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ABSTRACT For radar imaging of multiple targets in radar network, it is necessary to schedule the imaging
tasks among various radars at suitable time to achieve high performance under limited radar resources. In this
paper, based on the image quality requirement, a task schedule method is proposed for multi-target inverse
synthetic aperture radar (ISAR) imaging in radar network. Due to the image resolution is an important
indicator of image quality and the imaging task is time sensitive, the relationship between the imaging
resolution and task time is studied firstly. Thereafter, the task scheduling problem is converted into an
optimization problem with time window constrains and an improved Quantum Genetic Algorithm (IQGA) is
proposed to solve the problem. Then the task scheduling strategy which contains how to allocate the targets to
the radars and when to observe the targets can be obtained. Finally, simulation results verify the effectiveness
of the proposed method. With the help of the propose method, the multi-target ISAR task can be completed
effectively and the resource utilization of the radar network can be improved.

INDEX TERMS Radar network, multi-target imaging, task scheduling optimization, time window, improved

quantum genetic algorithm (IQGA).

I. INTRODUCTION

Recent years, high resolution ISAR imaging techniques have
been widely used in military and civil fields such as tar-
get classification, field surveillance and human behavior
understanding due to its all-day and all-weather surveillance
capability [1]. An ISAR image is a 2-D projection of the
target on the range-Doppler plane with the direction of range
and direction of gradient of Doppler frequencies [2]. For
a mono-static radar, when the target is moving along the
radar line of sight, the viewing angle does not change with
time and hence the ISAR image cannot be produced [2].
Compared with a mono-static radar, the radar network has
many advantages. For instance, when the target is observed
by the radar network, the observation data from different
angles can be obtained simultaneously and the ISAR image
can be produced effectively [3]. Moreover, combined with
the multi-angle information, the radar network can improve
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the performance of information acquisition, avoiding blind
velocities, anti-interference and anti-destruction [4].

A radar network can simultaneously perform multiple
tasks such as the target searching, tracking, imaging and
recognition, etc. In the face of the increasingly complicated
electromagnetic environment, it is unlikely for one mono-
static radar to complete all the tasks. Multiple targets and
multiple tasks should be completed by radar network, while
the radar resource is extremely valuable and limited. For
instance, it usually takes a long observation time to obtain an
ISAR image with expected image quality while the resource
assigned to one single task is limited especially when a lot
of targets need to be reconnoitered and imaged. Thus, rea-
sonable and effective radar resource allocation algorithms are
important and essential [5]-[19].

Recently, a lot of published researches have been con-
ducted on the radar network. Yang er al. proposed a joint
antenna placement and transmitted power allocation algo-
rithm for improving the surveillance performance of the dis-
tributed radar network [6]. Zhang et al. proposed an optimal
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antenna deployment algorithm to solve the problem of multi-
ple regions for interference simultaneously and the simulation
results are provided to demonstrate the effectiveness of the
proposed algorithm [7]. Yan et al. proposed a joint threshold
adjustment and power allocation algorithm for target tracking
in asynchronous radar network [8]. Furthermore, Tian et al.
proposed a timeliness constrained task scheduling algorithm
to solve the multifunction radar network task scheduling
problem and the numerical results verify the validity of
the proposed task scheduling algorithm [9]. However, these
studies focus on the multi-target detection, tracking, loca-
tion scheme, estimation of the target characteristics, while
there are few researches on the optimization of imaging task
scheduling problem in radar network. In [14], for the first
time, a multi-target imaging task allocation method in radar
network has been proposed in our previous work, in which
the relaxed convex optimization theory is used to solve the
imaging task allocation problem. In order to further study the
multi-target imaging task scheduling problem in radar net-
work, we try to use other theories to solve the task scheduling
problem in this paper.

In this paper, we propose a task scheduling strategy of
multi-target ISAR imaging task for the radar network. For
an ISAR task, imaging quality should be considered at
first and the imaging resolution is an important indicator
of imaging quality. When using conventional range-Doppler
(RD) algorithm to conduct the ISAR image, the relationship
between the imaging resolution and task time can be ana-
lyzed. Then the task scheduling problem can be converted
into an optimization problem with time window constrains.
The optimization problem with time window is a complex
process, which includes task allocation and imaging time
selection. Thereafter, an improved Quantum Genetic Algo-
rithm (IQGA) is proposed to solve the problem. With the help
of the proposed method, the task scheduling for multi-target
ISAR imaging in radar network can be completed effectively,
and the resource utilization of the radar network can be
improved while imaging quality requirement is fulfilled.

