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ABSTRACT Localization is one of the main problems in Mobile Wireless Sensor Networks, since it
provides the location of an event occurrence. This paper presents a performance evaluation of the localization
algorithms:MultilaterationAlgorithm,WeightedMultilaterationAlgorithm and ProbabilisticMultilateration
Algorithm (PMA). In addition, we propose an Improved Probabilistic Multilateration Algorithm that
decreases the localization error of the interest node by using an approach that computes iteratively the
position of a node of interest until it reaches the solution that minimizes the localization error. The proposed
approach regards the noisy environment by its impact on a correlation matrix that involves the variance of
the separation distance between the node of interest and the respective reference nodes (RNs). Furthermore,
we also introduce a constant parameter called damping factor; which enhances the convergence of the
localization algorithm providing the solution that minimizes the localization error. In this study, we evaluate
localization algorithms in a single-hop and multi-hop scenarios considering a distribution with solid
geometry of the RNs and randomly distributed RNs in both scenarios. The results we obtained show that our
proposed algorithm Improved PMA presents a better performance according to the Normalized Root Mean
Squared Error varying the number of reference nodes and noise proportion.

INDEX TERMS MWSNs, reference nodes, NOI, reconfigurable network, ad-hoc networks, localization,
mobility patterns.

I. INTRODUCTION
Nowadays, the Mobile Wireless Sensor Networks (MWSNs)
play a fundamental role in the communication networks [1],
since they are used in many applications, such as track-
ing [2], [3], real-time localization [4], [5], search and
preservation of natural resources [6], power consumption
systems [7], Internet of the Things (IoT) [8], physical envi-
ronments monitoring [5], [9]–[12], traffic monitoring [13],
industry and agriculture [6], health care [5], natural disaster
prevention [12], etc. MWSNs are composed of nodes spa-
tially distributed over a geographic area of interest; where
nodes are equipped into vehicles or mobile robots that move
in certain environment [14]. Generally, such devices consist
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of low consumption proccesors, low processing capacity, low
cost; some of their tasks include data collection, processing
and transmission of information and cooperation with other
nodes [1], [4], [15].

Localization is one of the main problems in WSN, since it
provides useful information about an event ocurrence. Local-
ization information is useful for a large number of applica-
tions such as routing [3], [5], [15], health surveillance [1], [5],
battle field surveillance [5], [9]–[11], underwater environ-
ments [16], target tracking [1], [3], logistics, power consump-
tion [7], spatial querying [3], load balancing [17], rescue
operations [5], [18], [19], etc. In a reconfigurable network,
all the collected information by a single node is transmitted
by multiple nodes (through the use of multiple hops) until
the access point is reached [20], [21]. In ad-hoc networks,
the nodes in between the Node of Interest (NOI) and the
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Reference Nodes (RNs) can help determine the position of
the NOI in the network [20], [21]. The RNs are nodes whose
position is known, and we can achieve this by either equip-
ping them with a Global Positioning System (GPS) device or
distributing them in strategic zones with a known location.
GPS is a technology able to estimate the position of a mobile
device on a particular geographic area; but due to the system
higher costs, higher power consumption and inefficiency in
indoor environments, it is not the best fit [22]. In addition to
the GPS issue, cell phone and WiFi systems do not perform
well in certain scenarios such as highlands, underground and
disaster zones where the satellite signals or signals from the
mobile infrastructure cannot be received [23].

At present, there is a great variety of localization algo-
rithms that do not consider environments with mobile nodes.
In localization with static nodes, the NOI is located only
once. In contrast, in an MWSN the NOI is continuously
localized due to the mobility of the itself [24]. The mobility
of the node in a MWSN implies a greater energy consump-
tion, shorter lifetime of the node and increased communi-
cation cost [24]. Some advantages of the MWSNs over a
WSN with static nodes are greater coverage in the network,
greater number of neighboring nodes of the NOI, better
network security and increased network connectivity [24].
In MWSN, there are three mobility scenarios [24], [25]:
(1) Static RNs and moving sensor nodes, (2) static sensor
nodes and moving RNs and (3) moving RNs and moving
sensor nodes.

This study uses the first mobility scenario; where we
assume that the RNs are static and their positions are known;
additionally it is considered that the localization of the sen-
sor nodes will be done only once. The performance of the
range-based algorithms is evaluated in this scenario; algo-
rithms such as Multilateration Algorithm (MA), Weighted
Multilateration Algorithm (WMA) and Probabilistic Mul-
tilateration Algorithm (PMA). The Improved Probabilistic
Multilateration Algorithm is also introduced as an improve-
ment of the PMA approach. The Improved PMA algorithm
resolves the localization problem iteratively until it gets the
position of the NOI that minimizes the localization error.
We utilize the Received Signal Strength (RSS) in order to esti-
mate the separation distance between the NOI and the RNs.
Besides, we consider that the estimated separation distance
between theNOI and the RNs is affected by a random variable
with beta distribution due to the mobility of the NOI; which
is obtained through several simulations of the NOI motion
varying the speed and the direction of it in different instants
of time. The localization algorithms analyzed in this paper
are evaluated in a single-hop scenario and multi-hop scenario
considering different distributions of the RNs, namely, a sce-
nario with fixed RNs distributed on a solid geometry and a
scenario with randomly distributed RNs. The performance of
the localizations algorithms analyzed in this work is obtained
according to the performance metric Normalized Root Mean
Squared Error (RMSE). The results we obtained show that
our proposed algorithm Improved PMA presents a better

performance according to the Normalized RMSE in all the
proposed scenarios.

The rest of the paper is structured as follows: Section II
presents the work related to the mobility patterns and clas-
sification of localization algorithms in MWSNs; Section III
describes the localization problem in a network with mobile
nodes; Section IV presents the performance analysis of local-
ization techniques MA, WMA and PMA analyzed in this
paper; Section V introduces the analysis of the algorithm,
which we propose, Improved PMA; Section VI presents the
results of the localization algorithms analyzed in this work
and finally we present the conclusions that support this study.

II. RELATED WORK
Nowadays MSNSs are considered in large-scale applica-
tions; which consist in a great number of sensor nodes and
sinks wirelessly connected through an arbitrary topology [1].
Therefore, mobility plays an important role in MWSNs and
it can be applied in all the sensors of the MWSN depending
on the application [1], [3]. Mobility in a MWSN is divided
into three categories: random mobility, predictable mobility
and controlled mobility [3]. In the random mobility category,
mobile devices move freely and randomly over an interest
area with no constraint. In the second category, the trajec-
tory of the mobile device is known and cannot be altered.
In the third category related to controlled mobility, the mobile
device moves to a known destination following a mobility
pattern for a common aim, usually exploration and local-
ization. Nowadays there are many proposals in regards to
mobility models that predict the motion of a sensor node [3].
In MWSNs, mobility models predict the trajectory of a mov-
ing sensor node [1], [26]. Mobility models describe the speed
changes, acceleration and position of a sensor node with
respect to time; and they are often used to investigate new
propositions on communication and navigation techniques.

