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ABSTRACT Neural networks have been widely applied but they are still vulnerable to adversarial examples.
More and more defense models have been proposed and they can resist the attacks to the neural networks.
In order to generate adversarial examples with good transferability, we propose the restricted region based
iterative gradient method (RRI-GM) for non-targeted attack, which aims at generating adversarial examples
to make black-box defense models output wrong decision. We first use object detection algorithm to restrict
some key regions in the images, since we regard perturbation in the key region affects more than the
whole image. To improve the efficiency of attacks, we use gradient-based attack methods and they show
good performance. In addition, the process is iterated for multiple rounds to generate adversarial examples
with good transferability. Furthermore, we conduct extensive experiments to validate the effectiveness of
the proposed method, and the results show that our method can achieve good attack performance against
black-box defense models.

INDEX TERMS Adversarial examples, black-box attack, transferability, restrict region, gradient-based
attack, non-targeted attack.

I. INTRODUCTION
With the fast development of deep learning, neural networks
have achieved great success in a large number of applica-
tions [1], [2]. However, deep neural networks (DNNs) are
highly vulnerable to adversarial examples [3]–[6]. These
maliciously generated adversarial examples add small per-
turbations to the original images, which cannot fool people
but make DNNs output incorrect or unreasonable predictions.
Adversarial examples may also exist in real world [7]–[9],
which have caused a wide range of security concerns in
many sensitive applications, such as self-driving cars, finance
evaluation and FacePay [10]–[12].

Adversarial examples have attracted much attention in
recent years because they can serve as an important surrogate
to evaluate the robustness of neural networks [13], [14].
Fast gradient sign method (FGSM) is the pioneering work
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that generates adversarial examples to fool the DNNs [3].
After that, many gradient-based methods are proposed to
generate adversarial examples according to the varied gradi-
ents. Some typical works include basic iterative method [6],
project gradient descent method [13], Carlini & Wagner’s
method [15] and momentum iterative method [16]. These
methods need to know the gradient information of the specific
neural network they attack, which are referred to as white-
box attacks. Without the information of the neural networks,
some methods can also attack the networks with high success
rate, which are referred to as black-box attacks. A common
strategy of black-box attack is to utilize the cross-model trans-
ferability of adversarial example [17], [18], which implies
the generated adversarial examples that fool a white-box
neural network can also fool a black-box neural network with
high probability. The transferability enables practical black-
box attacks to real-world applications without acquiring the
neural networks’ information; hence the adversarial examples
might induce serious security problems in practice.

25262 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7546-852X
https://orcid.org/0000-0002-5474-991X
https://orcid.org/0000-0003-1503-8274
https://orcid.org/0000-0002-3610-9185
https://orcid.org/0000-0001-8041-0197
https://orcid.org/0000-0002-9409-5359
https://orcid.org/0000-0001-9208-5336


Z. Gu et al.: RRI-GM for Non-Targeted Attack

Realizing the existence and effects of adversarial exam-
ples, more and more researchers turn to build robust neural
networks that can defend the adversarial examples. For exam-
ple, many works introduce adversarial training as an effec-
tive defense method [19], [20], which utilizes the generated
adversarial examples to train neural networks. These works
are shown to achieve good defense results against white-box
attacks. Ensemble learning is another strategy which com-
bines multiple neural networks to defend the adversarial
example [21]. This method could achieve good results under
some circumstances, but it is highly related to the integrated
neural networks. There are also some other methods such as
network distillation [22] and input reconstruction [23], but
they cannot defense against all kinds of adversarial examples.

In this paper, we explore efficient black-box attack meth-
ods against DNNs. Utilizing the transferability of adversarial
examples, we are able to attack black-box neural networks,
but the success rate is very low especially against the ensem-
ble defense method. In order to generate robust adver-
sarial examples that evade both normally trained neural
networks (white-box) and defense neural networks (black-
box), we propose the restricted region based iterative gra-
dient method. The adversarial attacks are classified into
non-targeted attack and targeted attack according to different
goals of the attacks. Non-targeted attacks tend to make the
neural networks make wrong classification of the adversar-
ial example, while targeted attacks aim at misclassifying
the adversarial example as a specific target. In this paper,
we introduce our method for non-targeted attack; with small
modification, this method can be also applied to targeted
attack.