The paper is organized as follows. The multi-target task
scheduling model of the radar network is constructed in
Section II. In Section III, an improved Quantum Genetic
Algorithm (IQGA) is proposed to solve the optimization
problem. Simulation results and analysis are presented in
Section IV. Finally, conclusion is drawn in Section V.

Il. PROBLEM FORMULATION

A. SYSTEM MODEL OF RADAR NETWORK

As shown in Fig.1, we consider that the multi-target scene
consisting of a set of radars R = {ry,rp,---,ry} and a
set of targets D = {di,d>, -+ ,dy} where M and N are
the numbers of radars and targets respectively. In general,
the number of the targets is greater than the number of radars.
Multiple radars are independently distributed at different spa-
tial positions in a radar network. For the sake of simplicity, for
imaging task, each target can only be allocated to one radar
and each radar can only illuminate one target at one time.
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FIGURE 1. The multi-target imaging scene in the radar network.

In practice, it usually takes a long continuous observation
time to obtain an ISAR image with expected image quality
while the resource assigned to one single task is limited
especially when a lot of targets need to be reconnoitered and
imaged. In the case multiple targets appear in the imaging
area and a target can be imaged independently by different
radars, the selection of radar to image a suitable target at a
suitable time is important. The scheduling scheme not only
affects the total imaging task time, but also affects resource
utilization of the radar network. Hence it is necessary to
construct a task scheduling optimization model to improve
the radar resource utilization.

For the ISAR imaging task, image quality is an important
factor to be considered and image resolution is usually chosen
to evaluate the ISAR image quality. As a matter of fact,
different targets with different radar cross section (RCS) may
require different resolutions. Hence, it is necessary to conduct
some analysis on the imaging time with respect to the image
resolution requirement.

B. IMAGING TIME UNDER REQUIRED IMAGE QUALITY
For an ISAR imaging task, the image quality is often selected
as the quality indicator. As is known to all an ISAR image
quality often depends on the range and azimuth resolution.
Then it is essential to conduct some analysis on the relation-
ship between the imaging time with the range and azimuth
resolution.

It is well known that the range resolution is mainly deter-
mined by the transmitted signal bandwidth, which can be
described by

pr=c/2B ()

where c is the wave propagation velocity, B is the transmitted
signal bandwidth. Obviously the range resolution is inversely
proportional to the bandwidth. When higher range resolution
requires, the bandwidth should become larger.

According to the radar equation [1], the maximum radar
range Rmax can be calculated as

P,G%*)\20 A
R =
T @r)3RToBF (S0 min

@
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where P; is the radar transmitted power, G is the antenna
gain, A is the wavelength of the transmitted signal, o is the
RCS of the target, k is the Boltzmann’s constant, Ty is the
standard temperature (290K), and F,, is the noise figure of
the receiver. The value of signal to noise ratio (S/N)omin 1S
that required if only one pulse is present.

According to (2), it is obviously that the bandwidth is
inversely proportional to the fourth power of the maximum
radar range. Therefore, when larger bandwidth requires,
the maximum radar range becomes smaller, so that the target
takes much more time to fly into the imaging area to meet the
required resolution as illustrated in Fig.2.

o X

FIGURE 2. The radar imaging area determined by the radar maximum
range.

Fig.2 shows the radar imaging area as the grid area by the
radar maximum. In other words, only the target fly into the
imaging area, the required range resolution can be met. When
the radar bandwidth is calculated according to the required
range resolution by (1), the maximum radar range can be
calculated by the radar equation (2). Thereafter the imaging
area of different radars and targets can be determined. Then
the imaging time window which means the imaging task
should start and finish within it can be obtained according
to the imaging area and the speed of the target.

Suppose the three-dimensional spatial coordinates of the
n-th target, m-th radar at the initial time be (x;, yu, Zn),
(Xms Ym» zm) respectively. Then the spatial coordinates of the
n-th target (x), ¥, z,) at any time 7 can be determined by

/
X, = Xp+Vy -t

Y;lzyn““’y‘t
G =Vt 3)

where the speed vector of the n-th targetis V, = (v, vy, v2).
Let R denotes the maximum radar range of the m-th

max
radar for the n-th target, R"" satisfies as

max

\/ O —oxm)® + O =)’ + (& —am)” <RI (&)

Therefore the time window of the imaging task [¢]"*, t]""]
can be calculated by the combination of (3) and (4), where the
time #{" and " denotes the moment the target first fly into
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the imaging area and the time the target fly out the imaging
area respectively. Then the imaging start time of the imaging
task #; should be within the time window and the imaging
task should be finish within the time window, otherwise the
imaging task may not be performed.