Mobility patterns are classified in: trace models and syn-
tactic models [1], [27]. Trace models are mobility deter-
ministic patterns that can be observed in real life. In WNS,
trace models cannot be modeled if the traces have not been
formed. Therefore, in ad-hoc networks it is necessary to
use syntactic models to describe the mobility pattern of the
sensor node. Syntactic models describe the realistic move-
ment of a sensor node without considering traces. Syntactic
models are classified in entity models and group mobility
models [1], [27]. According to the specific features of the
syntactic models; these can be classified in random mod-
els, time-dependencemodels, spatial-dependencemodels and
models with geographic constraints. Some mobility patterns
based on entity mobility are: random way point, random
walk, random Gauss-Markov, city section, random direction,
boundless simulation area and the probabilistic version of
random walk [1], [28]. The mobility models based on group
mobility models are the Exponential Correlated Random,
Reference Point Group Mobility (RPGM), Column Mobility
Model, Nomadic Community, Pursue Mobility Model, Drift
Group and Group Force [1], [28].
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In MWSNs, localization algorithms are classified in two:
range-free and range-based [29], [30]. The range-based algo-
rithms estimate the separation distance between the RNs and
the NOI by means of a technique to estimate distance, such as
Time of Arrival (ToA), Received Signal Strength (RSS), Time
Difference of Arrival (TDoA) or Angle of Arrival (AoA) [21].
The range-free algorithms use the connectivity informa-
tion between the nodes to estimate the separation distance
between two nodes [21], [31]. The range-based algorithms
reach a higher accuracy in the localization of the NOI than the
range-free algorithms; but these require extra hardware in the
NOI estimation [21], [31]. In many studies, the RSS is used
to estimate the distance between the RNs and the NOI; since
this technique can be easily implemented in hardware, but its
accuracy in the NOI localization is lower than that when the
ToA, TDoA and AoA techniques are used, [21], [32]. ToA
presents the syncing nodes issue, TDoA has limited coverage
and AoA implies computationally expensive hardware and it
also requires an antenna array [21].

Some range-free localization algorithms are the cen-
troid [21], weighted centroid [21], Approximate Point
In Triangle (APIT) [33], [34], Distance Vector-Hop
(DV-Hop) [31], Improved DV-Hop (IDV-Hop) [31],
Weighted DV-Hop (WDV-Hop) [31]; circular, rectangu-
lar and hexagonal intersection respectively [35], inter alia.
In MWSNs; several range-free localization algorithms use
the sequential method Monte Carlos (SMC) to estimate the
position of the NOI [24], [36]. The Monte Carlo method
uses the probability density function (pdf) to estimate the
position of the NOI. This method performs the estimation
of the NOI in three stages: initialization, sampling and fil-
tering [36]. In the initialization phase, the NOI estimates
its localization by generating a set of samples randomly
distributed within the sensing area. During the sampling
phase, the NOI generates new samples of the coordinates
based on the coordinates received on a previous time interval.
In this phase, the NOI uses the pdf to generate new randomly
distributed samples. Finally, in the filtering phase, the sam-
ples from one or two hops of the RNs are used in order
to estimate the position of the NOI. In [12], [37], authors
propose the algorithm Weighted Monte Carlos Localization
(WMCL), which is based on the method SMC [36]. This
proposal improves the accuracy on the localization of the
NOI in comparison with the DV-Hop [31] and SMC [36].
The method WMCL reduces the sampling area where the
NOI is found, by using the bounded box method [36] and
it improves the efficiency localization of the SMCmethod by
using the position information of the neighboring nodes of
the RNs. The hop distance method uses the average distance
per hop between two RNs to estimate the position of the
NOI [36]. The Hop distance approach determines the position
of the NOI in three phases, namely, localization broadcast,
distance matrix calculation and localization estimation [36].
The disvantage of hop distance method is that it requires the
RNs to be evenly distributed in the network to achieve high
accuracy in the estimation of the position of the NOI. In [36],

authors propose the fingerprint approach, which estimates the
position of the NOI through two phases, namely, offline and
online stage.

Within the literature related to range-based algorithms
we can mention DV-Distance [38], Multilateration [39],
Multidimensional-Scaling (MDS) [40], Hyperbolic Position-
ing Algorithm [21], Weighted Hyperbolic Positioning Algo-
rithm [21], [31], Circular and Weighted Circular Positioning
Algorithm [21] Weighted Least-Squares (WLS) Multilatera-
tion [21], Least-Squares DV-Hop (LSDV-Hop) [41], Vertex
Projection [20], Vertex Projection with Correcting Factor
and Maximum Likelihood [20]. In MWSNs Bergamo and
Mazzini [42] propose a range-based algorithm that uses the
information of the positions of the RNs placed on two corners
of the same side of a rectangular space. The mobile NOI mea-
sures the RSS of the RNs and estimates its position through
triangulation. The localization accuracy of this algorithm is
affected by the fading away of the signals and mobility of
the NOI. Due to the RNs remaining static, the localization
of the mobile NOI is limited; given that the RSS decreases as
the NOI distances itself from its respective RNs. Therefore,
the results of the distance estimated between the mobile
NOI and its respective RNs are vague [42]. In [24], authors
propose the Dead Reckoning algorithm, which performs the
estimation of the position of the NOI in discrete time inter-
vals called checkpoints. The Dead Reckoning carries out the
estimation of the NOI localization in two stages: initialization
and sequent. In the initialization phase, the NOI is localized
by means of trilateration. In the next phase, only two RNs
are used to localize the NOI. In this phase, two possible NOI
localizations are obtained through the Bézout’s theorem [43].

Also in [24], authors propose two classes of localization
algorithms for MWSNs: adaptive and predictive. The adap-
tive localization algorithms carry out the localization of the
NOI at constant time intervals based on the NOI movement;
where the estimation of the current position of the NOI is
obtained from previous estimations. This method allows the
NOI to increase its localization frequency when it moves
rapidly, or reduce its localization frequency when its move-
ment is sluggish. The predictive algorithms, estimate the
movement pattern of the NOI and predict the future move-
ment of the NOI. The main aim of this method is to consider
the frequency of the localization of the NOI instead of the
localization algorithm.

III. MODEL DESCRIPTION
This section describes the localization scenario in MWSNs,
where it is assumed that the RNs are static with known
positions and the NOI is moving. In this scenario, localization
is described based on a reference coordinate system, defined
by RNs, and sensors nodes whose positions are unknown
and will be determined by applying a localization algorithm.
Figure 1(a) shows the mobility scenario in a WSN of the NOI
identified as node Z with coordinates (xτ , yτ ) in a discrete
instant of time τ = 0, 1, 2, . . . , t , with respect to the RN
A0 with known position (xA, yA). In this scenario, the NOI

54996 VOLUME 8, 2020



J. Mass-Sanchez et al.: Localization Based on Probabilistic Multilateration Approach for MWSNs

FIGURE 1. Mobility of the NOI Z with respect to the RN A0.

Z motion is based on the random way point mobility pattern.
Figure 1(b) shows the transition of the NOIZ from the instant
of time t-1 to the instant of time t , where we obtain a math-
ematical model of the separation range Dt between the RN
A0 and the mobile NOI Z in an instant of time t . The elapsed
distance rt−1 by the NOIZ is obtained by rt−1 = vt−11T t−1,
where vt−1 ∼ U (0,Vmax), i.e., uniformly distributed in the
range (0,Vmax) and 1T t−1 is the time elapsed from the
instant of time t-1 to the instant of time t .