There are three insights in designing the restricted region
based iterative gradient method. In the first place, most meth-
ods modify the whole image to generate adversarial exam-
ples, however we pay more attention to the discriminative
regions in images and we only alter some key restricted
regions other than the whole image. Second, when we gen-
erate adversarial examples by adding perturbation to each
pixel, it is more important to choose the right perturbation
direction other than compute the specific perturbation value.
This intuition is also adopted in FGSM attack [3]. Finally,
neural networks would utilize more training iterations to
achieve good performance, adversarial examples should also
be generated in an iterative way to attack the neural networks
with high success rate. Combining these aspects, we add per-
turbation to the restricted region iteratively to generate adver-
sarial examples against black-box neural networks. We have
conducted extensive experiments on the CAAD (competition
on adversarial attacks and defenses) dataset (the selected
images are from ImageNet dataset). The results show that
the proposed restricted region based iterative gradient attack
method helps to improve the success rate of black-box attack
against the normally trained models and defense models by a
large margin.

The remainder of the paper is organized as follows. The
next section highlights the relatedworks in adversarial attacks

and defense methods. We introduce the preliminaries in
Section III. We present the methodology in Section IV and
describe the experimental results in Section V. The advan-
tages and disadvantages of the proposedmethod are discussed
in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK
In this section, we introduce the related works in generating
adversarial examples against DNNs and some defense meth-
ods against such attacks. DNNs have beed widely applied
in many fields such as image classification [24]–[26], text
processing [27] and speech recognition [28]. Although DNNs
could achieve good performance, they have some intrinsic
problems that could cause serious security concerns. Many
works focus on attack image classification models which add
small perturbation to the original images and these gener-
ated images could cause the DNNs make wrong prediction.
These methods are called image domain attacks. A fewworks
explore whether such adversarial images exist in the physical
world and these methods are called physical domain attacks.
In this section, we present some representative attackmethods
and introduce some defense intuitions against the attacks.

A. ADVERSARIAL ATTACK: IMAGE DOMAIN
Adversarial attacks in the image domain imply the attacks
are conducted to the original images and the generated adver-
sarial examples could fool image processing neural networks
(such as image classification and object detection). There are
two types of the attack methods: white-box attacks assume
the neural networks’ information is known beforehand, while
black-box attacks do not need to know these information.

1) WHITE-BOX ATTACK
White-box attacks assume the full knowledge of the neural
networks is known beforehand, including the structure of
the network model, all the trained parameters, etc. Many
white-box attack methods adjust the gradients to generate
adversarial examples [3], [5], [6], [13], [15], [16], [29]–[34].
Fast Gradient Sign Method (FGSM) [3] is the pioneering
work that generates adversarial examples by adding gradient
noise to the original images with only one step, but the
attack is less effective. In [13], an iterative FGSM algo-
rithm called project gradient descent (PGD) is proposed,
which is considered as one strongest first-order iterative gra-
dient attack method. In the 2017 NIPS adversarial exam-
ples competitions, momentum iterative fast gradient sign
method (MI-FGSM) [16] modifies the FGSM algorithm with
momentum, which achieves good results in the competition.
The aforementioned algorithms can be formally stated as
white-box attack methods since they utilize the gradients
during training. Besides the gradient-based algorithms, some
optimization based attacks are also proposed. For example,
Carlini &Wagner (C&W) attack [15] is proposed to adjust the
generated disturbance with optimization method. DeepFool
is proposed in [29], which iteratively calculates the clos-
est boundary to the original image and then generates the
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adversarial examples. These attack methods are summarized
in Table 2.

