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ABSTRACT The identification of critical nodes in complex networks is an open issue. Many scholars have
tried to address it from different perspectives, but their methods are often not as effective as usual especially
when meeting some specific graphs or limited to only one aspect. Evidence theory can consider the results
from different sources comprehensively and the Shannon entropy canmeasure the uncertainty of information.
In this paper, we use these two methods to rate the results gained from different measures and combine them
to generate a new ranking result, namely Evidence Theory Centrality (ETC). The Susceptible-infected (SI)
model and Kendall’s tau coefficient are used on six real networks to examine the effectiveness of our method.

INDEX TERMS Complex networks, influential nodes, evidence theory, Shannon entropy, SI model.

I. INTRODUCTION
Recently, with the explosion of data and the rise of the Inter-
net, complex network received much attention in many fields
[1]–[10], such as time series [11], [12], link prediction [13],
[14] and computer science [15]. The complex network has
the characteristic of non-homogeneous topological structure,
which determines the status of each node in the network
is different. The nodes with great influence on the network
account for a small part of the network nodes, which play
a very important role in the network, while the nodes with
little or no influence on the network account for the most.
The identification of critical nodes is important because it
can improve the efficiency in modeling works [16]–[27].
In particular, the study on measuring the importance of the
nodes is also of practical significance. It could be applied to
many areas, such as control of the disease [28], [29], rumor
dynamics [30], [31] and public opinion [32].

Many methods have been proposed to identify the influ-
ential nodes in complex networks [33]–[41]. The Degree
centrality (DC) [42] is the simplest approach but poor in iden-
tifying the bridge nodes. As its extension, Chen et al. [43]
proposed a method called local rank, which considers
fourth-order neighbors of nodes further. Kitsak et al. [44]
hold that the location of a node plays the more important
role, so the K-Shell was proposed. But it works effectively
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only if applied to some networks like star graph and it is too
coarse to offer a quantitative way to measure the importance
of nodes. The Path-based centralities, such as Closeness cen-
trality (CC) [45], Betweenness centrality (BC) [46] are also
of great importance. However, BC and CC are not applicable
to large networks due to its high time complexity and are not
feasible when applied to disconnected graphs. Katz centrality
[47] is worthy of focus because it does not only take the
shortest paths but all paths into consideration. As to Iterative
algorithm, PageRank [48], [49] has been popular ever since
it was first proposed by Google, which Determines ‘‘page
value’’ by looking at the number and quality of other pages
linked to the page. But when it meets disconnected graphs,
the result would be inaccurate. To make up it, Lü et al. [50]
and Li et al. [51] [50], [51] proposed the LeaderRank by
adding a ground node that connects to all other nodes through
n bidirectional links. But both two methods assume the jump-
ing probability from node to its neighbor node is same, which
still has space to improve. Wei et al. [52] proposed the EVC
(Evidence centrality), which has tried to solve the problem
of identifying important nodes with evidence theory, but it is
only limited to the local characteristics of nodes.

Evidence theory was first proposed by Dempster and
developed by Shafer [53], [54]. As the extension of proba-
bility theory, it requires the weaker condition than the tradi-
tional Bayesian theory. Due to its advantage in handling with
uncertainty of information collected from different sources,
it has been used in many fields [55], [56]. The concept of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 46773

https://orcid.org/0000-0003-4880-2718
https://orcid.org/0000-0001-5438-1492
https://orcid.org/0000-0001-9286-2123
https://orcid.org/0000-0003-2443-7234


J. Zhao et al.: Novel Model to Identify the Influential Nodes: ETC

entropy originated in physics as a measure of the disorder
of a thermodynamic system. In 1948, Shannon pointed out
that the amount of information of a piece of information is
directly related to its uncertainty, which solves the problem
of quantifying information [57]. The probability distribution
of events and the information content of each event constitute
a random variable, and the expectation of this random vari-
able is the information content generated by this distribution,
namely entropy [58]–[62].