The separation distance Dt in the instant of time t between
the RN A0 and the mobile NOI Z is given by

Dt =
√
[xA − xt ]2 + [yA − yt ]2. (1)

Replacing the motion equations xt = xt−1+rt−1 cos (θt−1)
and yt = yt−1 + rt−1 sin (θt−1) of the mobile NOI Z, where
θt−1 ∼ U (0, 2π); the separation range Dt is given by

Dt =

√√√√[
xA − xt−1 − vt−11T t−1 cos (θt−1)

]2
+
[
yA − yt−1 − vt−11T t−1 sin (θt−1)

]2 . (2)

Note that Dt depends on two random variables,
i.e., the speed vt−1 ∼ U (0,Vmax) and the direction θt−1 ∼
U (0, 2π), which are asummed to be independent. Since it is
not possible to obtain accurate statistical parameters of the
variable Dt , we carried out several simulations of the NOI Z
motion with respect to the RN A0, considering that NOI Z
is moving at different speeds. The results in Figures 2 and 3
show an approximation of the pdf of the separation
distance Dt .

FIGURE 2. (a) pdf of Dt and (b) Q-Q plot beta for Vmax = 3m/s.

FIGURE 3. Q-Q plot beta for (a) Vmax = 5m/s and (b) Vmax = 10m/s.

Figure 2(a) shows the pdf of the parameter Dt normalized
with respect to the maximum possible separation distance
between two nodes over an area of 100 m x 100 m, that
is 141.42 m, and the pdf of a beta distribution using a red
curve, where wemay conclude that both pdfs are very similar.
In other tests, where the parameter Dt is not normalized we
also get a pdf of such parameter very similar to the beta
pdf. Figure 2(b) shows a Q-Q (Quantile-Quantile) beta plot,
where the calculated pdf is similar to a beta distribution.
Similar results are shown in Figure 3 for maximum speeds
of the mobile NOI Z of 5m/s and 10m/s. Therefore, we may
conclude that the magnitude of the speed of the mobile NOI
Z does not alter the shape of the pdf of the separation dis-
tance Dt , since the results we obtained show that the pdf
of the parameter Dt for different speeds is similar to a beta
distribution.

Therefore, in a mobility scenario, we assume that the indi-
vidual distance between the NOI Z and each one of the RNs
(necessary to estimate the position of the NOI Z) has a beta
distribution with parameters α and β, i.e., Dt ∼ Beta (α, β),
whereDt is normalized with respect to themaximum possible
separation distance between the NOIZ and the RNA0, which
is 141.42 m over an area of 100 m x 100 m. The parameters
α and β define the shape of the pdf with beta distribution.
In the simulations performed, in order to obtain the pdf with
beta distribution as the speed of the NOI is varied, one can
observe that the pdf with beta distribution is similar in all
the scenarios. Using parameters α and β, we can estimate
distance between the NOI and the RNs, which depends on
the speed and the direction of the NOI. By definition the pdf
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of a Beta distribution function, is given by

fX (x) =
1

B (α, β)
xα−1(1− x)β−1, 0 < x < 1, (3)

where B (α, β) =
∫ 1
0 x

α−1(1− x)β−1dx. By getting the
parameters α and β, we can determine the mean and variance
of a random variable X through the following equations

E [X ] =
α

α + β
, (4)

Var [X ] =
αβ

(α + β)2 (α + β + 1)
. (5)

Assuming the random variable X with beta distribution is
defined over a range 0 < x < xm, then its pdf is defined by
the equation

fX (x) =
1

xmB (α, β)

(
x
xm

)α−1 (
1−

x
xm

)β−1
,

0 < x < xm. (6)

Therefore, the mean and variance of the random variable
X with beta distribution are determined by

E [X ] =
αxm
α + β

, (7)

Var [X ] =
αβxm

(α + β)2 (α + β + 1)
. (8)

Finally, equations (7)-(8) determine the mean and variance
weighted by a factor xm of a random variable X with beta
distribution.

We observe that in an instant of time τ = t , the pdf of
the separation distance Dt between the RN A0 and the NOI
Z has a pdf of a beta distribution with parameters α and β.
Thus, it is not necessary to know the parameters of speed
vt−1, direction θt−1 and the elapsed time 1T t−1 of the NOI
Z to estimate the separation distance Dt between the RN
A0 and the NOI Z, as we see in equation (2); since these
parameters were used to estimate the pdf of a beta distribution
with constant parameters α and β. Therefore, the localization
of the NOI Z in the instant of time τ = t , does not depend on
previous instants of time, i.e., τ = 0, 1, 2, . . . , t−1. Without
loss of generality, the position of the NOI Z in an instant of
time t is given by the coordinates (x, y).

We consider a network with 3 RNs labeled as A0,B0 and
C0 with known coordinates (xA, yA), (xB, yB) and (xC , yC )
respectively, and the NOI Z with coordinates (x, y) as shown
in Figure 4. Assuming that we know the Euclidean ranges
d (A0,Z) , d (B0,Z) and d (C0,Z) between the NOI Z and
the respective RNs, we can estimate the position of NOI Z
through trilateration. However, due to the limitations of the
network coverage, a single node does not provide enough
power to achieve a direct link with all the nodes in the
network; i.e., the route between the RNs and the NOI Z
is formed by an array of hops in the network. The route
from the RN A0 and the NOI Z consists of (1 +nA) nodes,
where nA is the number of hops in such path from the RN
A0 to the NOI Z (Figure 4). Then, the route from the RN

FIGURE 4. Localization scenario with 3 RNs.

A0 to the NOI Z is formed by the array of nodes RAZ ={
A0,A1,A2, . . . ,AnA−1,Z

}
; where A1,A2, . . . ,AnA−1 are

the intermediate nodes of the route traced from the RN A0
and the NOI Z. Therefore, the Euclidean range d (A0,Z)
is formed by the concatenation of multiple hops of length
d
(
Aj−1,Aj

)
for j = 2, 3, . . . ,nA − 1; where Aj is the

intermediate node in the path from the RN A0 to the NOI Z.
In a real scenario, the range d

(
Aj−1,Aj

)
for every j can be

estimated by using RSS [21].
The log-normal model is used in order to estimate the RSS

between two adjacent nodes. This model establishes that the
RSS is inversely proportional to the separation distance d−η;
where η is the path-loss exponent [44]. The strength of the
received signal Pr (d) with path-loss effects is expressed by

Pr (d) = PTKd−η (9)

where PT is the transmitting power, K is a constant factor of
path-loss (antenna gains, average channel attenuation, etc.),
and d is the separation distance between two nodes. The
parameter Pr (d) given in (9), can be expressed in dB assum-
ing path-loss and shadowing effects through

Pr (d)dB = (PT )dB+KdB − 10ηlog (d)− χσ (10)

where χσ is a random variable with normal distribution with
zero mean and standard deviation σ in dB due to shadowing
effects, i.e., χσ ∼ N(0, σ ) [44]. The typical values of the
path-loss exponent η are in the range of 1.5 to 5 and for the
standard deviation σ are in the range of 4 to 12 dB [44].
Equation (10) indicates that RSS value decreases logarithmi-
cally with respect to the increasing of the separation distance
between the transmitter and receiver. Therefore, by using
equation (10), we get the average estimated separation dis-
tance δ̃ given by

δ̃ = 10
(PT )dB+KdB−Pr (d)dB

10η (11)

As seen in (11), we get the pdf of the separation distance δ̃,
using the following process

δ̃ = 10
10ηlog(d)+χσ

10η = d10

(
χσ
10η

)
= eln(d)10

χσ
10η

= eln(d)e
χσ ln(10)

10η

δ̃ = eln(d)+
χσ ln(10)

