
Received January 14, 2020, accepted January 29, 2020, date of publication February 4, 2020, date of current version February 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2971615

Analyzing Security Protocol Web
Implementations Based on Model
Extraction With Applied PI Calculus
XUDONG HE 1, QIN LIU 1, SHUANG CHEN 1, CHIN-TSER HUANG 2,
DEJUN WANG 1, AND BO MENG 1
1School of Computer Science, South-Central University for Nationalities, Wuhan 430074, China
2Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA

Corresponding author: Bo Meng (mengscuec@gmail.com)

This work was supported in part by the Fundamental Research Funds for the Central Universities, South-Central University for
Nationalities, under Grant CZT20013 and Grant QSZ17007, and in part by the Natural Science Foundation of Hubei Province under Grant
2018ADC150.

ABSTRACT Analyzing security protocol web implementations is a crucial part of web security. Based on
the model extraction technology, this paper first defines SubJavaScript and SubPython languages, and then
establishes mapping models from SubPython and SubJavaScript to Applied PI Calculus respectively, after
that, develops the semi-automatic model extraction tools SubPython2PV and SubJavaScript2PV to analyze
the four widely used security protocol web implementations. The experiment shows that the four typical
security protocol web implications have confidentiality, but lack of authentication.

INDEX TERMS Security protocol implementations, model extraction, SubJavaScript, SubPython, formal
method, ProVerif.

I. INTRODUCTION
In recent years, Python and Javascript are widely used in
the security protocol Python web implementations [1], [2].
Therefore, it is significant to analyze security protocol
Python web implementations to protect web security. The
primary methods for analyzing the Security of Security
Protocol Implementations (SSPI) are program verification
methods [3]–[7] and model extraction methods [8]–[12]. The
program verification methods mainly focus on logic proof
and type-basedmethods. However, most of these methods not
only overlook the verification correctness of the analysis pro-
cess but also rely on adding a large number of comments and
assertions in the Security Protocol Implementations (SPI).
Goubault-Larrecq and Parrennes [5] and Jürjens [3] first
proposed SSPI analysis methods for SPI written by C and
SPI written by Java, respectively. Backes et al. [13] first
performed the automated security analysis of the JavaScript.

Based on the symbolic model, Chaki and Datta [8]
and Dupressoir et al. [14] analyzed the authentication
and confidentiality of SPI written by Bengtson et al. [4],

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

Bhargavan and Gordon [15], Backes [16],
Swamy et al. [17]–[19] analyzed the authentication and
confidentiality based on the F∗ type checker.

In general, the model extraction method first extracts the
security protocol abstract specification from the SPI and then
analyzes extracted security protocol abstract specification
using formal methods. This method is effective and suit-
able for analyzing SPI because SPI is essentially a piece
of code. Bhargavan et al. [20]–[22] extracted the abstract
model of the SPI written by F∗ and analyzed its security.
Mihhail et al. [9] and Aizatulin et al. [23] extracted the
abstract model of the SPI written by C and evaluated the
confidentiality using ProVerif [25], [26] and CryptoVerif [27]
respectively. O’shea [28] and Li et al. [29] extracted the
abstract model of the SPI written by Java and analyzed its
security.

However, to our best knowledge, there is no related work
in the literature on analyzing SPI whose Security Proto-
col Server Implementations (SPSI) written by Python and
Security Protocol Client Implementations (SPCI) written by
JavaScript. On one hand, Python is an interpretive language
and it can’t be encrypted as executive code. On the other
hand, the function of JavaScript is transmitted from server

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 26623

https://orcid.org/0000-0002-2007-2576
https://orcid.org/0000-0002-8888-0211
https://orcid.org/0000-0001-7717-9238
https://orcid.org/0000-0003-3983-972X
https://orcid.org/0000-0003-1370-8190
https://orcid.org/0000-0002-4377-0051
https://orcid.org/0000-0001-6829-2263


X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

to client via browser. Hence SPSI and SPCI are easy to be
comprehended and analyzed. The model extraction method is
suitable for analyzing the security of SPSI and SPCI. There-
fore, in this paper, we use the model extraction technology to
extract the Security Protocol Model Represented by Applied
PI Calculus (SPMRAPC) from SPSI written by Python and
SPCI written by JavaScript and then verifies its security
through ProVerif. The main contributions of our works are
described below:
(1) We analyze the core statements of the SPSI written by

Python and SPCI written by JavaScript, and then define
SubPython – a subset of the Python, and SubJavaScript –
a subset of the JavaScript, and Backus-Naur Form of the
SubPython (BNF[SubPython]) and BNF[SubJavaScript]
respectively.

(2) We establish the Mapping Model from SubPython to
Applied PI Calculus (MMSP2APC) and the Mapping
Model from SubJavaScript to Applied PI Calculus
(MMSJS2APC), which includes statements mapping and
type mapping.

(3) We develop the semi-automatic model extraction
tools SubPython2PV and SubJavaScript2PV based on
MMSP2APC and MMSJS2APC respectively.

(4) We apply SubPython2PV, SubJavaScript2PV and
ProVerif to analyze 51 Talk [30], mall management sys-
tem [31], Yintou Securities [32] and Miku Platform [33].
The experimental results show that the four web projects
have confidentiality, but lack of authentication.

The rest of the paper is organized as described below.
Section II discusses the related works of SSPI Analy-
sis. Section III introduces the Applied PI Calculus and
BNF. Section IV defines the SubPython and presents
the BNF of SubPython and establishes the MMSP2APC.
Section V defines the SubJavaScript and presents the
BNF of SubJavaScript and establishes the MMSJS2APC.
Section VI develops the semi-automatic model extraction
tools SubPython2PV and SubJavaScript2PV. Section VII
applies SubPython2PV, SubJavaScript2PV, and ProVerif to
analyze the confidentiality and authentication of the four web
projects and compares it with the first automated analysis
method for JavaScript. Section VIII compares our semi-
automatic method with Backes’ s method [13]. Section IX
presents the conclusion and future works.

II. RELATED WORKS
Formal analysis methods for SSPI are mainly classified into
two categories: model extraction methods [8]–[12] and pro-
gram verification methods [3]–[7].

Using model extraction methods, people mainly study
the implementations security such as F∗ [15], [20],
C [9], JAVA [34], [35], Swift [36], and ProScript [37].
Bhargavan et al. [20] proposed a model extraction tool called
fs2pv which extracts the SPI written by F∗. They use fs2pv to
analyze the Windows CardSpace protocol and TLS protocol
and use ProVerif to verify its security. O’Shea [28] proposed
the Elygah system which transforms the SPI written by

Java into the Lysa Calculus process and obtains the formal
model of the SPI and analyzes its authentication. However,
this paper does not prove the correctness of the extraction
methods. Aizatulin et al. [9] proposed an automatic solution
to the SPI written by C. In the beginning, this solution obtains
symbolic descriptions for the network messages. Then,
it applies algebraic rewriting to obtain a process of Calculus
description and applies ProVerif to prove security properties.
Bai et al. [38] proposed AUTHSCAN, which extracts pro-
tocol specifications from the Web identity authentication
system based on network traffics and JavaScript execution
traces and generates the TML intermediate. TML captures
the details of protocol implementations and translates it
into a formal specification. Then, it converts the TML into
Applied PI Calculus and verifies the SSPI by the verifica-
tion tool. Bhargavan et al. [39] proposed the DJS2PV tool
which converts encryption data and encoding library and
defense library to the Applied PI Calculus and then uses
ProVerif to analyze the security of the encryption protocol.
Bhargavan et al. [24] also proposed methodologies for devel-
oping symbolic and computational models of TLS 1.3 and
automatically analyzing its protocol core code by extracting
the ProVerif model from its typed JavaScript code.