2) BLACK-BOX ATTACK
Black-box attacks have no access to the neural net-
works’ information, such as the model parameters or the
gradients [17], [35]–[39]. In [4], it is shown that the adver-
sarial examples can be generalized between different dif-
ferent DNNs. In other words, if the adversarial example
can fool some neural network, it can also fool another neu-
ral network with high probability. This good transferability
of the adversarial examples is normally utilized to attack
black-box neural networks. In [35], the methods are pro-
posed to improve the transferability, which enable powerful
black-box attacks. In [17], it uses queries to distill the knowl-
edge of the black-boxmodel and train a surrogate model; then
it turns black-box attack to white-box attack.

B. ADVERSARIAL ATTACK: PHYSICAL DOMAIN
Adversarial attacks in the image domain cannot be realized in
the real environment. This is because many attacks methods
would add perturbation to the whole image but the generated
adversarial examples cannot be fulfilled in practical applica-
tions. Therefore, some works explore whether the adversarial
examples could occur in the real world. In [6], it verifies
the existence of real adversarial examples. By printing the
adversarial images generated in the image domain on the
paper, it uses a mobile phone camera to capture the images
and the neural network also misidentifies a washing machine
as a speaker. In self-driving filed, robust physical perturbation
(RP2) method is proposed in [8], which generates black and
white stripes that are pasted on the road sign. This method
could cause the neural network recognize the stop road sign
as speed limit. After that, the RP2 method is extended in [40],
which pastes colored stripes on the stop road sign and can
cause the object detection neural networks fail to detect the
road sign. In face recognitions, the method proposed in [41]
can design special glasses to attack the face recognition sys-
tem. When the attacker wears the glasses, two mainstream
face recognition neural networks would make wrong recog-
nition. There are some other methods [42], [43] and we also
list them in Table 2.

C. ADVERSARIAL DEFENSE METHODS
Many methods have been proposed to increase the robustness
of DNNs against the adversarial attacks. Adversarial train-
ing is a common adopted strategy that can defend against
adversarial attacks. The intuitive idea is to train the neural
networks with generated adversarial examples and they could
show good performance against the corresponding attacks.
Besides adversarial training, there are some other proposed
methods that could improve the robustness of the neural
networks. In [20], it proposes obfuscated gradients method
to improve the robustness. In [22], distill defense method is
also introduced against the adversarial examples.

III. PRELIMINARIES
In this section, we introduce the notations of adversarial
attack and formulate the problem formally. Since our pro-
posed method is highly related to gradient based attack meth-
ods, we also introduce some typical gradient based attacks.

A. SYSTEM MODEL AND PROBLEM DEFINITION
Considering the image classification task where a set of
images are denoted as X = {x1, x2, . . . , xn} and their
corresponding classification labels are denoted as Y =

{y1, y2, . . . , yn}. Suppose a neural network M is trained on
the set of images and their labels; it can predict a new image
x ′ with a correct classification label y′ with high probability.
For simplicity, we denote fM (·) as the classifier output of the
neural network, which implies fM (x ′) = y′.
Adversarial attacks generate new images that fool the

trained neural network. Let xtrue denote a true (clean) exam-
ple and y denote the corresponding ground-truth label, i.e.
fM (x) = y. The goal is to generate an adversarial exam-
ple xadv to fool the classifier with small perturbation, i.e.
fM (xadv) 6= y. There are many methods to evaluate the pertur-
bation and Lp norm [3]–[6] is commonly utilized to restrict
the perturbation within a small range:

||xadv − xtrue||p ≤ ε,

where ε is a pre-defined threshold. In this paper, we also use
the Lp norm to evaluate the perturbation.

Notice that, if the information about the trained neural
network M is known beforehand, we call this white-box
attack. Otherwise, it is called black-box attack without such
kind of information. Considering white-box attacks, denote
J (xadv, y) as the loss function that image xadv is classified as
the right label y; the goal is to optimize

argmax
xadv

J (xadv, y), s.t. ||xadv − xtrue||p ≤ ε. (1)

Many works utilize the transferability to attack black-box
neural networks; in this paper we also generate adversarial
examples on the basis of white-box networks and adopt them
to attack black-box networks.