10η (12)
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Equation (12) shows that the term Y = ln (d) + χσ ln(10)
10η

is a random variable, since χσ ∼ N(0, σ ). Thus, we may
conclude that Y ∼ N(mY , σY ). Then, we get the statistical
parameters (mY , σY ) of the random variable Y as follows

mY = E (Y ) = E (ln(d))+ E
(
χσ ln(10)

10η

)
= E (ln(d))+

ln(10)
10η

E (χσ ) = ln (d) (13)

where E (χσ ) = 0, since χσ ∼ N(0, σ ). The variance of
the Gaussian random variable χσ is obtained through σ 2

=

E
(
χ2
σ

)
− E2 (χσ ) = E

(
χ2
σ

)
. The parameter σY is obtained

through the following process

σ 2
Y = Var (Y ) = E

(
Y 2
)
− E2 (Y )

= E

[(
ln (d)+

χσ ln (10)
10η

)2
]
− ln2 (d) (14)

σ 2
Y = E

[
ln2 (d)+

2χσ ln (d) ln (10)
10η

+

(
χσ ln (10)

10η

)2
]

− ln2(d)

σ 2
Y = E

[
ln2 (d)

]
+

2 ln (d) ln (10)
10η

E (χσ )

+

(
ln (10)
10η

)2

E
(
χ2
σ

)
− ln2 (d)

σ 2
Y = ln2 (d)+

(
ln (10)
10η

)2

σ 2
− ln2 (d)

σ 2
Y =

(
σ ln (10)
10η

)2

(15)

Therefore, σY = σ ln(10)
/
10η. Then, Y ∼ N(mY , σY ),

where the statistical parameters are given by mY = ln (d)
and σY = σ ln(10)

/
10η. Equation (12) indicates that the

estimated separation distance between two nodes has a pdf
with log-normal distribution with parameters µd = ln(d) and
σd = σ ln(10)

/
10η, i.e., δ̃ ∼ Log -N (µd , σd ).

Taking as reference the RN A0, the actual signal strength
received Pr

(
Aj−1,Aj

)
between two neighboring nodes Aj−1

and Aj for every j without shadowing effects is computed by

Pr
(
Aj−1,Aj

)
dB = (PT )dB − 10ηlog

[
d
(
Aj−1,Aj

)]
(16)

The received signal strength P̃r
(
Aj−1,Aj

)
dB with

shadowing effects is computed by P̃r
(
Aj−1,Aj

)
dB =

Pr
(
Aj−1,Aj

)
dB − χσAj−1,Aj

where σAj−1,Aj is the gaussian
noise standard deviation, which is proportional to the actual
received signal strength Pr

(
Aj−1,Aj

)
dB. Hence, the hop

length with a measurement error is calculated by

D
(
Aj−1,Aj

)
= 10

(PT )dB−P̃r(Aj−1,Aj)dB
10η (17)

Replacing P̃r
(
Aj−1,Aj

)
dB = Pr

(
Aj−1,Aj

)
dB − χσAj−1,Aj

in equation (17), the single hop length is given by

D
(
Aj−1,Aj

)
= eln(d(Aj−1,Aj))+

(
χσAj−1,Aj

)
ln(10)

10η (18)

for j = 1, 2, 3, . . . , nA − 1. Therefore, the estimated sepa-
ration distance δA formed in the path from the RN A0 to the
NOI Z is obtained by

δA =

nA−1∑
j=1

D
(
Aj−1,Aj

)
+ D

(
AnA−1,Z

)
(19)

where D
(
AnA−1,Z

)
= eln

(
d
(
AnA−1,Z

))
+

(
χσAnA−1

,Z

)
ln(10)

10η is an
approximation of the real distance d

(
AnA−1,Z

)
of the neigh-

boring node AnA−1 to the NOI Z. Therefore, the estimated
separation range δA formed in the path from the RN A0 to the
NOI Z is computed by

δA =

nA−1∑
j=1

eln(d(Aj−1,Aj))+

(
χσAj−1,Aj

)
ln(10)

10η

+ eln
(
d
(
AnA−1,Z

))
+

(
χσAnA−1

,Z

)
ln(10)

10η (20)

δA =

nA−1∑
j=1

d
(
Aj−1,Aj

)
10

χσAj−1,Aj
10η

+ d
(
AnA−1,Z

)
10

χσAnA−1
,Z

10η (21)

Assuming that the NOI Z is moving, the range δA from the
RNA0 to theNOIZwill be affected by a beta randomvariable
ϕA due to the mobility of the NOI Z. Therefore, the range δA
from the RN A0 to the NOI Z is computed through

δA =

nA−1∑
j=1

d
(
Aj−1,Aj

)
10

χσAj−1,Aj
10η

+ d
(
AnA−1,Z

)
10

χσAnA−1
,Z

10η + ϕA (22)

where the beta random variable ϕA is weighted by the factor
λA proportional to the real separation distance between the
NOIZ and the RNA0, i.e., 0 < ϕA < 1

/
λA. Now, we assume

in equation (22) that the Gaussian and beta random variables
are independent. We observe in (22) that the parameter δA
is the estimated range between the RN A0 and the NOI
Z obtained in the instant of time τ = t . Asumming that
the localization of a single node is not dependent on others
instant of time, namely, τ = 1, 2, 3, . . . , t , then, by using
the equation (22) we can estimate the position of the NOI Z
regardless of the value of the instant of time τ .

IV. LOCALIZATION ALGORITHMS ANALYZED
A. MULTILATERATION ALGORITHM (MA)
By taking Figure 4 as our reference, we can obtain the posi-
tion of theNOIZ using the trilateration localization algorithm
of the RNs A0, B0 and C0. However, for 4 or more RNs,
we use the Multilateration localization algorithm to estimate
the position of the NOI Z with coordinates (x, y) in [39].
In a node network with N number of RNs, the estimated dis-
tance δi between the mobile NOIZ and the RN i, is calculated
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through the Pythagorean theorem as follows

δ2i = (xi − x̃)
2
+ (yi − ỹ)

2 , i = 1, 2, . . . ,N . (23)

where (x̃, ỹ) is the estimated position of the NOI Z. Equa-
tion (23) implies a non-linear problem. By solving the sub-
traction δ2i − δ

2
1 , the non-linear problem becomes a linear

problem, which can be solved by a Least Squares (LS) esti-
mator; and we finally get

2x̃xi+2ỹyi−2x̃x1−2ỹy1=x2i +y
2
i −x

2
1−y

2
1−δ

2
i +δ

2
1 . (24)

Expanding the equation (24) for i = 2, 3, . . . ,N , and
redefining it in a matrix form [39] we get x2 − x1 y2 − y1

...
...

xN − x1 yN − y1

[ x̃ỹ
]

=
1
2

 x22 + y
2
2 − x

2
1 − y

2
1 − δ

2
2 + δ

2
1

...

x2N + y
2
N − x

2
1 − y

2
1 − δ

2
N + δ

2
1

 . (25)

Then, the linear problem can be formulated as

Hp̃ = b. (26)

where H =

 x2 − x1 y2 − y1
...

...

xN − x1 yN − y1

 , p̃ = [
x̃
ỹ

]
and b is a

random vector given by

b =
1
2

 x22 + y
2
2 − x

2
1 − y

2
1 − δ

2
2 + δ

2
1

...

x2N + y
2
N − x

2
1 − y

2
1 − δ

2
N + δ

2
1

 . (27)

Finally, the estimated position p̃ of the NOI Z is computed
by next equation

p̃ = (HTH)
−1

HTb. (28)

Therefore, through equation (28) we get that the position p̃
of the NOI Z is computed by a Least Squares estimator (LS).