The most existing methods focus on only one aspect or
limited to specific graphs. In this paper, we abstract the
ranking values of different methods into BPA (Basic Proba-
bility Assignment) and use Dempster-Shafer theory evidence
theory to combine them. Furthermore, we will adopt Shannon
entropy to measure chaotic degree of their distribution on
which assigning the weight to each method based. In the
experiment part, the Susceptible-infected model (SI) and
Kendall’s tau coefficient will be used on six real networks to
examine the effectiveness of our method and we will analyze
their time complexity.

The rest of paper is organized as follows. In Section II,
some preliminaries including evidence theory and Shan-
non entropy are briefly introduced. In Section III, the pro-
posed method to identify influential nodes will be presented.
In Section IV, the SI model and Kendall’s tau coefficient are
used to illustrate the effectiveness of the proposed method.
The conclusion is given in Section V.

II. PRELIMINARIES
In this section, some basic concepts in complex networks, evi-
dence theory and Shannon entropy will be briefly introduced.

A. CENTRALITY MEASURES
A network can be denoted as G = (V ,E), where V and E
are the set of nodes and edges, respectively. The centrality
measures of DC, BC, and CC are defined as follows.
Definition 1: The betweenness centrality measure (BC) of

node i, denoted as bi, is defined as [46]

bi =
∑
j,k 6=i

gjk (i)
gjk

(1)

where gjk is the number of binary shortest paths between node
j and k, and gjk (i) is the number of those paths that go through
node i.
Definition 2: The closeness centrality measure (CC) of

node i, denoted as ci, is defined as [42]

ci =
1∑N
j dij

(2)

where dij denotes the distance between node i and j.
Definition 3: The degree centrality measure (DC) of node

i, denoted as Di, is defined as [42]

Di =
N∑
j

xij (3)

where xij is the edge between node i and j.

B. DEMPSTER-SHAFER EVIDENCE THEORY
Dempster-Shafer theory offers a useful tool for uncertain
information. It is regarded as an extension of the Bayesian
theory. Some preliminaries in D-S theory are introduced
as follows. For additional details about D-S theory, refer
to [53], [54].
Definition 4 (Frame of discernment): Let 2 be the set of

mutually exclusive and collectively exhaustive events Ai,
namely

2 = {A1,A2, · · · ,An} (4)

The power set composed of 2N elements of is indicated by 22:

22 = {φ, {A1} , {A2} , · · · , {A1,A2} , · · · ,2} (5)
Definition 5 (Mass Function): For a frame of discernment

2 = {A1,A2, · · · ,An}, the mass function m is defined as a
mapping of m from 0 to 1, namely:

m : 22→ [0, 1] (6)
which satifies

m (φ) = 0 (7)∑
A⊆2

m (A) = 1 (8)

where the m(A) refers to degree of evidence supporting A.
Definition 6 (Dempster Combine Rule): There are two

BPAs indicated by m1 and m2, the combination rule is defined
as follows [63]:

m(∅) = 0

m(A) =

∑
B

⋂
C=A

m1(B)m2(C)

1− K

(9)

with

K =
∑

B∩C=φ

m1(B)× m2(C) (10)

C. SHANNON ENTROPY
The concept of entropy originated in physics as a measure
of the disorder of a thermodynamic system. In information
theory, entropy is a measure of uncertainty. The probability
distribution of events and the information content of each
event constitute a random variable, and the expectation of the
randomvariable is the entropy of the information content gen-
erated by this distribution. In 1948, Shannon [57] introduced
the entropy of thermodynamics to information theory, so it is
also known as Shannon entropy. It is defined as follow:

H = −
N∑
i=1

pilog2pi, (11)

where N is the number of basic states in a system, and pi is
the probability of state i.