Based on the program verification, Goubault-Larrecq and
Parrennes [5] built a module that links the SPI written by
C with the abstract Dolev-Yao model using the program
verification method. It produces the semantic Horn clause
by the csur_cc compiler, and the H1 solver takes the Horn
clause as input to verify the security. Bengtson et al. [4]
proposed a Typechecker for verifying security properties of
the source code based on the Z3 solver. Typechecker checks
the authentication properties of cryptographic protocols by
type-checking their source code.

Based on graph slicing, Backes et al. [13] first performed
an automated security analysis of the real JavaScript imple-
mentation of the Helios voting client. First, the code trans-
formation method refactors the implementations to deal with
problems caused by the non-standard libraries by converting
non-standard libraries into newer standards libraries for the
browser to provide equivalent functions for most of jQuery’s
APIs. Then, The WALA tools create an intermediate repre-
sentation that is converted into system dependency graphs.
Finally, graph slicing is used to find all nodes in the graphs.
Information flows analysis focuses on paths between high
levels and low levels in the graph in order to reduce the large
flows to a handful of potentially harmful flows.

III. APPLIED PI CALCULUS AND TYPICAL FUNCTIONS
AND EQUATION THEORY
In this section, first, we introduce the Applied PI Calculus
which is used tomodel security protocols. Second, we present
the typical functions and equation theory.

A. APPLIED PI CALCULUS
Formal language Applied PI Calculus is an extended lan-
guage of PI Calculus and is mainly used for the formal

26624 VOLUME 8, 2020



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

analysis of security protocols. It can easily convert a security
protocol into the input of the Proverif [26]. Applied PI Calcu-
lus is composed of ‘‘Process’’, ‘‘Extended Process’’, ‘‘Query
Statement’’, ‘‘Conditional Expression’’, and ‘‘Declaration’’
and models the communication processes and encrypted
operation in the security protocol. The data types of Applied
PI Calculus include the bitstring, bool, type bool, true or
false. and the user-defined data type. In general, Plaintext,
Ciphertext, Channel, Key, Signinput and Signoutput are the
typical user-defined data types.

FIGURE 1. The process in the Applied PI Calculus.

Fig. 1 shows the Process in Applied PI Calculus. Each of
P, Q, and R is a process. The empty process ‘‘0’’ does not
execute any operation. Concurrent Processes ‘‘P|Q’’ executes
‘‘P’’ and ‘‘Q’’ at the same time. Replication process ‘‘!P’’
executes multiple processes ‘‘P’’ concurrently. The restricted
name ‘‘vn.P’’ first generates a new name ‘‘n’’ and then exe-
cutes the operation of the process ‘‘P’’. Condition process
‘‘if M = N then P else Q’’ identifies whether the condition
‘‘M = N’’ is true or not. If the condition is true, executes
process ‘‘P’’, otherwise executes process ‘‘Q’’.Message input
process ‘‘u(x).P’’ receives messages from channel ‘‘u’’ and
use channel ‘‘u’’ to present the message, and then executes
process ‘‘P’’. Themessages output process u(N).P outputs the
message ‘‘N’’ from channel ‘‘u’’ and executes process ‘‘P’’.

Compared to the Process in the Applied PI Calculus,
the extended process in the Applied PI Calculus has an active
substitution. Fig. 2 shows the extended process in the Applied
PI Calculus. It uses variables to represent multiple types of
data, such as channels and keys. It uses functions to represent
encryption operations, signature operations, and decryption
operations. It also uses ‘‘free’’ to represent the channel of data
transmission and set the private channel using the keyword
‘‘private’’.

FIGURE 2. The extended process in the Applied PI Calculus.

FIGURE 3. The process in the Applied PI Calculus.

FIGURE 4. The query statements in the Applied PI Calculus.

Fig. 3 shows the process in the Applied PI Calculus. The
‘‘if-then-else’’ denotes ‘‘if <fact> then <process> [else
<process>]’’, where <fact> is a condition. The function
of the ‘‘let-in-else’’ is definition and assignment. The ‘‘let-
in-else’’ denotes ‘‘let <pattern>=<term> in <process>
[else <process>]’’, where the ‘‘pattern’’ assigns the value to
‘‘term’’.

The ‘‘event <term>’’ defines an event and generally used
in authentication proof. It places before and after authentica-
tion statements and then applies a query statement to verify
the authentication. The query statement ‘‘⇒’’ represents the
events on the right of the ‘‘⇒’’ when something happens on
the left. For example, query statement ‘‘ev: seq <ident1>⇒
ev: seq <ident2>’’. It queries the events ‘‘ev: seq <ident2>’’
when ‘‘ev: seq <ident1>’’ happens. The content of the ‘‘ev:
seq <ident>’’ is the ‘‘<term>’’ in the ‘‘event <term>’’.
Fig. 4 shows the query statement in the Applied PI Calculus.
The condition expressions include the simple term

‘‘<ident>: seq<term>’’, equivalent expression ‘‘<term>=

<term>’’, inequivalent expression ‘‘<term><><term>’’.
Fig. 5 shows the condition expressions in the Applied PI
Calculus.
The declaration statements are composed of ‘‘free’’,

‘‘fun’’, and ‘‘new’’. The functions and types are declared
using ‘‘fun’’ and ‘‘free’’ statements respectively. ‘‘[private]’’
is an optional item and means the type of the ‘‘ident’’ is not
known with the attacker. seq <ident> denotes a sequence of
ident. Channels can be defined in a statement ‘‘free’’. ‘‘new’’
defines a public variable. Fig. 6 shows the declaration in the
Applied PI Calculus.

VOLUME 8, 2020 26625



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 5. The condition expressions in the Applied PI Calculus.

FIGURE 6. The declaration in the Applied PI Calculus.

B. TYPICAL USER DEFINED FUNCTIONS AND
EQUATIONAL THEORY
If we want to put the Applied PI Calculus into prac-
tice, the functions and equation theory have to be defined
and specified according to the special security proto-
cols. Fig. 7 presents the typical functions and equational
theory of security protocols. We model cryptography in a
Dolev-Yao model as being perfect. Cryptography is com-
posed of symmetric cipher and asymmetric cipher. The dig-
ital signature consists of a signature generation algorithm
and a signature verification algorithm. Typical functions
include ‘‘senc(x, key)’’, ‘‘sdec(y, key)’’, ‘‘pub(r)’’, ‘‘pri(r)’’,
‘‘aenc(x, pub)’’, ‘‘adec(y, pri)’’, ‘‘sign(x, pri)’’ and ‘‘vers-
ing(y, pub, x)’’, where encryption algorithm ‘‘senc(x, key)’’
used in symmetric encryption encrypts plaintext x using
secrete key ‘‘key’’, decryption algrithm ‘‘sdec(y, key)’’ used
in symmetric encryption decrypts the ciphertext y using

FIGURE 7. The typical functions of an equational theory.

secrete key ‘‘key’’, public key generation algrithm ‘‘pub(r)’’
generates the public key with the input random number ‘‘r’’,
privatekey generation algrithm ‘‘pri(r)’’ produces the private
key with the random number ‘‘r’’, asymmetric encryption
algrithm ‘‘aenc(x,pub)’’ in asymmetric encryption encrypts
the plaintext ‘‘x’’ with the public key ‘‘pub’’, decryption
asymmetric decryption algrithm ‘‘adec(y,pri)’’ in asymmetric
encryption decrypts the ciphertext ‘‘y’’ with the private key
‘‘pri’’, digital signature generation algrithm ‘‘sign(x,pri)’’
generates the digital signature for message ‘‘x’’ using the pri-
vate key ‘‘pri’’, digital signature verification algrithm ‘‘ver-
sign(y, pub, x)’’ verifies the digital signature ‘‘y’’ for message
‘‘x’’ with the public key pub. The typical equational theory
consists of ‘‘sdec(senc(x, key), key) = x’’, ‘‘adec(aenc(x,
pub(r)), pri(r)) = x’’, and ‘‘versign(sign(x, pri(r)), pub(r),
x) = true’’.