B. WEIGHTED MULTILATERATION ALGORITHM (WMA)
There is a variety of range-based localization techniques that
estimate the position of a NOI. Some of those techniques are
the hyperbolic positioning algorithm (Multilateration) [21],
weighted hyperbolic positioning algorithm (Weighted Mul-
tilateration) [21], circular positioning algorithm [21], MDS
algorithm [40], etc. The hyperbolic and weighted hyperbolic
positioning algorithms solve the localization problem through
Multilateration [21], [39], where a resulting linear equation
is easily solved by using a least squares estimator. The cir-
cular and weighted circular positioning algorithms computes
iteratively the position of the NOI using the gradient descent
method [45], iteratively until convergence is reached. The
MDS algorithm computes the position of the NOI using a
spectral decomposition of a matrix of the separation ranges
between the RNs and the NOI. However, this method implies

a computationally high cost, since, it is a centralized algo-
rithm, reason why a single node requires a higher number of
computing operations in order to estimate the position of the
NOI [40]. Therefore, we opt for the weighted Multilateration
algorithm, since this method is an improvement of the classic
Multilateration algorithm; the WMA algorithm only adds a
covariance matrix into the MA algorithm; hence, the MA and
WMA algorithms have the same computational complexity
order. The covariance matrix contains the information of the
estimated distance between the NOI and the respective RNs,
so the covariancematrix includes theweights on how accurate
the estimated distances are between the NOI and the RNs
closest to their real values, which implies a higher accuracy
in the localization of the NOI.

Taking Figure 4 as a reference, the distance δA from the RN
A0 to NOI Z can be estimated using equation (22). However,
in a network with N number of RNs, we get the estimated
distance δi between the mobile node and the RN i given by
δi = Xi + ϕi, where Xi ∼ Log -N

(
µdi , σdi

)
due to the

environmental features. The position of the mobile node can
be estimated using theWeightedMultilateration Algorithm as
follows

p̃ =
(
HTS−1H

)−1
HTS−1b (29)

where S is the covariance matrix of the random vector b given
by

S =


Var

(
δ21

)
+ Var(δ22) Var

(
δ21

)
· · ·

Var
(
δ21

)
Var

(
δ21

)
+ Var(δ23) · · ·

...
...

. . .

Var
(
δ21

)
Var

(
δ21

)
· · ·

Var
(
δ21

)
Var

(
δ21

)
...

Var
(
δ21

)
+ Var(δ2N )

 (30)

From equation (30), we get that the elements of the covari-
ance matrix S depend on the real separation distance from the
RN i to NOI. By definition the variance of a random variable
as Var (ψ) = E

(
ψ2
)
− [E (ψ)]2, where E is the mean or

expected value; then, we can get the variance of the random
variable δ2i as follows

Var
(
δ2i

)
= E

(
δ4i

)
−

[
E
(
δ2i

)]2
(31)

where

δ2i = (Xi + ϕi)
2
= X2

i + 2Xiϕi + ϕ2i

δ4i = (Xi + ϕi)
4
=X4

i +4X
3
i ϕi+6X

2
i ϕ

2
i +4Xiϕ

3
i +ϕ

4
i

E
(
δ4i

)
=E

(
X4
i

)
+ 4E

(
X3
i

)
E (ϕi)+ 6E

(
X2
i

)
E
(
ϕ2i

)
+ 4E (Xi)E

(
ϕ3i

)
+ E

(
ϕ4i

)
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[
E
(
δ2i

)]2
=

[
E
(
X2
i

)
+ 2E (Xi)E (ϕi)+ E

(
ϕ2i

)]2
=E2

(
X2
i

)
+4E (ϕi)E(Xi)E(X2

i )+4E
2 (Xi)E2 (ϕi)

+ 2E(ϕ2i )E(X
2
i )+4E (Xi)E(ϕi)E(ϕ

2
i )+E

2
(
ϕ2i

)

Finally, the parameter Var
(
δ2i

)
is obtained by

Var
(
δ2i

)
= Var

(
X2
i

)
+ Var

(
ϕ2i

)
+ 4Var (ϕiXi)

+ 4E
(
X3
i

)
E (ϕi)+ 4E (Xi)E

(
ϕ3i

)
− 4E (ϕi)E (Xi)E

(
X2
i

)
− 4E (Xi)E (ϕi)E

(
ϕ2i

)
(32)

Equation (32) shows that the variance of the estimated dis-
tance δi between an RN i and the NOI depend on the statistical
parameters of the random variables Xi and ϕi with log-normal
distribution and beta distribution, respectively. Therefore, the
term Var

(
δ2i

)
depends on the real distance between the RN i

and the NOI; however, in an actual implementation it is
necessary to approximate the estimated distance δi to its real
value for each RN i.

C. PROBABILISTIC MULTILATERATION ALGORITHM (PMA)
This approach estimates the position of the NOI using the
position of the RNs and the ranges between the NOI and
the RNs. The main goal of this approach is to reduce the
flaws such as uncertainty, non-consistency and ambiguity
that affect the Multilateration algorithm [46]. Assuming that
for every RN i we define a pdf Pi (x, y) that assigns the
probability of finding a node in the plane (or space), then, for
3 ormore RNswe define a joint probabilityPB (x, y), whereB
is the set ofN RNs. Due to the independence of the separation
ranges between the NOI and the RNs, the pdfs of the RNs are
independent of each other. Therefore, the joint pdf PB (x, y)
can be calculated as a product of independent pdfs, as shown
below

PB (x, y) =
N∏
i=1

Pi(x, y) (33)

Equation (33) indicates that the position (x, y) of the
NOI will be where the joint pdf PB (x, y) reaches its maxi-
mum value. In the case of range-free algorithms the pdf is
unknown; therefore, we use a gaussian generic pdf whose
parameters depend on the position of the NOI and the separa-
tion distance between the RNs and the NOI. Assuming, that
for each RN i the pdf Pi(x, y) is Gaussian with parameters
(µi, σi). Therefore, the joint pdf PB (x, y) is expressed by

PB (x, y) =
N∏
i=1

1
Ni
e
−

1
2

[√
(x−xi)

2
+(y−yi)

2
−µi

σi

]2
(34)

where Ni is a normalization factor whose product is unitary,
i.e.,

∏N
i=1 1

/
Ni = 1, µi is the observed separation distance

between an RN i and the NOI, which is affected by unwanted
noise, and σi is the standard deviation of unwanted noise,
which is proportional to the separation distance between a
RN i and the NOI. In order to find the maximum value of
PB (x, y), we calculate the partial derivates in Equation (34)
with respect to the coordinates (x, y) of the position of the
NOI and we get the following equations

∂PB (x, y)
∂x

=

N∑
i=1

(√
(x − xi)2 +

(
y− yi

)2
− µi

)
(x − xi)

σi

√
(x − xi)2 +

(
y− yi

)2 = 0 (35)

∂PB (x, y)
∂y

=

N∑
i=1

(√
(x − xi)2 +

(
y− yi

)2
− µi

)
(y− yi)

σi

√
(x − xi)2 +

(
y− yi

)2 = 0 (36)

 N∑
i=1

(√
(x − xi)2 +

(
y− yi

)2
− µi

)
(x − xi)

σi

√
(x − xi)2 +

(
y− yi

)2

2

+

 N∑
i=1

(√
(x − xi)2 +

(
y− yi

)2
− µi

)
(y− yi)

σi

√
(x − xi)2 +

(
y− yi

)2

2

= 0

(37)

Equation (37) is obtained from the sum of the cuadratic
terms in equations (35)-(36), so it is a non-linear problemwith
two unknown variables. The non-linear problem is solved by
applying the Newton Raphson algorithm, where the starting
point is the centroid of the positions of the RNs.