Also, when using the Fourier transform to do the Doppler
analysis, the azimuth resolution p, is mainly determined by
the rotation angle 6, which can be described as

pa=A[20 &)

Obviously, the azimuth resolution in the radar imaging
is inversely proportional to the rotation angle. When higher
azimuth resolution requires, the rotation angle should become
larger. Furthermore, the larger the rotation angle is, the longer
the synthetic aperture time is. Therefore, the synthetic aper-
ture time (i.e., the imaging time) is connected with the

azimuth resolution.
T
Q = "%%
(xn" ’yn" > Zn" )

R
g(xm,ymazm)

FIGURE 3. Initial scenario of imaging process.

Fig.3 shows the geometric diagram of the imaging process.
The point R represents the position of the m-th radar, while

the point T represents the position of the target at the imaging
start moment and its spatial coordinates (x;, y;, zZ) can be
determined by

X, =Xp+ V-t

Yu =YntVy-ti

"

%, =Zn TVl (6)

The point Q represents the position of the target at the
imaging terminal moment. According to the knowledge of
ISAR, the line TQ is the synthetic aperture length and the
direction of line TQ from the point 7" to the point Q is
identical to the flight direction of the target. According to
the geometrical relationship in Fig.3 and the speed vector V,,,
the angle y;,,, can be determined by

Rmn . Vn

= arccos(———) (7)
i Ronl -1V ]

where R, = (x,: — Xm, y;; = Ym» Z;; — zm) is the distance
vector from the point T to the point R.

Therefore, according to the geometrical relationship, the
synthetic aperture length and the synthetic aperture time
with respect to the m-th radar and the n-th target can be
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determined by

R -sin @
Ly = | mnl - S10 Oy 8)
sin (Yiun + Gmn)

[R | - Sin By
Tamn = L/ |Vl = 9
o = LV = S0 0)

The synthetic aperture time Ty, is exactly the imaging
time. Therefore, the imaging time is determined by the rota-
tion angle and the geometry position of the target and the
radar at the imaging start moment. Once the he geometry
position of the target and the radar is different, the imaging
time may be different. Thus, the imaging task is time sensitive
that if imaging start moment is different, the imaging time is
different. In a case when the azimuth resolution is given and
the imaging start moment is chosen, the rotation angle can be
calculated by (5), the imaging time can be obtained by (9).

As a matter of fact, the smaller the imaging time is,
the more tasks can be performed, the higher the radar resource
utilization in the radar network is. Therefore, the suitable
imaging start time is necessary and essential to be analyzed.

According to the above analysis, to improve the radar
resource utilization under the image quality requirement,
the selection of the imaging start time is also necessary and
the imaging task should be fulfilled within the time window
constrains.

Therefore, how to allocate the targets to the distributed
radars and when to observe the targets will affect the radar
resource utilization, and deserved to be further analyzed.

C. TASK SCHEDULING MODEL

According to the above analysis, the imaging time is time
sensitive and the imaging start time of the target should be
selected within a continue time window. Therefore the task
scheduling optimization model can be constructed with time
window constrains. Compared with the general task schedul-
ing problem, in this paper the selection of the imaging start
time are also taken into consideration that make the problem
more complicated.

Let V; = {Wi1, -, Wi, -, Wiy} denotes the imag-
ing time window of the i-th target. Due to the relative posi-
tions of the target and each radar are different, the imaging
time windows of the same target observed by different radar
are different. W, = { t;"k, té’k } represents the k-th imaging
time window of the i-th task; toK, % are the start time
and terminal time of the imaging time window respectively.
An imaging task should start and finish within the selected
time window.

Hence, the imaging task scheduling problem can be
described as: given the set of available radars and tasks, each
task has multiple time windows to be chosen through pre-
processing. The task scheduling strategy is to select a set
of tasks to be observed from the task set on the premise
of satisfying the constraints. Then select a time window for
these selected tasks from their time window set, and select
the imaging start time for the selected tasks. So, in this paper,
task selection, time window selection and imaging start time
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selection are adopted to describe the decision-making in the
task scheduling.

The scheduling goal is to maximize the resources utiliza-
tion of the radar network. On this basis, two performance
metrics are used to evaluate the resources utilization.