IV. SUBPYTHON AND MMSP2APC
In this section, we first define the SubPython and
BNF[SubPython], and then establish a Mapping Model
from SubPython to Applied PI Calculus (MMSP2APC),
apart from that, present a simple example for using
MMSP2APC to translate the SubPython code into Applied
PI Calculus. SubPython mainly contains ‘‘PassStatement’’,
‘‘DeclarationStatement’’, ‘‘CompondStatement’’, ‘‘Import-
Statement’’, and ‘‘Expression’’. The MMSP2APC is com-
posed of MMSP2APC[statements] (the statements mapping
defined in MMSP2APC), and MMSP2APC[types] (the types
mapping defined in MMSP2APC).

A. SUBPYTHON AND BNF[SUBPYTHON]
Python is a complicated programming language and widely
used to develop security protocol server applications. Accord-
ing to the investigations on lots of SPSI written by Python
from the popular open-source website Github, we find
only a core part of Python, SubPython, which is used to
develop SPSI. SubPython showed in Fig. 8 mainly contains
‘‘PassStatement’’, ‘‘DeclarationStatement’’, ‘‘Compound-
Statement’’, ‘‘ImportStatement’’, and ‘‘Expression’’.

FIGURE 8. The BNF[statement] in the SubPython.

As shown in Fig. 9, the ‘‘PassStatement’’ is defined as a
keyword ‘‘pass’’ to process the event when a statement is
required syntactically analysis. There is no specific ‘‘Declara-
tionStatement’’ written by Python to represent variables and
constants respectively because the declarations of variables
and constants are contained in the assignment expression.
Hence the ‘‘DeclarationStatement’’ is defined as ‘‘Assign-
mentExpression’’.

‘‘CompoundProcess’’ consists of ‘‘IfStatement’’,
‘‘Function-Define’’, ‘‘ClassDefine’’, and ‘‘ReturnState-
ment’’. In the ‘‘IfStatement’’, ‘‘Expression’’ is a Boolean

26626 VOLUME 8, 2020



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 9. The BNF[Statement] definition in the SubPython.

FIGURE 10. The BNF[ImportStatement] definition in the SubPython.

value. When a Boolean value is true, the ‘‘IfStatement’’
executes ‘‘suite1’’, otherwise, it executes ‘‘suite2’’, where
‘‘suite’’ is a code block designated a new line and inden-
tation. Function and class are defined in ‘‘FunctionDefine’’
and ‘‘ClassDefine’’ using the keywords ‘‘def’’ and ‘‘class’’
respectively.

From Fig. 10, the ‘‘ImportStatement’’ includes ‘‘import’’
and ‘‘from. . . import’’. The ‘‘module’’ is a program block.
The name is designated as a specific module using keywords
‘‘as’’. ‘‘ReturnStatement’’ returns the output from the func-
tion and returns to the main function.

The ‘‘Expression’’ given in Fig. 11 includes ‘‘Primary-
Expression’’, ‘‘EqualityExpression’’, ‘‘FunctionCall’’, and
‘‘AssignmentExpression’’. ‘‘PrimaryExpression’’ includes
‘‘StringLiteral’’, ‘‘LongInteger’’, and ‘‘FloatNumber’’.
‘‘EqualityExpression’’ returns a bool using ‘‘comp_operator’’
which includes ‘‘==’’, and ‘‘! = ’’. ‘‘FunctionCall’’ invokes
a function by function name ‘‘ident’’ and its argument
list. ‘‘AssignmentExpression’’ defines constants, variables,
assignment expressions, and logical expressions. It also
assigns a value from a Rtarget which consists of ‘‘Primary-
Expression’’, ‘‘EqualityExpression’’, and ‘‘FunctionCall’’.

B. MMSP2APC
Based on the semantics of SubPython and Applied PI Calcu-
lus, the MMSP2APC is established in Fig. 12. The ‘‘suit’’ is
converted into ‘‘Process’’. The ‘‘Socket Declaration’’ is trans-
lated into the ‘‘Channel Declaration’’. The ‘‘Message Send-
ingMethod’’ and ‘‘Message ReceivingMethod’’ is converted

FIGURE 11. The BNF[Expression] definition in the SubPython.

FIGURE 12. MMSP2APC.

FIGURE 13. The statements mappings in MMSP2APC.

into ‘‘Channel out’’ and ‘‘Channel in’’ respectively. The
‘‘Variables or Constant Declaration’’ and ‘‘Function Decla-
ration’’ are changed into ‘‘Variable or Constant Declaration’’
and ‘‘Function Declaration’’. Specifically, the MMSP2APC
is defined by MMSP2APC[statements] and MMSP2APC
[types].

1) MMSP2APC[STATEMENTS]
MMSP2APC[statements] shown in Fig. 13. The programmer
usuallymakes an entrance using ‘‘if_name_=main’’ because

VOLUME 8, 2020 26627



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 14. The declaration statements in MMSP2APC.

FIGURE 15. The expression statements in MMSP2APC.

Python has no program entrance. ‘‘suite’’ is the code block of
Python. Hence ‘‘if_name_ = ‘‘main’’: suite’’ is mapped into
the process in Applied PI Calculus. ‘‘PassStatement’’ ‘‘pass’’
maps into the empty process ‘‘0’’. ‘‘DeclarationStatement’’
shown in Fig. 14 includes the mappings of ‘‘assignment
or VariableDeclaration’’, ‘‘ObjectDeclaration’’, and ‘‘Func-
tionDefine’’. Since the ‘‘VariableDeclaration’’ often created
in the initialization statement and assignment statement,
it maps into ‘‘new’’ and ‘‘let. . . in’’. The ObjectDeclaration
‘‘obj_x = PrimaryExpression’’ converts into ‘‘new obj_x’’.
The ‘‘FunctionDefine’’ statement ‘‘def FunctionName
‘‘(ArgumentList ): suit’’ converts into ‘‘fun (<[ident]
(,ident)∗>)/n’’. The expression statements are shown in
Fig. 15. The primary expressions variables ‘‘a, b, c. . . ’’ in
SubPython maps into the ‘‘a, b, c. . . ’’ in the Applied PI
Calculus. The equality expressions is consists of ‘‘e1 == e2’’
(e, expression) and ‘‘e1! = e2’’, and it maps into the
‘‘<term1> = <term2>’’ and ‘‘<term1> <> <term2>’’
respectively. The ‘‘Call (ArgumentList)’’ maps into the
‘‘fun (<[ident] (,ident)∗>)/n’’. The conditional statement
‘‘if Expression: suite1 [else: suite2]’’ is translated into ‘‘if
<Expression> then process1 else process2’’. The import
statement imports the necessary content. But there is no
import statement in Applied PI Calculus, so the mapping of
the import statement is empty.

2) MMSP2APC[TYPES]
The MMSP2APC[types] in TABLE 1 establishes the type
mapping from SubPython to Applied PI Calculus in
MMSP2APC. The data types of SubPython mainly include
‘‘PrimaryExpression’’ shown in Fig. 11. The datatype of the
Applied PI Calculus is the bitstring, bool, true or false, and the
user-defined data type. Plaintext, Ciphertext, Channel, Key,
Signinput, Signoutput and etc. are the typical user-defined
data type. In general, ‘‘PrimaryExpression’’ is converted into
plaintext.