V. IMPROVED PROBABILISTIC MULTILATERATION
APPROACH
This approach computes the position of a NOI assuming the
position of the RNs and the ranges between them and
the NOI in presence of unwanted noise. We assume that
the separation distance between an RN i and the NOI is

given by zi =
√
(x − xi)2 + (y− yi)2, i = 1, 2, . . . ,N ;

µi is the observed distance with Additive Gaussian White
Noise (AGWN) between the RN i and the NOI, and σi is the
standard deviation of gaussian noise, which is proportional
to the separation distance between the RN i and the NOI.
Equation (34) can be expressed as

PB (x, y) =

[
N∏
i=1

1
Ni

]
exp

(
−1

2σ 2
i

N∑
i=1

(zi − µi)2
)

(38)

We assume a set of actual distances zi in a vectorial form
as z = [z1, z2, . . . , zN ]T and a set of observed distances µi
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in a vectorial form as u = [µ1, µ2, . . . , µN ]T ; the position
of the NOI is assumed as the vector x = [x, y]T . Therefore,
from Equation (38) we get the cost function F(x) given by

F (x) =
1

σ 2
i

N∑
i=1

(zi − µi)2 = eTK−1e (39)

where e = z − u is a vector with the residues between
the real distances and the estimated distances between the
NOI and the RNs. We observe that the cost function F (x)
involves a non-linear problem. The solution for this type
of problems requires higher computational cost and it fur-
ther implies convergence in local minimum. In order to
solve this problem, we introduce an iterative algorithm based
on an LS estimator where the Taylor series of first order
is used to get an approximation of the position of the
NOI. Therefore, the vector z is used as a function vector,
which can be expressed by the Taylor series of first order,
i.e., z = z0 + J [x− x0], where x0 is the starting point and J
is the Jacobian matrix of dimension Nx2 given by

J=



∂z1
∂x

∂z1
∂y

∂z2
∂x

∂z2
∂y

...
∂zN
∂x

...
∂zN
∂y



=



x−x1√
(x−x1)2+

(
y−y1

)2 y−y1√
(x−x1)2+

(
y−y1

)2
x−x2√

(x−x2)2+
(
y−y2

)2 y−y2√
(x−x2)2+

(
y−y2

)2
...

x−xN√
(x−xN )2+(y−yN )2

...
y−yN√

(x−xN )2+(y−yN )2


(40)

By replacing z = z0 + J [x− x0] in Equation (39) we get

F (x) = [z0 + Jx− Jx0 − u]T K−1

[z0 + Jx− Jx0 − u] (41)

By expanding Equation (41) we get

F (x) = zT0K
−1z0 + zT0K

−1Jx−zT0K
−1Jx0 − zT0K

−1u

+ xTJTK−1z0 + xTJTK−1Jx− xTJTK−1Jx0
− xTJTK−1u−xT0 J

TK−1z0 − xT0 J
TK−1Jx

+ xT0 J
TK−1Jx0 + xT0 J

TK−1u−uTK−1z0
−uTK−1Jx+uTK−1Jx0 + uTK−1u (42)

Deriving the cost function F (x) in Equation (42) with
respect to the position x of the NOI, we get the following

equation

∂F (x)
∂x

= 2
[
JTK−1z0 + JTK−1Jx− JTK−1Jx0

−JTK−1u
]
= 0 (43)

Leading the position x of the NOI in Equation (43), we get

JTK−1Jx= JTK−1Jx0 + JTK−1 [u− z0] (44)

x= x0 +
[
JTK−1J

]−1
JTK−1 [u− z0] (45)

Equation (45) is the solution for Equation (39). We observe
that equation (45) presents an optimization problem, which
is recursively solved until convergence of the position x of
the NOI is reached. Therefore, Equation (45) is recursively
expressed as follows

xk+1 = xk +
[
JTK−1J

]−1
JTK−1 [u− zk ] (46)

We observe in Equation (46) that for each iteration k the
Jacobian matrix and the vector z are updated until the term
u−zk tends to zero. We compute the centroid of the positions
of the RNs as the starting point x0.
In Equation (46) the damping factor µ is added, which

enhances the accuracy of the localization of the NOI. Then,
the position of the NOI is recursively computed by the fol-
lowing equation

xk+1 = xk +
[
JTK−1J+ µ diag

(
JTK−1J

)]−1
×JTK−1 [u− zk ] (47)

We observe in Equation (47) that the damping factor
µ > 0 affects the elements of the main diagonal of the
matrix JTJ. The damping factor µ is a factor that modifies
the curvature of the cost function F (x).

VI. RESULTS
This section shows the performance of the localization algo-
rithms Multilateration Algorithm (MA), Weighted Multi-
lateration Algorithm (WMA), Probabilistic Multilateration
Approach (PMA) and Improved PMA. The mobility parame-
ters of the NOI are (α, β) = (2.1, 3.2), which were obtained
through the average of 100 simulations. In addition the
parameters α, β of the beta distribution are estimated when
obtaining the beta distribution due to the mobility of the NOI.
The aforementioned localization techniques are evaluated

in MATLAB over a sensing area which is 100 m x 100 m
where the nodes are randomly distributed and the RNs are
evenly placed in a triangular area with fixed positions. The
RNs are collinears to a circumference of radius Rmax that
defines the maximum separation distance between them. The
coverage radius R0 of the NOI in an ad-hoc network depends
on the transmitting power of the node and the receiver sen-
sitivity. This study utilizes the log-normal Shadowing prop-
agation model in order to estimate the RSS between the
NOI and the RNs; for this propagation model we use the
following parameters n = 3.2 and PT = 100mW.We assume
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TABLE 1. Test cases description.

FIGURE 5. Fixed RNs with triangular geometry and randomly distributed
extra nodes.

FIGURE 6. Distribution of the fixed RNs with solid geometries.

that a single node cannot link a connection with all nodes
in the network, i.e., there is no established link, therefore
the results are reported in terms of the normalized coverage

FIGURE 7. Randomly distributed RNs.

FIGURE 8. Normalized RMSE vs proportion of noise considering (a) 3 RNs
and (b) 4 RNs for the first case in a single-hop network.

radius given by R0/Rmax . The obtained results are shown in
terms of the Normalized Root Mean Square Error (RMSE)
given by

(
RMSE

/
Rmax

)
. The reported results implied a total

of 104 realizations to estimate the position of the NOI in
each simulation scenario. The Normalized RMSE of the
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FIGURE 9. Normalized RMSE vs proportion of noise considering (a) 5 RNs
and (b) 7 RNs for the first case in a single-hop network.

reported localization algorithms is obtained in the instant
of time τ = t , which presents a single realization of the
100 realizations considered in order to estimate the mobility
parameters of the NOI. Besides, we consider that there is no
need to estimate the Normalized RMSE of the NOI through
100 realizations, since the positions of the NOI obtained in
different instants of time τ = 1, 2, 3, . . . , 100 are inde-
pendent of one another. We considered the single-hop and
multi-hop scenarios to obtain the performance evaluation
of the analyzed localization algorithms, where we consider
the amount and geometry of the RNs. In every simulation
scenario, we consider a network where the number of RNs
is varied from 3 to 7 nodes and the NOI is randomly chosen
within the sensing area.