(1) The sum of the priority of the selected tasks (SPI),
defined by

N
SPI = Zx,-Pi (10
i=1
where P; represents the priority of the i-th target, and x;
represents the task decision variable contains only O and 1.
The element 1 and O (i.e., x; = 1 and x; = 0) represent
whether the i-th target is selected to be imaged or not.

(2) Resource surplus rate (RSR) of the radar network,
defined by

N
RSR=1— Zx,-Ta,-/TC
i=1

(11)

where T,; is the imaging time of the i-th target and T, is the
total scheduling time. The bigger the resource surplus rate,
the less the radar resources are used for multi-target imaging
task while the imaging tasks are performed.

During the task scheduling, all radars 7, € R pursuit
maximizing their own revenue, that is maximizing the SPI
and RSR to improve the radar resource utilization.

In view of the above analysis, the task scheduling model
for multi-target ISAR imaging can be formulated as

max(w; - SPI 4+ w; - RSR)

X; € {0, 1}
yi€fl,---, M}
s.t. < <" (12)

6 <t Tu <17
ti+Tu < 1, ifyi =Y

where wi and wp are the adjustment factors represent-
ing impact degree of different performance metrics on the
scheduling model. y; represents the decision variable of time
window selection, while y; = k represents the time window
Wi k is selected to perform the imaging task of the i-th tar-
get. t; represents the decision variable of imaging start time
selection and 7,; represents the imaging time of the i-th target.
The imaging start time and imaging terminal time should be
within the selected time window. For the targets allocated
to the same radar, the imaging start time of the latter target
cannot be earlier than the terminal time of the previous target.

Obviously, the task scheduling problem is a multi-variable
problem with time window constraints. Binary, integer and
real number decisions are used to describe the task selec-
tion, time window selection, and imaging start time selection
respectively. Therefore the task scheduling problem is an
optimization problem that two discrete variables and one
continuous variable coexist.
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Compared with the general task scheduling model, by sep-
arately describing task selection, time window selection, and
imaging start time selection, the imaging task scheduling
problem is better described by the proposed model.

lll. TASK SCHEDULING ALGORITHM DESIGN

On the basis of the above analysis, the task scheduling
problem is a multi-variable optimization problem involving
discrete variables continuous variable. There is no doubt the
task scheduling problem is a complicated and an NP hard
problem. Therefore, an optimization algorithm is necessary
to be investigated in order to solve the problem.

In terms of optimization algorithms, existing research
mostly focus on intelligent optimization algorithms and
heuristic algorithms, such as genetic algorithm (GA), particle
swarm optimization (PSO) and ant colony algorithms (ACO).
These algorithms are used to solve the discrete optimization
problem or the continuous optimization problem. However,
the binary decision variable x;, the integer decision variable y;
and the real number variable #; coexist in the proposed model
make the problem much more complicated that traditional
task scheduling algorithms can’t effectively adapt to the prob-
lem. So an improved Quantum Genetic Algorithm (IQGA) is
proposed based on hybrid coding of binary and real numbers
to solve the optimization problems with discrete and contin-
uous decision variables. We will first briefly introduce the
traditional Quantum Genetic Algorithm, and then expatiate
the proposed improved Quantum Genetic Algorithm in detail.

A. QUANTUM GENETIC ALGORITHM

The Genetic Algorithm (GA) [20]-[28] is an efficient search
and optimization method that automatically acquires and
accumulates knowledge about the discrete search space, and
adaptively controls the search process to find the best solu-
tion. But the convergence speed is slow, and it is easy to be
limited to the local optimal.

In the quantum informatics, the carrier of the information
is no longer a classical bit, but a quantum system with two
states. The system can be an atom with two energy levels, or a
photon with two polarizes directions, which is called the
quantum bit or qubit [20]. Other than the classical bit, a quan-
tum bit can be in any superposition of two ground states ‘0’
and ‘1’, which is called the quantum superposition.

Based on the concepts of qubits and the quantum super-
position, Han proposed a quantum genetic algorithm (QGA)
combined with genetic algorithm [20].

In the quantum genetic algorithm, a qubit may be in the ‘1’
sate, in the ‘0’ state, or in any superposition of the two. The
state of a qubit can be represented as

W) =al0) + A1) (13)
where o and 8 are complex numbers that specify the proba-
bility amplitudes of the corresponding states and satisfy the
equation |« |2 +18 |2 = land|B |2 denotes the probability that
the qubit will be found in state ‘0’ and state ‘1’ respectively.
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In QGA, the chromosome which represents a possible
solution to the problem to be solved is a string of qubits.
A chromosome with m qubits can be represented as

Y TR Q
q B B Bm
where o> + |Bil* = 1,i=1,2,...,m.