TABLE 1. MMSP2APC[Types].

The semantic of data depends on the special functions used.
Thus, we can only judge the data type from the function’s
parameter list. For example, host is a list of strings and num-
bers, ‘‘host = (‘‘http://login.51talk.com’’, 80)’’. We don’t
sure the real semantic of host before the function ‘‘server-
Socket.bind(host)’’ executes. This function is only used when
biding sockets. Thus, the host converts into a channel decla-
ration statement ‘‘free <ident>’’.

Similarly, for user-defined functions, we define the data
type by the type of input and output of the function which
declared in the standard library. For example, ‘‘plaintext =
rsa.decrypt(crypto_tra, privkey)’’. Function ‘‘rsa.decrypt’’ is
already defined in the library rsa. Thus, it converts into ‘‘let
plaintext = adec(crypto_tra, pri(r))’’, user-defined functions
asymmetric encryption presented in Fig.7, ‘‘crypto_tra’’ turn
into ciphertext, the output of it translate into plaintext.

For non-standard security-related functions or developer-
defined functions, we convert it by manual.

FIGURE 16. Types and statements in MMSP2APC.

Fig.16 shows the types and statements mapping based
on function semantic. ‘‘obj’’, i.e. ‘‘ident’’, represents the

26628 VOLUME 8, 2020



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 17. An example of MMSP2APC translation.

class object. The ‘‘obj.send’’ and ‘‘obj.recv()’’ statements
are message sending and receiving methods respectively,
so these statements are converted into the ‘‘out (<channel>,
<term>)’’ and ‘‘in (<channel>, <term>)’’ respectively.
‘‘obj_x = object.accept()’’ denotes that the server receives
the data from the client and returns the link to the obj_x.
Thus, it converts into ‘‘in(<channel>, <term>)’’ and ‘‘free
<obj_x>’’. The meaning of the rest types and statements
mapping as the same as these. Specifically, Encoding func-
tions, such as base64 and utf8, do not change the security
of the data. Therefore, we just pass the original value using
‘‘let. . . in’’.

3) AN EXAMPLE FOR MMSP2APC
A simple example is added to illustrate how to translate the
Python code into Applied PI Calculus using MMSP2APC.

Fig. 17 shows that the server sends a password to the
client, which needs to be encrypted by symmetric encryp-
tion function ‘‘SymEncrypt()’’. First, according to the map-
ping defined in Fig. 13 lines 1, If __name__ == ‘‘main’’
denotes a new process which should be created as pro-
cessPython (Fig. 17 part b lines 5). The suite (Fig. 9 lines 8)
is a set of many statements. When the compiler executes
the suite, it interprets the code block iteratively. Second,
‘‘password = 123’’ is mapped into ‘‘new obj_x’’ (Fig. 14
ObjectDeclaration) which is interpreted as an integer (Fig. 11,
PrimaryExpression, Integer) and is translated into a plaintext,
the public variable, in Applied PI calculus. Third, ‘‘pass-
word_Symenc = SymEncrypt(password)’’ is converted into
a ‘‘let. . . in’’ statement using the rule shown in Fig. 14 line 1.
The compiler executes ‘‘SymEncrypt(password)’’ Iteratively
using the definition shown in Fig. 11. ‘‘FunctionCall’’.
‘‘SymEncrypt(password)’’ is interpreted as ‘‘FunctionCall’’,
where ‘‘SymEncrypt’’ recognized as ‘‘ident1’’ and ‘‘pass-
word’’ recognized as ‘‘ident2’’ (Fig.11, keyword_arguments).
According to the semantic, the semantic of function

FIGURE 18. The BNF[Statement] in the SubJavaScript.

‘‘SymEncrypt()’’ is set as symmetric encryption. The def-
initions of symmetric encryption for Applied PI Calculus
(Fig. 7) are added. Function ‘‘ident1(ident2)’’ is converted
to ‘‘enc(ident2,key)’’, that is to say, the function ‘‘SymEn-
crypt(password)’’ is converted to ‘‘enc(password,key)’’. Note
that ‘‘key’’ in ‘‘enc(ident2,key)’’ just denotes a pair of func-
tions, the ‘‘senc(x,key)’’ and ‘‘sdec(x,key)’’. Finally, before
translating the ‘‘serverSocket.send(password_Symenc)’’ into
‘‘out(c,password_Symenc)’’, channel c is declared, which
model the public channel between the sender and receiver and
add ‘‘free c’’ at the top of part b.

V. SUBJAVASCRIPT AND MMSJS2APC
In this section, we first define SubJavaScript and
BNF[SubJavaScript], and then establish the Mapping Model
from SubJavaScript to Applied PI Calculus (MMSJS2APC).
The SubJavaScript Statement consists of the ‘‘Block’’,
‘‘EmptyStatement’’, ‘‘DeclarationStatement’’, ‘‘ControlPro-
cess’’, and ‘‘Expression’’. The MMSJS2APC establishes the
MMSJS2APC[statements] (the statements mapping defined
in MMSJS2APC), and MMSJS2APC[types] (the types map-
ping defined in MMSJS2APC).

A. SUBJAVASCRIPT AND BNF[SubJavaScript]
JavaScript is a complex programming language and widely
used in security protocol client applications. According to
the analysis of a large amount of SPCI written by JavaScript,
the open-source website: Github, we find that only the key
components of JavaScript, SubJavaScript, are used to develop
SPCI. SubJavaScript mainly consists of ‘‘Block’’, ‘‘EmptyS-
tatement’’, ‘‘DeclarationStatement’’, ‘‘ControlProcess’’, and
‘‘Expression’’. The BNF[Statement] of the SubJavaScript is
shown in Fig. 18.

The components of BNF[Statement] shown in Fig. 19.
‘‘Block’’ is a code block. It allows you to use multiple state-
ments where JavaScript expects only one statement. ‘‘Emp-
tyStatement’’ is a semicolon indicating that no statement will
be executed. ‘‘ControlProcess’’ is the same as SubPython.
‘‘DeclarationStatement’’ includes ‘‘Variable-Declaration’’,
‘‘ConstDeclaration’’, ‘‘ObjectDeclaration’’ and ‘‘Function-
Declaration’’. In the ‘‘VariableDeclaration’’, Variables are
declared using the keywords ‘‘Var’’ and ‘‘let’’. Keyword
‘‘Var’’ declares the triple variable, signal variable, local vari-
able, and global variables. Keyword ‘‘let’’ declares the vari-
ables in the block level scopes. ‘‘const’’ declares a const
object which value cannot change in a certain range. Object
declaration uses the keyword ‘‘new’’ to create an object and
then calls the constructor to initialize the object. ‘‘Function-
Declaration’’ consists of function name and function body.

VOLUME 8, 2020 26629



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 19. The components of BNF[Statement] in the SubJavaScript.

‘‘Expression’’ shown in Fig.20 consists of ‘‘Primary-
Expression’’, ‘‘EqualityExpression’’, ‘‘FunctionCall’’, and
‘‘AssignmentExpression’’. Considering that the logical math-
ematic part does not exist in Applied PI Calculus, we do not
involve this part in SubJavaScript. The ‘‘PrimaryExpression’’
includes ‘‘literal’’, and ‘‘ident’’, and ‘‘variable’’. ‘‘Literal’’
is composed of number, character, and bool. ‘‘ident’’ is the
name of variable and function. ‘‘Variable’’ is uncertain val-
ues. The program searches and executes a variable. If it
does not exist, the program returns ‘‘undefined’’, otherwise
it returns the value of the variable. The ‘‘EqualityExpres-
sion’’ estimates the relation of the values. In SubJavaScript,
‘‘==’’ and ‘‘===’’ represent the equal relation, while ‘‘! =
’’ and ‘‘!==’’ represent the unequal relation. For example,
the operator ‘‘===’’ compares the values and the type on
both sides. If the values and types on two sides are the same,
it returns true. Otherwise, it returns false. ‘‘FunctionCall’’ and
‘‘AssignmentExpression’’ in SubJavaScript are the same as
SubPython.