In addition, if the goal is to make fM (xadv) 6= y, it is called
non-targeted attack; on the contrary, targeted attack intends
to satisfy fM (xadv) = yadv where yadv 6= y is a pre-defined
target. For targeted attack, we can modify the loss function as
J (xadv, yadv) and minimize the function under the perturba-
tion constraint. In this paper, we focus on non-targeted attack
and the method can be easily extended to targeted attack.

B. GRADIENT-BASED ADVERSARIAL ATTACK METHODS
There are some typical gradient-based adversarial attack
methods solving the optimization problem in Eqn. (1).

Fast Gradient Sign Method (FGSM) is a pioneering
work [3], which generates an adversarial example xadv by
linearizing the loss function in the input space and performing
one-step update as

xadv = xtrue + ε · sign(∇xJ (xtrue, y)). (2)
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TABLE 1. Attack methods against neural networks.

In Eqn. (2), ε is a hyperparameter that can be used to control
the perturbation. sign(·) is the sign function and the perturba-
tion meets the L∞ norm constraint. ∇xJ (·, ·) is the gradient
of the loss function and the method generates the adversarial
examples according to the gradient.

Basic Iterative Method (BIM) extends FGSM by itera-
tively applying gradient updates multiple times with a small
step size α, which can be expressed as

x t+1adv = x tadv + α · sign(∇xJ (x
t
adv, y)),

where x0adv = xtrue. To restrict the generated adversarial
examples within the ε-ball of xtrue, the method can clip x tadv
after each update, or set α = ε/T where T is the number of
iterations. It has been shown that BIM induces much more
powerful white-box attacks than FGSM at the cost of worse
transferability.

Project Gradient Descent (PGD) is also an iterative
attack method [13]. It can be regarded as the advanced fast
gradient sign method. The PGD attack consists of the fol-
lowing steps: it first initializes the search for an adversarial
example at a random point within the allowed norm ball, then
it runs several iterations of the basic iterative method to find
the adversarial example. The process can be formulated as

x t+1 =
∏
x+S

(x t + αsgn(∇xL(θ, x, y))).

The generated noisy initial point could help conduct stronger
attack than other previous iterative methods such as BIM.

Carlini & Wagner’s (C&W) method is a powerful
optimization-based method [15], which solves

argmin
xadv
||xadv − xtrue||p−c · J (xadv, y). (3)

The loss function J (·, ·) could be different from the
cross-entropy loss and it can generate adversarial examples
with smallest perturbation.

Momentum Iterative Fast Gradient Sign Method
(MI-FGSM) can improve the transferability of adversarial
examples [16]. This method assumes that perturbation in
every epoch is related not only to the current gradient, but
also to the previous calculated gradient. Then the update
procedure can be formulated as

gt+1 = µ · gt +
∇xJ (x tadv, y)

||∇xJ (x tadv, y)||1
,

x t+1adv = x tadv + α · sign(g
t+1),

where gt gathers the gradient information up to the t-th
iteration with a decay factor µ.

IV. METHODOLOGY
In the section, we describe the proposed method. Although
there are many attack methods generating adversarial exam-
ples that can be utilized to attack black-box neural net-
works. The attack success rate of those adversarial examples
is low, especially against the defense (black-box) networks
that utilize the generated adversarial examples for training.
In order to improve the transferability of adversarial exam-
ples, we propose restrict region based iterative gradient attack
method (RRI-GM for short).

In the first place, in order to reduce perturbation and
improve attack success rate, we only modify the key region
in the image. Then we use gradient-based attack method and
focus on alter perturbation direction to improve the efficiency
of attack. In order to generate adversarial examples that
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FIGURE 1. The process of the restrict region based iterative gradient attack method (RRI-GM).