46774 VOLUME 8, 2020



J. Zhao et al.: Novel Model to Identify the Influential Nodes: ETC

D. SUSCEPTIBLE-INFECTED MODEL
To test the performance of the proposed method (ETC), the SI
model [64] is used to examine the spreading ability of the
ranked nodes. In this model, every node has two discrete
states: (i) susceptible and (ii) infected, in which the infected
nodes stay infected and spread the infection to the susceptible
neighbors with probability β = ( 12 )

α . The F(t) refers to the
number of infected nodes after the time of t , which can be
viewed as the measure of spreading ability.

E. THE KENDALL’S TAU COEFFICIENT
Kendall’s tau coefficient [65] is utilized to measure the cor-
relation between different centrality methods. The Kendall’s
tau coefficient considers a set of joint observations from two
random variables X and Y. Any pair of observations (xi, yi)
and (xj, yj) are concordant if the ranks for both elements
agree: that is, if both xi > xj and yi > yj or if both xi < xj and
yi < yj. They are said to be discordant if xi > xj and yi < yj or
if xi < xj and yi > yj. if xi = xj and yi = yj, the pair is neither
concordant nor discordant. The Kendall’s tau coefficient τ is
defined as

τ =
nc − nd

0.5n(n− 1)
(12)

where nc and nd denote the number of concordant and discor-
dant pairs, respectively. The higher value indicates, the more
accurate ranked list a centrality measure could generate. The
most ideal case is τ = 1, where the ranked list generated by
the centrality measure is same as the ranked list generated by
the real spreading process.

III. PROPOSED METHOD
In this section, we will present the proposed method and use
a simple example to show it.

Step 1: Choose the methods participating the fusion based
on real need. In the experiments of this paper, we choose the
DC, BC, and CC.

Step 2: Obtain their ranking value and do the following to
get the BPA distribution of each method:

Mij =
Mij − min(Mi)

sum(Mi)− n× min(Mi)
(13)

where Mi refers to value distribution of the selected method
i, and Mij refers to the value of node j in method Mi. n is the
number of nodes in graph.

Step3: Calculate the Shannon entropy and do the follow-
ing to determine the weight of each method (The Shannon
entropy reflects the chaotic degree of distribution so the
weights and Shannon entropy are inversely proportional):

S =
N∑
i=1

SMi (14)

WMi =
S − SMi
N1S

(15)

where Mi is the chosen method, SMi is its Shannon entropy.
S is the sum of Shannon entropy and WMi is the weight of
method Mi.

FIGURE 1. The graph with 7 nodes and 6 edges.

Step 4: Integrate them to generate a newBPAdistributionm

mj =
N1∑
i=1

N2∑
j=1

WMi ∗Mij (16)

where mj is integrated value of node j, N1 is the number of
methods involved with fusion and N2 denotes the number of
nodes in graph.

Step 5: Using evidence theory to fuse for N1 − 1 times.

A. EXAMPLE EXPLANATION
Take Fig. 1 as an example, the ranking value is [1, 2, 2,
2, 2, 2, 1] if using degree centrality. It is not reasonable,
because node 4 locate at a more central position and should
be of more importance. If we abstract this ranking value into
BPA distribution by Eq. 13, then it is [0, 0.2, 0.2, 0.2, 0.2,
0.2, 0]. As comparison, BC’s is [0, 01429, 0.2286, 0.2571,
0.2286, 0.1429, 0]. We can see the DC’s distribution is too
average, it means it provides less information than BC’s.
Therefore, when proceeding method fusion, different method
should be assigned different weight. Shannon entropy solve
this problem perfectly, it can measure the uncertainty of
information. If the BPA distribution is distributed evenly,
it means the information is little because you can not judge
which is better based on this distribution. The higher Shannon
of the distribution means the less weight it will get. The
Shannon entropy of the used method are listed in Table 1.
We choose three methods to fuse so 2 times fusion is required
according to Step 5. The final result is [0, 0.0575, 0.2471,
0.3907, 0.2471, 0.0575, 0]. We can see the result is more
reasonable than DC, the most important node 4 has higher
value than that of BC, which demonstrates the effectiveness
of our method. The value of CC is [0, 0.1199, 0.2362, 0.2878,
0.2362, 0.1199, 0]. Notice that, for simplicity, we choose DC,
BC, and CC to fuse, but it not limited to these three in the
real application. Also, we try some method combinations on
Fig.1, the weight of each method is shown in Table 2, from
which we can see the weights are inversely proportional to
the Shannon entropy.