B. MMSJS2APC
Based on the semantics of SubJavaScript and Applied
PI Calculus, the MMSJS2APC is constructed in Fig. 21.
Javascript is driven by events that call the functions when

FIGURE 20. The BNF[Expression] in the SubJavaScript.

events are triggered. We turn ‘‘Function’’ into the ‘‘Pro-
cess’’. The ‘‘Request Create’’ translates into the ‘‘Chan-
nel Declaration’’. The ‘‘Message Sending Method’’ and
‘‘Message Receiving Method’’ are converted into ‘‘Chan-
nel out’’ and ‘‘Channel in’’. The ‘‘Variable/Constant Dec-
laration’’ and ‘‘Function Declaration’’ are changed into
‘‘Item Creation’’ and ‘‘Function Declaration’’, respectively.
Specifically, the MMSJS2APC is defined by MMSJS2APC
[statements] and MMSJS2APC [types].

1) MMSJS2APC[STATEMENTS]
The statements in MMSJS2APC are shown in Fig. 22.
The EmptyStatement ‘‘;’’ is converted into the pro-
cess ‘‘0’’. SubJavaScript is events driven, so we define
the events function ‘‘function click_name(<Expression>)
{(statement)∗}’’ as the program entrance and maps it
into ‘‘Process’’ because javascript is usually started
by click events. ‘‘if <Expression> <Statement1> else
<Statement2>’’ is translated into ‘‘if <Expression>

26630 VOLUME 8, 2020



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 21. The MMSJS2APC.

FIGURE 22. The statements in MMSJS2APC.

FIGURE 23. The declaration statements in MMSJS2APC.

then Statement1 else Statement2’’. ‘‘obj_Request.send
(<Expression>);’’ is converted into ‘‘out(channel, term)’’.
‘‘obj_Request.responseText’’ and the other functionally sim-
ilar functions are interpret into ‘‘in(<channel>, <term>)’’.
Declaration statement showed in Fig. 23, ‘‘var’’ and ‘‘let’’

are used to declare the variable. The ‘‘VariableDeclara-
tion’’ statement ‘‘var|let <x> [=PrimaryExpression];’’ is
converted into ‘‘new <x>’’ ‘‘ConstDeclaration’’ statement
‘‘const x = <Expression>’’ is mapped into empty because
Applied PI Calculus does not support const. The ‘‘ObjectDec-
laration’’ statement ‘‘ x = new <FunctionCall>’’ is mapped
into ‘‘new <x>’’. Function declaration statements map into
‘‘fun <[ident] (,ident)∗ > /n’’.

From Fig. 24, The primary expressions variables
‘‘a,b,c. . . ’’ are changed into ‘‘a,b,c. . . ’’. The relational expres-
sions ‘‘Equality: e1 == e2’’ (e, expression), ‘‘Inequal-
ity: e1! = e2’’, ‘‘StrictEquality: e1 === e2’’, and
‘‘StrictInequality: e1! == e2’’ is converted into ‘‘<term1>

= <term2>’’, ‘‘<term1> <> <term2>’’, ‘‘<term1> =

FIGURE 24. The expression statements in MMSJS2APC.

<term2>’’, and ‘‘<term1> <> <term2>’’, respectively.
The ‘‘FunctionCall’’ is translated into the ‘‘fun <[ident]
(,ident)∗ > /n’’. Assignment statement ‘‘assignment:
<x>=<Expression>’’ is turned to ‘‘let. . . in’’. The object
function calls ‘‘object.send(<Expression>);’’.

2) MMSJS2APC[TYPES]
MMSJS2APC[types] in table 2 establishes the type mapping
from SubJavaScript to Applied PI Calculus in MMSJS2APC.
The data types of SubJavaScript mainly includes literals
shown in Fig. 20. The semantic of data depends on what func-
tions used. Thus, we can only judge the data type according
to the function’s parameter list. The type mapping methods
of MMSJS2APC is similar to the SubPython. Fig. 25 shows
the types and statements mapping based on the function’s
parameter list semantic.

TABLE 2. MMSJ2APC[Types].

VI. SUBPYTHON2PV AND SUBJAVASCRIPT2PV
Based on MMSP2APC and MMSJS2APC, we develop the
SubPython2PV tool and the SubJavaScript2PV tool using
the JavaCC. JavaCC is an open-source parser generator for
Java code developed by the SUN corporation. SubPython2PV
accepts SPI in SubPython as input and produces SPSI in
Applied PI Calculus. Similarly, SubJavaScript2PV outputs
the SPCI written by Applied PI Calculus. Then, we combine
the SPSI written by Applied PI Calculus and the SPCI written

VOLUME 8, 2020 26631



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 25. Types and statements in MMSJS2APC.

FIGURE 26. The framework of SPWI analysis.

by Applied PI Calculus to construct the Security Protocol
Model Represented by Applied PI Calculus (SPMRAPC).
After that, SPMRAPC is processed by ProVerif to verify the
SSPI. Fig. 26 presents the framework of SPWI analysis.

A. THE DEVELOPMENT OF SUBPYTHON2PV AND
SUBJAVASCRIPT2PV
The modules of the SubPython2PV are the same as Sub-
JavaScript2PV, which includes the lexical analysis module,
parsing module, translation module, and code generation
module. Fig. 27 shows the modules of the SubPython2PV.
First, we prepare the SPI and use the lexical analysis module
to analyze and verify the correctness of the SPI according to
the syntax of SubPython. If verification is successful, the lex-
ical elements, for example, tokens, are generated. Second,
the parsing module is used to address tokens and produce an
abstract syntax tree, which is used to express the structure
of the SPI. Third, the translation module is used to map
the abstract syntax tree into an abstract syntax tree. Finally,
the code generation module obtains the abstract syntax tree
and produces the SPSI written by Applied PI Calculus.

FIGURE 27. The modules of the SubPython2PV.

B. ANALYSIS
SubPython2PV and SubJavaScript2PV are semi-automated
tools. The inputs to the SubJavaScript2PV and the

SubPython2PV tool is a piece of pre-processed security-
related code selected from the SPCI in JavaScript and
SPSI in Python by manual. The outputs are SPSI written
by Applied PI Calculus and the SPCI written by Applied
PI Calculus. Selecting a piece of security-related code of
JavaScript from theweb client application is amanual process
because JavaScript code is embedded in Html combined with
CSS. For Python, we just extract the security-related code
from server-side code files. Before sending the code to the
tools, the mapping model MMSP2APC and MMSJS2APC
still need to add some statement mapping or type mapping
because we don’t sure whether the functions used in the web
application are from the standard library. As Fig. 17 shows,
the non-standard function ‘‘SymEncrypt(x)’’ marked with
symmetric encryption maps into ‘‘senc(x,key)’’, and the
type of ‘‘password_Symenc’’ in Applied PI Calculus is
assigned by ‘‘senc(x,key)’’(Ciphertext). Finally, SPSI writ-
ten by Applied PI Calculus and the SPCI generated by
SubPython2PV and SubJavaScript2PV is combined into
SPMRAPC.