FIGURE 2. Examples from IJCAI-AAAC2019 dataset for object detection by
YOLO V3 algorithm.

have transferability to attack black-box defense networks,
we iteratively generate the adversarial examples. As shown
in Fig. 1, we use object detection algorithm to detect key
region as the restricted region. Then, we use some pertur-
bation methods in the key region, such as Guassian noise,
average perturbation, etc. Table 3 shows the result of pre-
diction accuracy of these perturbation methods (please refer
to Section V). Through the comparison in our experiments,
we find out that the average perturbation method outperforms
other methods by about 3% ∼ 8%. Hence, in our proposed
RRI-GM method, we select average perturbation method in
the detected restricted region. After that, we regard these
images (output by the average perturbation) as the input of
InceptionV3 [26] for adopting FGSM to generate adversarial
examples. Finally, we repeat the above process iteratively to
generate adversarial examples that have good transferability
and attack performance.

A. RESTRICT REGION
We use the object detection algorithm to find the key region
of a image. We can only add perturbation to the key region
of a image and this is the reason we call restricted region in
our method. In Fig. 2, we show some examples of detected
object by traditional object detection algorithm. We use
YOLO-V3 as the detection algorithm and the examples are
from the dataset of IJCAI-AAAC2019 competition.1 We also
adopt the detection algorithm on some images of CAAD
competition2 and these images are from ImageNet dataset.

1https://tianchi.aliyun.com/competition/entrance/231701/introduction
2http://www.geekpwn.org/en/index.html

FIGURE 3. Object detection using YOLO V3 method; the examples are
from CAAD competition.

These figures show that the restricted regions can be gener-
ated and they represent the important parts in the images.

From these figures, we find out that the detected regions are
not very neat and some images can even circlemultiple boxes.
In our algorithm, we select most selected box as the key
region. We use four methods to conduct the restricted region
attack and we restrict the maximum modification value as 16
to reduce the perturbation for people’s vision, while implies
the maximum changed value of a pixel cannot exceed 16. The
four attack methods are described as follows:
• Guassian noise: we use a random Guassian distribution
as the perturbation;

• Maximum value addition (Max-Value-Add for short):
we add 16 (the maximum perturbation value) to every
pixel value in the restrict region;

• Maximum value substraction (Max-Value-Sub for
short): we subtract 16 (the maximum perturbation value)
to every pixel value in the restrict region;

• Average perturbation (Avg-Perturbation for short): we
modified the pixel value in the restrict region by calcu-
lating an average value of the surrounding pixels.

We show some examples in Fig. 4 after conducting differ-
ent perturbation attacks in the detected region on ImageNet
dataset. This first column shows the original images in the
dataset; the next column shows the generated images by the
Guassian noise attack; the third column shows the generated
images by the Max-Value-Add method; the fourth column
shows the generated images by the Max-Value-Sub method;
and the last column shows the images by the average per-
turbation method. As we can see from these images, we can
recognize them easily while the neural networks may make
wrong prediction.
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TABLE 2. Image classification results of ten models.

FIGURE 4. Original images and adversarial examples after adding
different perturbation attacks (Guassian noise, maximum value addition,
maximum value substraction, and average perturbation) in the detected
region.

B. GRADIENT-BASED ATTACK
In our algorithm, we need to design or select a gradient-based
attack method to improve our efficiency of attack. Our
method is very scalable and we can use any gradient-based
method if time permits. In this paper, we use gradient-based
methods including FGSM, PGD, and MI-FGSM. Moreover,
in order to improve transferability of generated adversarial
examples, we use multiple iterations to conduct experiments
and the generated examples show good transferability in
attacking black-box models. As depicted in Fig. 1, each
iteration consists of two main steps: the first step adopts the
restricted region perturbation method while the second step
utilizes gradient based methods on a trained network (Incep-
tion V3) to generate adversarial examples. In our experi-
ments, we find out that the generated adversarial examples
with more iterations could achieve better attack performance,
while it costs more time. We will show these results in the
following section.