IV. APPLICATION
In this section, the six real networks and SI model and
Kendall’s tau coefficient are used to compare the proposed
method and other classic measures. The methods involved
with fusion are DC, BC, CC.

A. DATASETS
In this paper, we used six datasets which consist of sparse
graphs and dense graphs to test the proposed model, all
networks used in this paper are undirected. The brief intro-
duction is listed as Table 3. |N | and |V | are the numbers

VOLUME 8, 2020 46775



J. Zhao et al.: Novel Model to Identify the Influential Nodes: ETC

TABLE 1. The Shannon entropy of different methods in Fig. 1.

TABLE 2. The weight of different method conbinations in Fig. 1.

TABLE 3. Datasets.

of nodes and edges respectively; < K > and Kmax are the
average and maximum value of the degree; < W > is the
average shortest distance in the network,

B. THE TOP-10 RANKED NODES
Table 4 lists the top-10 nodes selected by three classic mea-
sures and the proposed method. The colored nodes denotes
the same nodes with ETC. In the Karate club network, The
colored nodes denotes the same nodes with ETC. In the
Karate club network, the ETC has 8 same nodes with
PageRank, LeaderRank and EVC. Although ETC and EVC
both use evidence theory, they are two completely different
approaches. In AIDS networks, same to Karate, Compared
with PageRank and LeaderRank, there are also 9 and 8 nodes
in same and it matches with EVC perfectly. In the AIDS net-
work, our method has 6, 7, 5 identical nodes with PageRank
and LeaderRank and EVC respectively.We find that the rank-
ing results is subjected to the topological structure of graphs,
but our method have at least 4 same nodes in Groad and 7 in
USAir97. The ETC performs best in Blog networks and have
same top-10 result with other three methods. It shows our
effectiveness of proposed method. From this table, we can
see the proposed have no bias to any methods. It means our
method can adjust ranking result based on the topological
structure of graphs. That is, if the chaotic degree of method’s
result (The method involved with fusion) is high, the final
result would not be in favor of that method because the weight
is based on the Shannon entropy. The ranking result (top-10)
is used as initial infected node set in Fig. 2.

C. THE COMPARISON OF SPREADING ABILITY
If a node is located at an important position, it would have
a strong infectious ability in the complex network. The SI
model is deployed to test the infection ability of nodes
obtained by different measures. In this paper, the top 10 nodes

shown in Table 4 are used as initial infection nodes, and the
rest of the nodes are treated as susceptible nodes. In each
time t, infected nodes have spreading rate β = ( 12 )

α to infect
their neighbor susceptible nodes, and the total number of
infected nodes and susceptible nodes are the number of nodes
|N | in complex network. The classic methods PageRank,
LeaderRank and EVC are chosen to comparewith ourmethod
in six real networks. Each experiment result is obtained by
the average of 100 independent tests. The results are shown
in Fig. 2, it demonstrates the correctness of this experiment.
In Fig. 2, the number of infected nodes F(t) increases with
the transmission time and reaches a stable value eventually.
To illustrate experimental result better, we cut out only a part
of the whole process because the initial node sets are close.