VII. EVALUATION
This section uses SubJavaScript2PV, SubPython2PV, and
ProVerif to evaluate the security of the four wildly used
SPWIs which include the 51 Talk user login protocol [30],
the data transfer protocol in the Mall Management sys-
tem [31], the login protocol in the Yingtuo Securities [32],
and registration protocol in the Miku Diversified Interfusion
Platform [33]. First, SubJavaScript2PV and SubPython2PV
extract SPMRAPCs from the four wildly used SPWIs, and
then ProVerif will take the SPMRAPCs as input and gen-
erates the security analysis results. The experimental results
show that these four SPWIs have confidentiality, but lack of
authentication.

A. USER LOGIN PROTOCOL IMPLEMENTATIONS
SECURITY ANALYSIS IN 51 TALK
The SPCI of the 51 Talk login protocol is presented in Fig. 28.
The ‘‘userid’’ and encrypted ‘‘password’’ are sent to the
server when the function ‘‘onclick’’ (¬) is executed. Code
­ shows that ‘‘userid’’ sends to the webserver directly when
‘‘sso_switch’’ is false. ‘‘encrypted = encrypt.encrypt (pass-
word)’’(¯) obtains the ‘‘public_key’’ from statement (®)
through statement ‘‘encrypt.setPublicKey(public_key)’’ and
produces the encrypted password. ‘‘xhr.send(password)’’ (°)
sends the password to the server.

The SPSI of 51 Talk login protocol presents in Fig. 29.
‘‘(pubkey, privkey) = rsa.newkeys(1024)’’(¬) generates the
pubkey and privkey. Code ‘‘while’’ (­) is waiting for the
link. When statement ® receives client socket successfully,
code ‘‘clientSocket.send(pubkey)’’ (¯) sends the ‘‘pubkey’’
to the client. statement ° receives the data from the client
and statement ± decrypt the data using RSA. The structure
of 51 Talk login protocol is shown in Fig. 30.

Before passing the original SPCI in JavaScript and SPSI in
Python to the SubJavaScript2PV and SubPython2PV, there

26632 VOLUME 8, 2020



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

FIGURE 28. The SPCI of the 51 Talk login protocol.

FIGURE 29. The SPSI of the 51 Talk login protocol.

are some special statements to deal with. In Fig. 29, ‘‘while’’
statemen monitor the communication to receive the messages
from the server, which is not closely related to the security
of the 51 Talk login protocol. Apart from that, Applied PI
Calculus is a formal modeling language and it is hard to

FIGURE 30. The code structure of the 51 Talk login protocol.

FIGURE 31. The SPMRAPC of the 51 Talk login protocol.

directly support the loops. At the same time, the loop may
lead to non-termination of ProVerif. Hence we ignore the
condition expressions in a while statement and retain the
functions of the while statement by hand. ‘‘for’’ statement
is ignored for the same reason. Besides, we add some new
mappings manually in the model for the functions whose
semantic cannot find in the standard library and which can-
not be translated by MMSP2APC and MMSJS2APC. For
example, user-defined function ‘‘onreadystatechange()’’ and
message formatting function ‘‘split()’’, and so on.

Fig. 31 is SPCI and SPSI in the Applied PI Calculus gen-
erated from the SubJavaScript2PV and the SubPython2PV,
which takes SubJavaScript code (Fig. 28) and SubPython
code (Fig. 29) as input, respectively.

In Fig. 28, the translation of SubJavaScript2PV begins with
‘‘onclick()’’. Function ‘‘onclick()’’ is translated into a pro-
cess. ‘‘if(sso_switch!= true)’’ is mapped into ‘‘if sso_switch
<> true then’’. ‘‘var xhr, msg;’’ are converted into ‘‘new
xhr; new msg;’’. ‘‘xhr = new XMLHttpRequest();’’ turn
into ‘‘new xhr;’’. The duplicate declared statement ‘‘new
xhr;’’ are combined. ‘‘xhr.open(post,ori_login_url,true);’’
creates a new HTTP request. We turn it into channel
‘‘free ori_login_url.’’ by the mapping in Fig. 25. ‘‘xhr.send
(userid);’’ is translated into ‘‘out(ori_login_url,userid);’’

VOLUME 8, 2020 26633



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

TABLE 3. Analysis results in 51 Talk.

The function ‘‘onreadystatechange()’’ does not relate to the
security protocol, and it merely declare to ‘‘fun onreadys-
tatementchange().’’ instead of translating its function body.
‘‘var public_key, username, password;’’ are translated into
‘‘new public_key; new username; new password;’’. The
translation of ‘‘public_key = ssoController.getPublicKey
(clientid);’’ is manual processing because it is not a stan-
dard function in the library. ‘‘getPublicKey(clientid)’’ (®)
receives clientid and returns the public key. We add new
mappings for this statement instead of translating all the
function’s body. After analyzing the function body, it converts
into ‘‘free ori_login_url.’’, ‘‘out(ori_login_url, userid);’’,
and in(ori_login_url, responseText), and ‘‘let public_key =
responseText in’’. The duplicate ‘‘free ori_login_url.’’ are
combined and moved on the top of the code.‘‘if(user ==
null) {console.log(Error); if(password== null) {console.log
(Error);}}’’maps into ‘‘if username = 0 then if password =
0 then 0’’. Since no mapping for the function ‘‘log(error)’’
which does not relate to security, it maps into empty. The rest
of the code transformation is not covered in detail.

Combining function definitions and channel declarations
before sending Applied PI Calculus SPMRAPC to Priverif
is a very easy task for manual work. After that, we use the
‘‘query attacker: password’’ to analyze the confidentiality of
user passwords and use ‘‘query ev: endauthPY_JS(x) ==>

ev: beginauthPY_JS(x)’’ to analyze the authentication from
the server to the client. Table 3 shows that the password in
the 51 Talk login protocol is confidential and the 51 Talk
login protocol doesn’t have authentication from server to
client. Since there is no authentication mechanism in the
process of password encryption, the attacker can disguise
his identity. The server cannot authenticate a certain client.
Therefore, the 51 Talk login protocol SPWI does not have a
valid authentication mechanism.

After passing the Applied PI Calculus of SPCI and SPSI
into the Proverif, there are some parameters and functions to
be handled. The channels declared in SPCI and SPSI should
be combined into one. The encryption functions used in SPCI
and SPSI should be presented into one. Statements ‘‘query
attacker’’ and ‘‘query ev:’’ should be added so as to analyze
the property of confidentiality and authentication.

B. ANALYSIS ON THE SECURITY OF THE OTHER THREE
IMPLEMENTATIONS
Next, we will employ the same procedure discussed above
to analyze the other three SPWIs, which are the data transfer
protocol in the Mall Management system, the login protocol

TABLE 4. Analysis results in the Mall Management system.

TABLE 5. Analysis results in the Yingtuo Securities.

in the Yingtuo Security, registration protocol in the Miku
Diversified Interfusion Platform.

For the data transfer protocol used in Mall Management
system, the security model depiction is described below: the
client gets the PublicKey to send by the server, then the client
PublicKey is encrypted by the server PublicKey, and send it
to the server. After that, the server uses the client PublicKey
to encrypt the DESKey, the ciphertext of the DESKey is sent
to the client. The experimental result shows in table 4 that
the DESKey and the client PublicKey have confidentiality,
but the server can’t authenticate the client. So, this protocol
is equipped with confidentiality. But the server is not sure
whether the client public key comes from an intended client.
Hence anyone can launch the counterfeit attack.

For the Yingtuo Securities login protocol, the security
model is described below: it uses the keywords ‘‘pwAnd-
Phone’’ to store the user’s phone number and password. The
‘‘pwAndPhone’’ sent from the client to the server is encrypted
by the public key of the server. The experimental results show
in table 5, this login protocol is equipped with confidentiality,
but not has authentication from server to client. However,
the server cannot authenticate the user because everyone
could get the public key of the server. Hence there exists a
counterfeit attack.