A. SINGLE-HOP SCENARIO
Table 1 presents the test cases in order to evaluate the perfor-
mance of the localization algorithms in terms of the Normal-
ized RMSE.

In Figures 5, 6 and 7, we show a single example of the
geometric distribution of the RNs according to the test cases
described in Table 1 respectively. RNs are represented by the

FIGURE 10. Normalized RMSE vs proportion of noise starting at 3 and up
to 7 RNs for (a) WMA and (b) Improved PMA for the first case in a
single-hop network.

red triangles; the yellow square represents the NOI and the
red circles are the nodes with unknown position.

The test cases were proposed in order to get different
behaviors of the Normalized RMSE; for different geometric
distributions such as the triangular and rectangular up to the
heptagonal geometry; also increasing the number of RNs in
the network starting with a triangular geometry and finally
varying the number of RNs with totally random geometric
distributions. The advantage of executing these test cases will
indicate the ideal geometry and the necessary number of RNs
N in the network to get the best performance of Normalized
RMSE of the analyzed localization algorithms.

Table 2 shows the simulation parameters that determine
the performance of the localization algorithms in terms of the
Normalized RMSE according to the test cases of Table 1 in
the single-hop and multi-hop scenarios.

1) CASE 1
Figure 8 introduces the performance of the Normalized
RMSE of the analyzed localization algorithms, varying the
proportion of noise. Figure 8(a) shows that theMA andWMA
algorithms maintain the same performance with 3 RNs;
whilst the Improved PMA algorithm has less Normalized
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TABLE 2. Simulation parameters.

FIGURE 11. Normalized RMSE vs proportion of noise considering
(a) 4 RNs and (b) 7 RNs for second case in a single hop network.

RMSE than the MA WMA and PMA algorithms consider-
ing the variations of the noise level. However, the proposed
Improved PMA approach has a rugged behavior in terms
of the Normalized RMSE, since this enhancement uses an
iterative algorithm until it finds the position of the NOI
with the least localization error. In Figure 8(b), we can see
that the Normalized RMSE decreases substantially consid-
ering 4 RNs, while the PMA algorithm displays a similar
behavior in terms of Normalized RMSE for 3 and 4 RNs

FIGURE 12. Normalized RMSE vs proportion of noise starting at 3 and up
to 7 RNs for (a) WMA and (b) Improved PMA for the second case in a
single-hop network.

in the network. A similar behavior in terms of Normalized
RMSE is shown in Figure 9; as the number of RNs in
the network increases, the Normalized RMSE of the WMA
algorithm decreases, while the PMA approach maintains its
performance in terms of the Normalized RMSE increasing
the number of RNs. Finally, we observe that our alternative
Improved PMA reduces theNormalized RMSE as the number
of RNs increases.

Assuming 7 RNs in the network, the WMA algorithm
reaches less Normalized RMSE than the PMA algorithm
(Figure 9(b)). However, our Improved PMA proposed algo-
rithm performs better in terms of the Normalized RMSE
than the rest of the other analyzed localization algorithms
varying the noise level and the number of RNs. According
to Figure 10(a), the WMA algorithm improves its perfor-
mance in terms of the Normalized RMSE as the number of
RNs increases. Figure 10(b) shows that the Improved PMA
proposed algorithm maintains a rugged performance in terms
of the Normalized RMSE as the number of RNs increases,
reason why the accuracy of the localization of the NOI
increases very little as the number of RNs increases. We also
observe that the Improved PMA proposed algorithm presents
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FIGURE 13. Normalized RMSE vs proportion of noise considering
(a) 5 RNs and (b) 7 RNs for the third case in a single-hop network.

better performance in terms of the Normalized RMSE with
respect to the WMA algorithm for 3 RNs in the network.

2) CASE 2
Figure 11 presents the performance of the localization
techniques regarding the normalized RMSE, considering
(a) 4 RNs arranged in a solid triangular geometry and
(b) 7 RNs distributed by a solid heptagonal geometry. We can
see a slight diminution of the normalized RMSE considering
4 and 7 RNs arranged with solid geometries of the algorithms
MA and WMA with respect to the results shown in case 1;
since we get a greater coverage area of the NOI with the rect-
angular and heptagonal geometry than with a solid triangular
geometry. However, the performance in terms of the Normal-
ized RMSE of the MA algorithm does not show an important
improvement as the number of RNs increases; since, just like
in case 1, the algorithm MA presents the same normalized
RMSE with 3 RNs arranged in a triangular geometry as the
number of RNs increases. We can also notice that the algo-
rithm Improved PMA displays a similar behavior in terms of

FIGURE 14. Normalized RMSE vs proportion of noise starting at 3 and up
to 7 RNs for (a) WMA and (b) Improved PMA for the third case in a
single-hop network.

the normalized RMSE as shown in Figures 8(b) and 11(a) for
a network with 4 RNs, while Figure 11(b) indicates that the
algorithm Improved PMA displays a little less normalized
RMSE than the behavior shown in Figure 9(b) considering
7 RNs, namely, case 1. Then, the performance of the normal-
ized RMSE of the algorithm Improved PMA does not display
a significant improvement with a solid geometry distribution
of the RNs. Finally, we get that the results of the normalized
RMSE of the algorithms analyzed in cases 1) and 2) are very
similar.

Figure 12(a) reports an improvement on the performance
in regards to the normalized RMSE of the algorithm WMA
augmenting the amount of RNs, where such improvement
is evident starting from 4 RNs. Figure 12(b) indicates that
the performance of the normalized RMSE of the proposed
algorithm Improved PMA, displays a slight improvement as
the amount of RNs increases, reason why the normalized
RMSE of this algorithm maintains a rugged behavior as the
amount of RNs increases and also the arrangement of the RNs
with solid geometries does not contribute to the improvement
on the performance of the normalized RMSE of the proposed
algorithm PMA.
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FIGURE 15. Normalized RMSE vs proportion of noise considering
(a) 3 RNs and (b) 5 RNs for the first case in a multi-hop network.

3) CASE 3
Figure 13(a) presents the normalized RMSE of the localiza-
tion techniques considering 5 RNs randomly arranged; when
comparing these results to those shown in cases 1) and 2) for
5 RNs, we get less normalized RMSEwith the solid geometry
than with the RNs randomly arranged. Figure 13(b) shows a
diminution of the normalized RMSE of the algorithms MA
and WMA by augmenting the number of RNs to 7 nodes;
whereas the algorithm PMA displays the same normalized
RMSE behavior for 5 and 7 RNs, therefore its performance
does not improve augmenting the amount of RNs. The results
shown in Figure 13 indicate that the proposed algorithm
Improved PMA improves its performance in regards to the
normalized RMSE as the number of RNs increases. Finally,
we can see that in this case where the RNs are distributed
in a random manner, the localization algorithms present a
higher normalized RMSE, since there might be cases where
the coverage area of the RNs is very small, therefore, we get
very inaccurate localization estimations. In this case, there
is no report of results on localization algorithms for 3 and
4 RNs, since the normalized RMSE of the algorithm MA
for 3 and 4 RNs is very big in comparison with the other

FIGURE 16. Normalized RMSE vs proportion of noise starting at 3 and up
to 7 RNs for (a) WMA and (b) Improved PMA for the first case in a
multi-hop network.

analyzed algorithms; therefore, it would not be possible to
notice the performance of the algorithms WMA, PMA and
Improved PMA.