V. EXPERIMENTS
We select 3000 images from the ImageNet dataset to conduct
experiments and this dataset is used in the CAAD 2019 CTF
image adversarial competition. We use 5 normally trained
models (neural networks without adversarial learning) and 5
defense models (coupling with adversarial learning) which
are shown to be robust against black-box attacks on the
dataset. These normally trained models are:

• InceptionV3: it improves the network structure of Incep-
tionModule and introduces the idea of Factorization into
small convolutions [44];

• InceptionV4: it combines Inception and ResNet [44];
• ResNetV2-152, ResNetV2-101, ResNetV2-50: ResNet
is proposed in [45] and batch normalization is adopted in

each layer for ResNetV2. The three networks represent
152, 101, 50 layers respectively.

We also choose 5 defense models as follows:

• AdvInceptionV3: it uses the adversarial examples
against InceptionV3 model for adversarial training;

• Ens3AdvInceptionV3, Ens4AdvInceptionV3: they
ensemble 3 or 4 models for adversarial training;

• AdvInceptionResNetV2: it uses adversarial examples
against InceptionResNetV2 model for training;

• EnsAdvInceptionResNetV2: it ensembles 3 models
against InceptionResNetV2 for adversarial training.

In our experiments, we choose different gradient-based
methods, including fast gradient sign method (FGSM),
project gradient descent (PGD) and momentum iterative fast
gradient sign method (MI-FGSM). For the setting of hyper-
parameters, we set the maximum perturbation to be ε = 16 in
all experiments with pixel values in [0,255]. For the iterative
attack methods, we set the maximum number of iteration as
20 and the step size as α = 1.6. For MI-FGSM, we set the
default decay factor µ = 1.0.

A. IMAGE CLASSIFICATION
In this paper, we use 10 models to make prediction on 3000
images of the CAAD dataset. Table 2 shows the classifi-
cation accuracy of these models. As we can see from the
table, these models can classify the images with high accu-
racy more than 91.9% and the best one achieves 99.966%
accuracy. This implies the normally trained models and
the adversarial models can classify the original examples
correctly.

B. RESTRICTED REGION ATTACK
In our experiments, we use four methods (Guassian noise,
Max-Value-Add, Max-Value-Sub and Average Perturbation)
to conduct the restrict region attacks. Figure 4 shows some
generated images when we conduct attacks on the restricted
region. As we can see, the added perturbations are quite
small and we can also recognize them correctly. We compare
the prediction accuracy of the ten models on the generated
adversarial images. As shown in Table 3, the prediction accu-
racy is still high because we only apply some easy attack
methods, but the accuracy decreases compared to the results
in Table 2 where no attacks are performed. From Table 3,
the average perturbation method works best among them,
which can reduce the accuracy by 3% to 8% compared with
other perturbation methods. Therefore, we use the average
perturbation method in the restricted region in the following
experiments.
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TABLE 3. Comparison of four different perturbation methods on the restricted region.

TABLE 4. Different gradient-based (InceptionV3) Attacks on ten models.

TABLE 5. Attack Comparison of different iterations on the RRI-GM method (FGSM).

C. GRADIENT-BASED ATTACK
We choose three different gradient-based attack methods
to conduct our experiments: FGSM, PGD and MI-FGSM.
As depicted in Fig. 1, we use InceptionV3 model to calculate
the gradient to generate adversarial examples.

By generating the adversarial examples, we can use
them to attack the other models and we show the results
in Table 4. From the table, the prediction accuracy decreases
dramatically by the gradient-based attack method against the
InceptionV3 model. However, we can see that the prediction
accuracy of some models are still high, which implies the
attacks are not that successful; we will show more results by
our method.

We depict some examples after we adopt gradient-based
attack methods in Fig. 5. The first row of images are the orig-
inal images and the adversarial images generated by FGSM,
the second row of images are generated by PGD method and
MI-FGSM respectively. From the figure, the added pertur-
bation is small and we can recognize them easily. However,
the neural networks may output incorrect results.