In Karate and AIDS networks, due to the scale is relatively
small, it is subject to infecting probability. The pictures start
at the end of process, the ETC achieves the best performance
among these methods (After t = 35 in Karate). The perfor-
mance in Netscience is also the best. It’s worth noting that the
scale of Netscience is bigger than AIDS, but the Netscience
of time (t = 85) when the whole network is infected is faster
than AIDS (t = 115). This phenomenon is determined by
the structure of graph. If the graph is sparse, the propagation
speed would be slow. In the selected time period, none of
the four methods reached the peak, but ETC is the fastest in
Groad. In USAir97 network, before reaching the maximum
number of infections, ETC surpassed other methods as the
model for the fastest transmission. In Blog, as we can see
from Table 4, the identification result of each method is
same to ours, so there is little difference (caused by infecting
probability) of them. The advantage of our method is its
flexibility, it can adjust its result by changing the method
participating fusion based real demand. Furthermore, it is not
limited by the topological structure of graphs, because if the
method performs poorly, then our model would reduce its
weight.

D. EFFECTIVENESS
Kendall’s tau coefficient [65] can measure the correlation
between two different variables, and higher Kendall’s tau
coefficient shows these two variables are more similar to the
standard model (SI model). In addition, different cases are
considered in this experiment. The spreading rate β vary from
0.01 to 0.1 to examine τ . The infection process is indepen-
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TABLE 4. The top-10 nodes selected by different methods in different networks.

FIGURE 2. The number of nodes infected by different initial nodes (Top 10 nodes) obtained by the top-10 list by the proposed
method and other centrality measures in six different network.

dently repeated 100 times, and τ is obtained by averaging.
In this paper, we compare six methods to the SI model and
the results are shown in Fig. 3. It can be seen that the value
of τ is above 0.45 in all six graphs even reach to 0.7 in

Karate, USAir 97 and Blog. In Karate, the performance of
ETC is the best in most time. In AIDS, Netscience, Groad and
USAir97, the ETC outperforms all methods but CC. In Blog
network, only DC is better than our method. Note that, there
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FIGURE 3. The rank correlation τ , is plotted by the infection probability β from 0.01 to 0.1 in six real networks.

FIGURE 4. The average number of F(t) (t = 10) of the top-L nodes as ranked by the six centrality measures.

is a phenomenon that the rank correlation τ does not change
sharply with varying the β. Fig. 4 shows the average infection
ability of top-L nodes ranked by different methods. The F(t)
should decrease with the increase with number of nodes.
In Karate and USAir 97, the ETC outperforms other methods
in most time. In AIDS, Netscience and Groad, our method is
better than other methods except CC. In Blog, the proposed
method achieve best performance except the number of nodes
ranging from 500 to 1000.

E. ANALYSIS OF TIME COMPLEXITY
The time complexity of the original Dempster-Shafer is sup-
posed to be O(n2). Since the distribution is single subset in
this paper, which is helpful to reduce time cost and it is
down to O(n). This complexity is lower to the majority of
existing methods. From Table 5, it can be found that DC
always costs least time, this result meets our expectation
because it is the simplest method among all measures in iden-
tifying the influential nodes. In these six networks, only BC
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TABLE 5. The time cost of different methods (s).

and PageRank can compete with our method. Furthermore,
we find in relatively large networks, BC is inferior to the
proposed method.

V. CONCLUSION
In this paper, the identification of influential nodes was dis-
cussed. First, we proposed a model to abstract the ranking
value and measure its chaotic degree by Shannon entropy.
Second, the evidence theory was introduced to fuse the
chosen methods. In application, the DC, BC, and CC were
selected as participating in the fusion. Rather than specifying
some fixed methods to fuse, our method provides a flexible
framework for selecting the required method to fuse accord-
ing to the actual situation. The advantage of our method is
its flexibility, it can adjust its result by changing the methods
participating fusion based on real demand. if the method per-
forms bad under specific evaluation criteria, the ETC would
reduce its weight. At last, we compared the proposed method
with other classic methods on six networks, the experimental
result demonstrated the effectiveness of ourmethod-Evidence
Theory Centrality. The shortcoming of ETC is that it needs
know the value of other methods first, which would cost more
time. This what we will focus on in the future works.
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