Figure 14 shows the normalized RMSE of the algo-
rithm WMA, it presents error values that are very high for
3 and 4 RNs randomly arranged. Therefore, starting at 5 RNs
we get a more robust normalized RMSE value. When consid-
ering a network with 3 randomly arranged RNs, there is no
guarantee of a good localization of the NOI, because the area
[covered by] 3 RNs can be very small in some cases; thus,
we get a lot of inaccuracy on the NOI localization. However,
the algorithm improved PMA shows a rugged behavior on
the normalized RMSE starting at 4 RNs, and maintains such
tendency when augmenting the number of RNs.

B. MULTI-HOP SCENARIO
1) CASE 1
Figure 15 reports that the normalized RMSE of the aforemen-
tioned localization algorithms varying the proportion noise in
a multi-hop scenario for (a) RNs and (b) 5 RNs. Figure 15(a)
indicates that the algorithm PMA displays a steady normal-
ized RMSE performance considering 3 RNs, because this
algorithm solves the localization problem through an iterative
process until it finds the position of the NOI that minimizes
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FIGURE 17. Normalized RMSE vs proportion of noise considering
(a) 3 RNs and (b) 5 RNs for second case in a multi-hop network.

the cost function. For a network with 5 RNs, the algorithm
PMA displays a similar performance in regards to the nor-
malized RMSE than with 3 RNs (Figure 15(b)). However,
the proposed algorithm Improved PMA displays a better
performance in terms of the normalized RMSE for this case.

We can see in Figure 16(a) that there is a performance
improvement in regards to the normalized RMSE of the algo-
rithmWMA by augmenting the number of RNs. Figure 16(b)
shows an even behavior of the normalized RMSE varying
the proportion noise and augmenting the amount of RNs of
the proposed algorithm Improved PMA. Hence, the proposed
algorithm Improved PMA displays a higher sturdiness than
the algorithm WMA.

2) CASE 2
Figure 17 shows the normalized RMSE of the aforementioned
localization algorithms considering (a) 3 fixed RNs arranged
in a solid triangular geometry and (b) 5 fixed RNs arranged
in a pentagonal geometry. Considering the case of the net-
work with 5 RNs; we can see that there is an improvement

FIGURE 18. Normalized RMSE vs proportion of noise starting at 3 and up
to 7 RNs for (a) WMA and (b) Improved PMA for the second case in a
multi-hop network.

on the performance of the normalized RMSE of the local-
ization algorithms analyzed in regards to those shown in
Figure 17(a). As in case 1), the proposed algorithm Improved
PMA displays less normalized RMSE than the other analyzed
algorithms.

Figure 18(a) shows a significant improvement in the per-
formance regarding the normalized RMSE of the algorithm
WMA augmenting the amount of RNs using solid geometries
of regular polygons. The results displayed in figure 18(b)
show that the algorithm Improved PMA maintains a rugged
performance in regards to the normalized RMSE; thus, there
is not much variation on the normalized RMSE considering 3
or more RNs.

3) CASE 3
Figure 19(a) shows the normalized RMSE of the localiza-
tion techniques considering 5 RNs randomly arranged; when
comparing these results to those shown in Figure 17(b) for
5 RNs arranged with a solid pentagonal geometry, we get
less normalized RMSE than with those randomly arranged.
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FIGURE 19. Normalized RMSE vs proportion of noise considering
(a) 5 RNs and (b) 7 RNs for third case in a multi-hop network.

We can see in Figure 19(b) that there is a diminution of the
normalized RMSE on the localization techniques presented
as the number of RNs increases to 7 nodes. We can also see
that the algorithm PMA displays a similar behavior regarding
the normalized RMSE for 5 and 7 RNs.

According to Figure 20, we can see that the normalized
RMSE of the algorithm PMA displays a steady performance
in terms of the normalized RMSE varying the amount of RNs
and noise level. In the case of the algorithm WMA, consid-
ering 3 RNs randomly arranged, we can notice that it shows
very high error values; therefore, starting from 4 RNs, we get
a more robust normalized RMSE value. When considering a
network with 3 RNs randomly arranged, there is no guarantee
of goodNOI localization because the area [covered] by 3 RNs
in some case can be very small, thus, we get high inaccuracy
in the localization of the NOI. Figure 20(b) shows that the
proposed algorithm Improved PMA displays a rugged behav-
ior in terms of the normalized RMSE starting from 5 RNs,

FIGURE 20. Normalized RMSE vs proportion of noise starting at 3 and up
to 7 RNs for (a) PMA and (b) Improved PMA for the third case in a
multi-hop network.

as we vary the proportion noise. Therefore, we may conclude
that the performance of the proposed algorithm Improved
PMA is affected by the geometry of the RNs, thus, we need
at least 5 RNs randomly distributed to obtain an estimation of
the NOI localization with little error variation.

In the three test cases previously described, we can see that
the algorithm WMA displays better performance in regards
to the Normalized RMSE than the others analyzed algo-
rithms considering low proportion noise levels; whereas the
algorithm PMA maintains a steady performance regarding
the Normalized RMSE as we increase the number of RNs,
therefore, the performance of this algorithm is not affected by
the number of RNs. Thus, a network with 3RNs using solid
triangular geometry is enough to obtain a good estimation of
the NOI considering the algorithm PMA. In case 3, where
the RNs are randomly distributed, the analyzed localization
algorithms display a higher Normalized RMSE than that of
cases 1 and 2.We can also see in this case that the localization
algorithmWMA displays a better performance than the other
analyzed algorithms as we increase the number of RNs, in the
single-hop and multi-hop scenarios. Finally we can see that
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for 5 RNs or more RNs in the network, the localization
algorithm WMA displays greater sturdiness than the other
analyzed algorithms.

VII. CONCLUSION
This paper evaluates the performance of localization algo-
rithms regarding the normalized RMSE varying the propor-
tion of noise and the number of RNs. By analyzing the
obtained results, we learn that the algorithm MA presents a
steady performance regarding the normalized RMSE consid-
ering at least 3 RNs with a solid triangular geometry and pro-
portion noise. We also learn that the algorithm PMA displays
a steady normalized RMSE varying the proportion noise and
the number of RNs; hence, the performance of this algorithm
is affected to a low extent by the noise environment and such
performance regarding the normalized RMSE is not affected
by the geometry of the RNs. However, the algorithm WMA
displays a rugged performance regarding the normalized
RMSE considering at least 5 RNs regardless of their geome-
try. This paper shows that the proposed algorithm Improved
PMA presents a better performance than the other analyzed
algorithms considering the single-hop and multi-hop scenar-
ios. Our proposed algorithm Improved PMA considers the
environment analysis due to the RSS and the mobility of the
node of interest in the calculation of the correlation matrix
that considers the variance of the separation distance between
the node of interest and its respective RNs.We also consider a
damping factor, which improves the convergence of the pro-
posed algorithm Improved PMA. According to the results we
obtained, our proposed algorithm Improved PMA, presents
greater robustness than the algorithms MA and WMA in the
single-hop and multi-hop scenarios.
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