For example, a three-qubit chromosome with three pairs of
amplitudes such as

1/v2 172 1/3/2
(1/ﬁ V32 —1/\/5)

Then the states can be presented as

1 1 V3 V3 1
~1000)— — [001)+ —= [010)— ~—= [011)+ ~ [100
4| ) 4| >+4I ) 4| )+4| )

1 V3 V3
——101) + 22 [110)— =111
4| >+4| ) 4I )

(14)

The above result means that the probabilities to represent
the states |000), [001), |010), |011), [100), [101) , [110)
and |111) are 1/16, 1/16, 3/16, 3/16, 1/16, 1/16, 3/16, and
3/16, respectively. Therefore, the above three-qubit string
contains the information of eight states at the same time.

As quantum system can describe superposition states,
a quantum chromosome can describe much more states and
the quantum genetic algorithm has a better characteristic of
population diversity than traditional algorithms.

Unlike GA’s reproduction by the means of selection,
crossover and mutation, in the QGA parent generations cre-
ate the next generation through the rotation operation based
on quantum-gate which is designed to make individuals to
mutate in the direction of the better individual in current
generation.

In particular, a rotation gate U (0) is employed to update a

quantum individual as

[agi| — U@ [ai]z [cps ) —sin (91-)] |:oz,~:| (15)

B; Bi sin (0;)  cos (6;) i

where (o], /) is the updated probability amplitude of the i-th
qubit and 6; is the rotation angle of each qubit. Because the
probability amplitude can be updated on continuous arcs with
different rotation angles, QGA also has a better performance
in continuous space search.

In addition, the quantum representation cannot be evalu-
ated directly and it should be converted to a binary represen-
tation or a real number representation in act of observation
for evaluation when applied in practice. The corresponding
binary representation or a real number representation is also
called the chromosome coding. The observation function can
be defined as f (o, Bi)-

Convergence can be obtained with the qubit representation.
In the act of observing the quantum states, the chromo-
some will be collapsed to a certain state. As Ioz,-l2 and I,B,'I2
approaches to 1 or 0, the quantum chromosome converges to
a single state and the diversity disappears gradually.
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B. IMPROVED QUANTUM GENETIC ALGORITHM

Although QGA has good performance and characteristics,
most QGAs use a binary chromosome coding method or areal
chromosome number coding method, which has problems
in some scenes such as complex decoding. What’s more,
binary chromosome coding or real number chromosome cod-
ing can’t effectively adapt to task scheduling model with
a mixture of multiple decision variables proposed in this
paper. So an improved quantum genetic algorithm (IQGA)
is proposed based on hybrid chromosome coding of binary
and real numbers. Based on the hybrid chromosome coding,
the solution space of task scheduling model is mapped into
the quantum space. The binary part and the real number
part are updated respectively, so the decision variables in the
task scheduling model are measured by different observation
functions to realize the parallel search.

1) HYBRID CHROMOSOME CODING

As described in Section II, the decision-making of the task
scheduling problem can be divided into three parts: first,
whether the task is selected to be executed; secondly, if the
task is selected to be executed, which time window is selected
from its time windows; and thirdly, when to image within the
selected time window. So the scheduling strategy of the tasks
can be represented as

S={C,y, 1), -, Gy t), -+, (v, yv, tv)} (16)

where x;, y; denote the decision variables of task selection,
time window selection which are discrete variables, respec-
tively. #; denotes the decision variables of imaging start time
selection which is a continuous variable.

In this paper, we propose a hybrid chromosome coding
scheme combined with the binary part and real number part.
The coding scheme can be represented as

7)
(13)

X = {(u],W]),"' ’(uivwi)s"' 5(uN5WN)}
wi=yi+z,yi€{l,--- , M}, 2z €l0,1]

where X represents a hybrid chromosome coding scheme for
the imaging tasks. (u;, w;) represents the solution of the i-th
task. u; is a binary number, which ©; = 0 denotes the i-th task
is selected to be executed, otherwise not. w; is a real number
that the integer part y; represents the selection of the task
time window, while the decimal part z; represents the sliding
proportion of the imaging start moment within the selected
time window. For instance, 0.2 here means the imaging start
moment delayed by 20 percent of the time window duration.