In the Miku Diversified Interfusion Platform registration
protocol, the security model depiction is described below:
The registration protocol uses ‘‘publickey_a’’ and ‘‘pub-
lickey_b’’ generated by the server which is transferred from
the server to the client. The client uses the ‘‘publickey_a’’
and ‘‘publickey_b’’ to encrypt the original password and
re-entered password respectively after that send it to the
server. If the original password and re-entered password are
the same, the server returns successful registration for a
response. Otherwise, the server asks the client to re-enter the
password until the original password and re-entered password
are matched. The experimental result shows in table 6 that
the password and re_password equipped with confidentiality,

26634 VOLUME 8, 2020



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

TABLE 6. Analysis results in the Miku Diversified Interfusion Platform.

but lack of authentication from the server to the client. The
server does not authenticate the user because the server is not
sure whether the ciphertexts of the two encrypted passwords
come from an intended client. Hence anyone can launch the
counterfeit attack.

VIII. DISCUSSION
Here we compare our semi-automatic method to Backes’ s
method [13], the first automatic security analysis method of
JavaScript implementation, from the application field and
technology.

The Backes’ s method is just suitable for JavaScript imple-
mentation. While our method is suitable for JavaScript-
Python implementation, JavaScript implementation, and
Python implementation.

The Backes’ s method used the system dependency graphs
to conservatively approximate all possible information flow
within a program to detect the security vulnerability by
distinguishing between explicit and implicit flows. But our
method is different and is a formal method. It applies formal
language Applied PI Calculus to formalize the JavaScript
implementation, and Python implementation to generate the
formal models presented by Applied PI Calculus, after that
we use the formal tools to analyze the security properties.

IX. CONCLUSION AND FUTURE WORK
With a large number of SPWI projects developed with Python
and JavaScript, it is necessary for its security. However, to our
best knowledge, there is no related literature on analyzing
SPSI written by Python and SPCI written by JavaScript.
Therefore, this paper uses the model extraction technology
to extract SPMRAPC from SPSI and SPCI and then verifies
its security through ProVerif.

Our contributions in this paper are fourfold. First, we ana-
lyze the SPWI written by JavaScript and Python and define
the SubJavaScript and SubPython. Second, based on the
semantics, we establish MMSJS2APC and MMSJS2APC,
respectively, which includes statements mapping and type
mapping. Third, we develop semi-automated model extrac-
tion tools SubPython2PV and SubJavaScript2PV. Finally,
we analyze the confidentiality and authentication of four
SPWIs. The experimental results show that theseweb projects
have confidentiality but lack of authentication. Our method
has a wide application field.

In the future, we plan to expand SubJavaScript and
SubPython to involve more statements and features. Mean-
while, we will continue to analyze more SPWIs by Sub-
JavaScript2PV and SubPython2PV.

REFERENCES
[1] (Aug. 2019). August Headline: Silly Season in the Programming Language

World. TIOBE. [Online] Available: https://www.tiobe. com/tiobe-index//
[2] (2018). Python Developers Survey 2018 Results. JetBrains. [Online].

Available: https://www.jetbrains.com/research/python-developers-survey-
2018/

[3] J. Jürjens, ‘‘Automated security verification for crypto protocol implemen-
tations: Verifying the jessie project,’’ Electron. Notes Theor. Comput. Sci.,
vol. 250, no. 1, pp. 123–136, Sep. 2009.

[4] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis,
‘‘Refinement types for secure implementations,’’ ACM Trans. Program.
Lang. Syst., vol. 33, no. 2, pp. 1–45, Jan. 2011.

[5] J. GoubaultLarrecq and F. Parrennes, ‘‘Cryptographic protocol analysis
on real C code,’’ in Proc. Int. Workshop Verification, Model Checking,
Abstract Interpretation, Berlin, Germany, Jan. 2005, pp. 363–379.

[6] J. T. Lu, L. L. Yao, X. D. He, and B. Meng, ‘‘Improvement of OpenID
Connect protocol and its security analysis,’’ J. Comput. Appl., vol. 5,
pp. 1347–1352, May 2017.

[7] M. Abadi and C. Fournet, ‘‘Mobile values, new names, and secure com-
munication,’’ in Proc. ACM Sigplan Sigact Symp. Princ. Program. Lang.,
London, U.K., Jan. 2001, pp. 104–115.

[8] S. Chaki and A. Datta, ‘‘ASPIER: An automated framework for verifying
security protocol implementations,’’ in Proc. 22nd IEEE Comput. Secur.
Found. Symp., New York, NY, USA, Jul. 2009, pp. 172–185.

[9] A. Mihhail, A. D. Gordon, and J. Jürjens, ‘‘Extracting and verifying cryp-
tographic models from C protocol code by symbolic execution,’’ in Proc.
18th ACM Conf. Comput. Commun. Secur., Chicago, IL, USA, Oct. 201,
pp. 331–340.

[10] P. F. Mihancea and M. Minea, ‘‘JMODEX: Model extraction for verifying
security properties of Web applications,’’ in Proc. Softw. Maintenance,
Reeng. Reverse Eng., Antwerp, Belgium, Feb. 2014, pp. 450–453.

[11] M. AlIbrahim and Y. S. AlDeen, ‘‘The reality of applying security in Web
applications in Academia,’’ Int. J. Adv. Comput. Sci. Appl., vol. 5, no. 10,
pp. 7–15, 2014.

[12] M. K. Gupta, M. C. Govil, and G. Singh, ‘‘Static analysis approaches
to detect SQL injection and cross site scripting vulnerabilities in Web
applications: A survey,’’ in Proc. Recent Adv. Innov. Eng., Jaipur, India,
May 2014, pp. 1–5.

[13] M. Backes, C. Hammer, D. Pfaff, andM. Skoruppa, ‘‘Implementation-level
analysis of the JavaScript helios voting client,’’ in Proc. 31st Annu. ACM
Symp., Pisa, Italy, Apr. 2016, pp. 2071–2078.

[14] F. Dupressoir, A. D. Gordon, J. Jürjens, and D. A. Naumann, ‘‘Guiding a
general-purpose C verifier to prove cryptographic protocols,’’ J. Comput.
Secur., vol. 22, no. 5, pp. 823–866, Jul. 2014.

[15] K. Bhargavan and A. D. Gordon, ‘‘Modular verification of security proto-
col code by typing,’’ in Proc. ACM Sigplan Sigact Symp. Princ. Program.
Lang., New York, NY, USA, Jan. 2010, pp. 445–456.

[16] M. Backes,M.Maffei, and D. Unruh, ‘‘Computationally sound verification
of source code,’’ in Proc. 17th ACM Conf. Comput. Commun. Secur.,
Chicago, IL, USA, Oct. 2010, pp. 387–398.

[17] N. Swamy, J. Chen, C. Fourent, P. Y. Strub, K. Bhargavan, and J. Yang,
‘‘Secure distributed programming with value-dependent types,’’ in Proc.
16th ACM Sigplan Int. Conf. Funct. Program., Tokyo, Japan, Sep. 2011,
vol. 46, no. 9, pp. 266–278.

[18] N. Swamy, C. Hriţcu, C. Keller, P. Y. Strub, A. R. Rastogi,
A. Delignat-Lavaud, K. Bhargavan, and C. Fournet, ‘‘Semantic purity
and effects reunited in F*,’’ Proc. 20th ACM SIGPLAN Int. Conf. Funct.
Program., vol. 31, Vancouver, QC, Canada, Aug. 2015, pp. 1–19.