D. RESTRICT REGION BASED ITERATIVE
GRADIENT ATTACK
In order to reduce the accuracy of image classification for
most black-box models, we propose the restrict region based
iterative gradient attack method. We use average perturbation
to the restrict region and then we adopt gradient-based attack

FIGURE 5. Original images and adversarial images by the gradient-based
attack methods (FGSM, PGD, MI-FGSM) on the restricted region.

methods to generate adversarial examples. We conduct these
steps formany epochs/iterations. As shown in Table 5, Table 6
and Table 7 when we adopt FGSM, PGD and MI-FGSM
respectively, we can conclude that the method can reduce
the accuracy of image classification for most black-box
models. Among these methods, MI-FGSM iterative attack
outperforms others.

We also show some generated adversarial examples by the
restricted region based iterative gradient method in Fig. 6. By
adopting FGSM, Fig. 6(a) shows the generated adversarial
examples. The first row of images are the adversarial images
generated by our method with only one iteration, the second
row of images are the adversarial images generated by two
iterations, while the third row of images are generated by
three iterations. From the comparison, more iterations would
add more perturbation but we can still recognize them easily.
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TABLE 6. Attack Comparison of different iterations on the RRI-GM method (PGD).

TABLE 7. Attack Comparison of different iterations on the RRI-GM method (MI-FGSM).

FIGURE 6. Original images and adversarial images by the RRI-GM (FGSM, PGD, MI-FGSM respectively).

From Table 5, more iterations could generate adversarial
examples that have better attack performance even against
black-box defense models. For normally trained models,
adversarial examples generated by this method can reduce
the accuracy to 25% approximately (the best one reduces it
to 5.86%). Even for defence models, the accuracy of image
classification is reduced to about 38%. The effect is very
remarkable for improving the transferability of adversarial
examples against black-box models by our method.

We show some generated examples by adopting PGD
attack in our method as Fig. 6(b). The examples show sim-
ilar trend where more perturbation is added to the restricted
region with more iterations, but the attack performance
becomes much better.As shown in Table 6, adversarial exam-
ples generated by this method can reduce the accuracy to
27% approximately for normally trained models. Even for
defence models with adversarial learning, the accuracy of
image classification is reduced to about 55%.

Similarly, we show the generated examples by adopting
MI-FGSM as Fig. 6(c) and Table 7 shows the attack perfor-
mance. For normally trained models, the generated adversar-
ial examples by our method can reduce the accuracy to 18%

approximately and the accuracy of image classification is
reduced to about 30% even for defence models with adversar-
ial learning. Among these tables, adopting MI-FGSM could
achieve best attack performance. With only three iterations,
all these models could be attacked with high success rate.

VI. ADVANTAGES AND DISADVANTAGES
In this paper, we propose the restricted region based iterative
gradient attack method (RRI-GM) to generate adversarial
examples that have good performance against black-box neu-
ral networks. The experimental results show that the gener-
ated adversarial examples could attack both normally trained
models (without adversarial learning) and defence models
with high success rate. This implies that the method could
improve the transferability of the adversarial examples. Fur-
thermore, our method is very simple, which only ensembles
two methods to generate adversarial examples that fool most
neural networks. In addition, our method only adds small
perturbation since we restrict the change of each pixel within
16 units.

There also exist some issues to be explored in the future
to improve our method. First, the object detection algorithms
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cannot always generate the key regions since we have
to define the important parts/objects beforehand. Second,
although generating the adversarial examples withmore itera-
tions could achieve better performance, it incurs more time to
realize the attack. Hence it would be interesting and important
the explore the tradeoff between the attack performance and
the efficiency.

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose the restricted region based iterative
gradient attack method to generate adversarial examples that
have higher transferability against the black-box normally
trained models and defense models. We conduct a lot of
experiments to validate the effectiveness of proposedmethod.
The best adversarial examples generated by the restricted
region based iterative gradient (MI-FGSM) attack can fool
all 10 models in our experiment. The results imply the vulner-
ability of current black-box neural networks and we need to
paymore attention to the robustness of neural networks. In the
future, we are to improve the key region identificationmethod
and explore the tradeoff between the attack performance and
the efficiency.
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