The binary part and the real number part of the hybrid
chromosome coding scheme can be updated in the quantum
space respectively, which means the decision variables in the
task scheduling model can be parallel searching in the dis-
crete and continuous domains. Moreover, the coding length
of a hybrid coding scheme is only related to the number of
tasks and has nothing to do with the number of radars and
the number of time windows, which helps to improve the
efficiency when the number of radars is large. So compared
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to single binary or integer chromosome coding methods,
the coding structure of a hybrid chromosome coding scheme
is practical and efficient.

2) QUANTUM PROBABILITY AMPLITUDE AND
OBSERVATION FUNCTIONS
In QGA, the evolution of chromosomes is performed in quan-
tum space. In this paper, the quantum probability amplitude
of a hybrid chromosome can be divided into two parts: the
binary part and the real number part.

The quantum probability amplitude of a binary part is
defined as

B = (“1}1,... , “z}i,... , “IQN)
By Bpi By
_ [cos6,) cos(6;,) cos(6)y) (19)
To\sin@g)) " 7 singg)) 7 sin(f)y)

The corresponding observation function is defined as

ui = {0, |a2i|2 > o

20
1, |0‘1[;i|250‘0 e

where «j is a threshold constant, usually g = sqrt(2)/2.
Thus the decision variable of task selection can be obtained
by decoding the binary part of the hybrid chromosome coding
scheme as x; = u;.
The quantum probability amplitude of the real number part
is defined as

t t t
R_(arl % arN)
- t ) ’3[ 5 5 t

rl ri rN

_ (cos(@rtl) cos(6’,) cos(@r’N)) 1)

sin(0,)" 7 sin(0)) 7 7 sin(8)y)
The corresponding observation function is defined as

wi = |- M (22)

Then the value of the time window selection variable and
the value of the imaging time variable can be obtained as

yi = [wil
i = Wi —Yi

ti=0—=z) 1] +zi @ — Tar) (23)

where tif P ti‘: « represent the start time and terminal time of the
k-th time window of the i-th target, T,; represents the shortest
imaging time of the i-th target and k denotes the selected
time window. The symbol | | represents round toward minus
infinity.

3) INDIVIDUAL UPDATE STRATEGY
In the QGA parent generations create the next generation
through the rotation operation based on quantum-gate. The
size and direction of the rotation angle need to be obtained
through a lookup table.

The quantum-gate U (6;) is a function of 6; = s(«;, B;)- Ab;
where s(o;, B;) is the sign of ; that determines the direction
and Af; is the magnitude of rotation angle. The lookup table
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TABLE 1. Lookup table for rotation angle.

s(a,, B))
C ern A0
nob foss 80 af >0  af<0  a=0 =0
0 0 Fake 0 0 0 0 0
0 0 Tre 0 0 0 0 0
0 1 Fase 0 0 0 0 0
0 1 True 005 1 +1 +1 0
I 0 Fase 00ln 1 1 +1 0
10 Tue 00257 -+l .l 0 +1
I 1 False 0005z I 1 0 +1
1 1 True 0.025% +1 -1 0 +1

of A; is shown in Table 1, where f (-) is the fitness function
(i.e. the objective function of the proposed model), b; and r;
are the i-th bit of the best solution b and a current solution
r, respectively. Thus the use of quantum-gate rotation is to
emphasize the searching direction toward the best solution.
Based on the rotation of quantum-gate, each chromosome
is updated toward the current optimal chromosome. If the cur-
rent optimal chromosome is a local optimal solution, it may
lead to precocity. In order to enhance the diversity of the pop-
ulation and reduce the possibility of precocity, the quantum
NOT gate is considered to update the population by distur-
bance. Specifically, randomly selects several chromosomes
according to the probability of mutation, and then randomly
selects partial gene positions of the selected chromosomes,
and applies a quantum NOT operation to these gene positions.
The definition of the quantum NOT gate formula is defined

RN RCNCY

In view of the above analysis, an improved Quantum
Genetic Algorithm (IQGA) is proposed to tackle the multi-
target ISAR imaging task scheduling problem. The concrete
steps of the IQGA in detail is as follows:

Step 1): Let generation + = 0 and randomly generate an
initial population Q(t) = {¢}.45, -+ .4} }, where L is the
size of the population, and q]’- denotes the j-th individual (n-
qubits chromosome) in the 7-th generation.

Step 2): Make a set of solutions P (¢) by observing Q(¢)
states, where P (t) = {Xf X, Xi} and the observation
function is illustrated in by (20) and (22).