[19] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P. Y. Strub, and M. Kohlweiss,
‘‘Dependent types and multimonadic effects in F*,’’ in Proc. 43rd Annu.
ACM SIGPLANSIGACT Symp Princ. Program. Lang., New York, NY,
USA, Jan. 2016, Vol. 51, no. 1, pp. 256–270.

[20] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, ‘‘Verified interoper-
able implementations of security protocols,’’ ACM Trans. Program. Lang.
Syst., vol. 31, no. 1, pp. 1–61, Dec. 2008.

VOLUME 8, 2020 26635



X. He et al.: Analyzing Security Protocol Web Implementations Based on Model Extraction With Applied PI Calculus

[21] K. Bhargavan, R. Corin, and C. Fournet, ‘‘Automated computational veri-
fication for cryptographic protocol implementations,’’ to be published.

[22] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, ‘‘Cryptographically
verified implementations for TLS,’’ in Proc. 15th ACM Conf. Comput.
Commun. Secur., Virginia, NV, USA, Oct. 2008, pp. 459–468.

[23] M. Aizatulin, A. D. Gordon, and J. Jurjens, ‘‘Computational verification
of C protocol implementations by symbolic execution,’’ in Proc. 19th
ACM Conf. Comput. Commun. Secur., Raleigh, NC, USA, Oct. 2012,
pp. 712–723.

[24] K. Bhargavan, K. Blanchet, and N. Kobeissi, ‘‘Verified models and refer-
ence implementations for the TLS 1.3 standard candidate,’’ in Proc. 38th
IEEE Symp. Secur. Privacy, San Jose, CA, USA, May 2017, pp. 483–502.

[25] B. Blanchet, ‘‘A computationally sound mechanized prover for secu-
rity protocols,’’ IEEE Trans. Dependable Secure Comput., vol. 5, no. 4,
pp. 193–207, Oct. 2008.

[26] ProVerif: Cryptographic Protocol Verifier in the Formal Model.
Accessed: Oct. 2016. [Online]. Available: https://prosecco.gforge.inria.
fr/personal/bblanche/proverif/

[27] B. Blanchet, ‘‘An efficient cryptographic protocol verifier based on prolog
rules,’’ in Proc.14th IEEE Comput. Secur. Found. Workshop, Cape Breton,
NS, Canada, Jun. 2001, pp. 82–96.

[28] N. Oshea, ‘‘Using ELYJAH to analyse Java implementations of cryp-
tographic protocols,’’ in Proc. Joint Workshop Found. Comput. Secur.,
Pittsburgh, PA, USA, Jun. 2008, pp. 211–223.

[29] Z. Li, B. Meng, D. Wang, and W. Chen, ‘‘Mechanized verification of
cryptographic security of cryptographic security protocol implementation
in JAVA through model extraction in the computational model,’’ J. Softw.
Eng., vol. 9, no. 1, pp. 1–32, Jan. 2015.

[30] The Source Code of 51 Talk User Login Protocol. Accessed: Jun. 2017.
[Online]. Available: https://github.com/zkyeu/wechat

[31] The Source Code of Data Transfer Protocol in the Mall
Management System. Accessed: Jul. 2018. [Online]. Available:
https://github.com/xulayen/pgyer-node-api

[32] The Source Code of Login Protocol in the Yingtuo Securities. Accessed:
Mar. 2018. [Online]. Available: https://github.com/mysisd/ytrxapp

[33] The Source Cold of Registration Protocol in the Miku Diversi-
fied Interfusion Platform. Accessed: Apr. 2017. [Online]. Available:
https://github.com/katherinewei/miku

[34] R. Sisto, P. Bettassa Copet, M. Avalle, and A. Pironti, ‘‘Formally sound
implementations of security protocols with JavaSPI,’’ Formal Aspects
Comput., vol. 30, no. 2, pp. 279–317, Mar. 2018.

[35] R. Küsters, T. Truderung, and J. Graf, ‘‘A framework for the cryptographic
verification of Java-like programs,’’ in Proc. IEEE 25th Comput. Secur.
Found. Symp., Cambridge, MA, USA, Jun. 2012, pp. 198–212.

[36] B. Meng, X. D. He, J. L. Zhang, L. L. Yao, and J. T. Lu, ‘‘Security anal-
ysis of security protocol Swift implementations based on computational
model,’’ Chin. J. Commun., vol. 39, no. 9, pp. 182–194, Sep. 2018.

[37] E. Abgrall, Y. L. Traon, S. Gombault, and M. Monperrus, ‘‘Empirical
investigation of the Web browser attack surface under cross-site scripting:
An urgent need for systematic security regression testing,’’ in Proc. IEEE
7th Int. Conf. Softw. Test., Verification Validation Workshops, Cleveland,
OH, USA, Apr. 2014, pp. 34–41.

[38] G. D. Bai, J. Lei, G. Z. Meng, S. S. Venkatraman, P. Saiena, J. Sun, Y. Li,
and S. Dong, ‘‘AUTHSCAN: Automatic extraction of Web authentication
protocols from implementations,’’ in Proc. 20th Annu. Netw. Distrib. Syst.
Secur. Symp. (NDSS), San Diego, CA, USA, Feb. 2013, p. 20.

[39] K. Bhargavan, A. Delignatlavaud, and S. Maffeis, ‘‘Language-based
defenses against untrusted Browser origins,’’ in Proc. 22nd Secur. Symp.,
Washington, DC, USA, Aug. 2013, pp. 653–670.

XUDONG HE was born in 1991. He received
the M.S. degree from the School of Computer
Science, South-Central University for National-
ities, China. He is currently a Research Assis-
tant with the School of Computer, South-Central
University for Nationalities. His research inter-
ests include security protocol implementations and
reverse engineering.

QIN LIU was born in China, in 1990. She is
currently pursuing the degree with the School of
Computer, South-Central University for National-
ities, China. Her current research interests include
a smart contract on blockchain and the consistency
research of legal contracts and smart contract code.

SHUANG CHEN was born in China, in 1994.
She received the M.S. degree from the School of
Computer Science, South-Central University for
Nationalities, China. Her current research interests
include automatic generation and verification of
security protocol implementations.

CHIN-TSER HUANG received the Ph.D. degree in
computer science from the University of Texas at
Austin, Austin, TX, USA. He is currently a Pro-
fessor with the Department of Computer Science
and Engineering, University of South Carolina,
where he is also the Director of the Secure Protocol
Implementation and Development (SPID) Labora-
tory. His current research interests include network
security, network protocol design and verification,
secure computing, and distributed systems.

DEJUN WANG was born in 1974. He received
the Ph.D. degree in information security from
Wuhan University, China. He is currently an
Associate Professor with the School of Com-
puter, South-Central University for Nationalities,
China. He has authored or coauthored more than
20 articles in international/national journals and
conferences. His current research interests include
security protocols and formal methods.

BO MENG was born in China, in 1974.
He received the M.S. degree in computer sci-
ence and technology and the Ph.D. degree in traf-
fic information engineering and control from the
Wuhan University of Technology, Wuhan, China,
in 2000 and 2003, respectively. From 2004 to
2006, he worked with Wuhan University as a
Postdoctoral Researcher in information security.
From 2014 to 2015, he worked with the University
of South Carolina, as a Visiting Scholar. He is cur-

rently a Full Professor with the School of Computer Science, South-Central
University for Nationalities, China. He has authored or coauthored more than
50 articles in international/national journals and conferences. In addition,
he has also published two books Automatic Generation and Verification
of Security Protocol Implementations and Secure Remote Voting Protocol
(China, Science Press). His current research interests include blockchain,
security protocols, and formal method.

26636 VOLUME 8, 2020


