represents the residuals between fitted and simu-
lated results, which further proves that Boltzmann model out-
performs linear model because of its smaller residual ranges
than that of linear model.

In addition, it also can be seen that the maximum residuals
between the results of Boltzmann fitting model and that of
simulation are less than 2. As a result, an improved Boltz-
mann model can be obtained to improve the robustness of
fitted model in practice by adjusting the parameterC , in Eq. 2
and keeping other parameters unchanged. The parameters of
improved Boltzmann model are summarised in Table 2. The
improved Boltzmann model is shown by the red solid line
in Figure 9, it can be seen that all the simulation results
of N ∗PPSs,NP−users below the curve of the improved Boltzmann
model, which implies that the improved model has a strong
robustness.
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FIGURE 11. Total parking time under different demand levels.

2) TOTAL PARKING TIME OF P-USERS
The total parking time (TPT ) of P-users was calculated as
following:

TPT =
NP−users∑
i=1

0ixi, (5)

where 0i represents the ith P-user’s parking durartion; xi =
{0, 1}, if the ith P-user obtained the parking space, xi = 1;
otherwise, xi = 0.

Figure 11 shows the total parking time and rates of
increase varies with the different configurations of parking
demand. With the increase of parking demand, total parking
time of P-users increased firstly with less than 700 P-users,
and then nearly approached its peak of 1553 hours with
700 P-users, and remained stable with even much higher
parking demand. Conversely,the rates of increase of total
parking time decreased with the increase of parking demand
when NP−users is less than 700, and it was is close to 0 with
NP−users greater than 700, indicating that the shared parking
spaces have been effectively utilized.

3) TURNOVER RATE OF PARKING SPACES
The turnover rate (TR) of parking resource is an important
indicator to measure the utilization rate of parking resources.
It was calculated as following:

TR =

∑NP−users
i=1 xi +

∑NO−users
j=1 (N j

O−users + 1)

N
, (6)

where N j
O−users represents the number of the jth O-user’s

returns; xi = {0, 1}, if the ith P-user obtained the parking
space, xi = 1; otherwise, xi = 0.

Figure 12 presents the change of turnover rate of all
O-users’ parking spaces before and after the implementation
of shared parking. Before the implementation of parking
space sharing, the average turnover rate of each parking space
is approximately 2.5 vehicles/day, namely, the parking spaces
merely can be used by the residents. With the increased

FIGURE 12. The comparison of turnover rates with and without shared
parking.

NP−users, the average turnover rate of these parking spaces has
increased significantly through the implementation of shared
parking. The average maximum turnover rate of each parking
space was 5.2, with an average of 2.7 additional vehicles
served by per parking space than without the implementation
of shared parking. This shows that the efficiency of parking
resources can be improved by the proposed shared parking
mechanism.

V. CONCLUSION AND DISCUSSION
In order to alleviate the parking problem in cities, this
paper proposed a novel shared parking resource manage-
ment method. How to ensure that the parking demand of the
owners of parking spaces is met during the sharing period
critical to the successful implementation of shared parking.
Aiming both to satisfy the parking demand of all owners
of parking spaces and improving the utilization of shared
parking resources while considering the uncertainty arrival
and departure, we proposed a novel shared parking resource
management framework. Under this framework, four phases
with different accesses for different users were designed to
achieve reasonable management of parking resources.

Due to the complexity of the problem, an intelligent park-
ing management system (IPMS) was developed, regarding
the reservation and allocation as a queue system, to simulate
the operation of shared parking and obtain the optimal man-
agement strategy.

Further, detailed sensitivity analysis, based on real-world
data and simulations, evaluates the proposed framework and
IPMS of shared parking in a case study concerning parking
lots in Beijing, China. The results show that the IPMS can not
only obtain the optimal management strategy but also bring
about vast improvements in the efficiency of parking spaces.

There are also several improvements that can be made to
enhance the sharing strategy in future work. For example,
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we just tested a single scale of parking spaces with 120 and
adopted the one week data to characterize the stochastic
nature of public users’ and owners’ arriving/departure time
for model simplicity. Other scales of parking spaces and
different distribution models based on the empirical data for
more accurate mathematical models and solutions can be
considered and conducted. Further, the optimal design of
sharing parking spaces in the mixed land-use area can be
developed, due to their distinct parking demands, including
work, office, commercial leisure and so on. Last but not least,
since shared parking is a typical economic activity [1], [24],
[39]–[41], in future research, to build a model that takes some
essential economic factors and other uncertainty factors into
account in shared parking seems a fruitful topic for future
research work.
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