Step 3): Evaluate the fitness of the solution P (¢), perform
trimming operation, and store the best solution b.

Step 4): If a stopping condition is satisfied, then output the
result; otherwise, go on to the following steps.

Step 5): Update the population to generate Q(t + 1) by
perform the rotation Quantum-gate and the Quantum-Not
gate.

Step 6): Let t = ¢ + 1 and go back to Step 2).

(24)

IV. EXPERIMENTS
In order to verify the validity of the task scheduling model
and the effectiveness of the proposed improved Quantum
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TABLE 2. The prior information in small-scale scene.

Target Coordinate (km) Speed (m/s) RCS(m?)
Target 1 (220, 240, 15) (-500,100,0) 6
Target 2 (240, 180, 16) (-510,120,0) 2
Target 3 (220, 190, 14) (-520,120,0) 6
Target 4 (250, 210, 15) (-500,80,0) 6
Target 5 (240, 210, 16) (-520,90,0) 6
Target 6 (210, -190, 17) (-30,420,0) 2
Target 7 (200, -200, 16) (-40,460,0) 2
Target 8 (200, -100, 14) (320,210,0) 6
Target 9 (190, -140, 15) (320,220,0) 6
Target 10 (180, -150, 16) (220,310,0) 2

Y-axisikm 300 X-axisikm 300 200 100 o 100 200 300
X-axis

FIGURE 4. Geometry of the radars and targets in small-scale scene.
(a) Three-dimensional perspective. (b) Top view.

/km

FIGURE 5. Geometry of the radars and targets in large-scale scene.
(a) Three-dimensional perspective. (b) Top view.

Genetic Algorithm, some simulation experiments are per-
formed. Two reconnaissance scenes with different scale are
chosen as the task scheduling problem for multi-target ISAR
imaging in radar network. The small-scale scene is consti-
tuted by 3 radars and 10 targets, while the large-scale scene
is constituted by 4 radars and 12 targets. The geometry of the
radars and targets of the two scenes are illustrated in Fig.4 and
Fig.5 respectively.

In practice, the target characteristics such as the speed,
the coordinate can be estimated by conventional tracking
algorithms, let us suppose the target characteristics as prior
information, then the priority can be evaluated according
to [15]. The prior information is illustrated in Table 2 and
Table 3, corresponding to the two scenes of different scale.
For the targets which have different RCS, the required imag-
ing resolutions are different and the target with larger RCS
requires lower resolution. Thus, in this paper, the required
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TABLE 3. The prior information in large-scale scene.

Target Coordinate (km) Speed (m/s) RCS(m?)
Target 1 (220, 170, 10) (-400, 90, 0) 6
Target 2 (210, 180, 9) (-410, 80, 0) 2
Target 3 (220, 190, 10) (-420, 90, 0) 2
Target 4 (250, 190, 11) (-400, 80, 0) 6
Target 5 (240, 175, 12) (-420, 90, 0) 6
Target 6 (100, -300, 14) (-320,70,0) 2
Target 7 (110, -290, 15) (-330,120,0) 6
Target 8 (120, -280, 16) (-340,30,0) 2
Target 9 (105, -280, 15) (-330, 110, 0) 6
Target 10 (30, 240, 13) (240, -90, 0) 6
Target 11 (60, 230, 12) (235, -80, 0) 2
Target 12 (70,220, 11) (250, -95, 0) 6
r:,s (b)

Time window of multple targets in radar 3
10 ple jargets n radar,

0 100 200 300 400 500 600 700 800 00
Timels

FIGURE 6. Gantt charts of the imaging time window in small scale scene.
(a) The imaging time window of targets if observed by radar 1. (b) The
imaging time window of targets if observed by radar 2. (c) The imaging
time window of targets if observed by radar 3.

imaging resolutions for targets with large and small RCS are
0.8m and 0.5m respectively.

Suppose each radar has the same technical parameters such
as the radar transmitted power P; = 500kW, the antenna gain
G = 40dB, the carrier frequency of radar signal f, = 10GHz,
the noise figure F;, = 3dB and the minimum output SNR for
detecting signal (S/N)min = 8dB. Therefore, the maximum
radar range can be evaluated by (2) and the imaging time
windows can be calculated by (3) and (4).

A Gantt chart is used to describe the imaging time window.
The horizontal axis and the vertical axis represent the time
and the number of the target, respectively. Different colors are
used to distinguish the targets, and the number on the time
windows represents the corresponding target. The imaging
time windows of targets are illustrated in Fig. 6 and Fig. 7 of
two scenes. Take small scale scene for example, In Fig. 6 we
can see the imaging time window is different even for the
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FIGURE 7. Gantt charts of the imaging time window in large scale scene.
(a) The imaging time window of targets if observed by radar 1. (b) The
imaging time window of targets if observed by radar 2. (c) The imaging
time window of targets if observed by radar 3. (d) The imaging time
window of targets if observed by radar 4.

TABLE 4. The optimal strategy profile.

Parameter Value
Population size 200
Mutation probability 0.05
Maximum iterations 200

same target when imaged by different radars. The imaging
start time must be within the time window and the imaging
task must finish within the time window.

The imaging time, which affects the utilization of radar
resources, is time sensitive and largely determined by the
imaging start time. According to the prior information in
two reconnaissance scenes, all imaging task times of multiple
targets are calculated, and then the imaging task scheduling
models in small-scale and large scale radar network are con-
structed. Suppose the adjustment factors are w; = 0.5 and
wy = 0.5. The proposed algorithm IQGA is used to solve the
optimization problem by averaging 200 independent Monte
Carlo experiments in each scene. The parameters in [QGA
are set as illustrated in Table 4.

Therefore, based on the proposed algorithm IQGA,
the optimal task scheduling strategy can be obtained, as illus-
trated in Table 5 and Fig. 8.

The Gantt charts are used to describe the optimal task
scheduling strategy in Fig. 8. The horizontal axis and the
vertical axis represent the time and the serial number of the
radar, respectively. The targets in the same color are allocated
to the same radar. As shown in Fig. 8, the rectangular time
box and the left edge of the rectangular time box indicate the
imaging time and the imaging start time, respectively. Under
the limits of the time window, less radar resources are used
to perform the multi-target imaging task. Therefore the radar
resources utilization for multi-target imaging is improved
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TABLE 5. The optimal task scheduling profile.

TABLE 6. Parameters of performance metrics.

Case Radar Strategy profile RSR Small-Scale Large-Scale
Scene Scene
Radar 1 Target 5, Target 6, Target 8 Algorithm in [14] 65.85% 49.1%
Sm:cli—jzale Radar 2 Target 1, Target9, Target 10 Proposed algorithm 77.16% 55.84%
Radar 3 Target 2, Target3, Target4, Target7 . I5AR imago 5AR image
Radar 1 Target 3, Target 7 = o
Large-scale Radar 2 Target 10, Target 4, Target 11, Target 5 o] o - " -
scene Radar 3 Target 12, Target 8, Target 6, Target 2, £, £ - R
Target 9 | _ T
Radar 4 Target 1 w 200 - B
- () (®)

3
2
25
B Radars Radars
* B Radarz | 2 B Radad
Radar! B Radar2
15 Radar
1 I
5| 1
0s 1 u
o5
0 o
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() (b)

FIGURE 8. Gantt chart of the optimal task scheduling strategy. (a) Small
scale scene. (b) Large scale scene.

by optimizing the task scheduling strategy at suitable time
in radar network and the multi-target ISAR imaging task
is completed under the image quality requirement. More
resources remained can be used for other important tasks such
as searching and tracking.

Furthermore, according to the task scheduling strategy of
small-scale scene, let the radars observe the corresponding
targets at the suitable time and calculate the imaging results
by the conventional RD algorithm respectively. The imaging
results of the representative targets which contain Target
3 and Target 6 are illustrated in Fig. 9. From the results we
can see that the imaging resolution can be achieved within
the imaging time window.

The conventional GA often use binary coding structure to
tackle the optimization problem, which objectively discretize
the solution space, especially the imaging start time selec-
tion. The quality of search solution is influenced by different
discrete granularity. Based on hybrid coding structure of
binary and real numbers, the solution space of the multi-target
task scheduling problem with a mixture of multiple decision
variables can be mapped into the quantum space, then QGA is
introduced to solve the optimization problem. It can be seen
from the experiments that proposed IQGA effectively solves
the task scheduling problem for multi-target ISAR imaging
in radar network.

In [14], for the first time, a multi-target imaging task allo-
cation method in radar network has been proposed. Therefore
some experiments are performed to contrast the efficiency of
the proposed IQGA algorithm and the convex optimization
algorithm in [14]. The conventional Range-Doppler (RD)
algorithm are used to conduct the ISAR image and the
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FIGURE 9. The imaging results of the representative targets in small scale
scene. (a) The imaging result of target 3. (b) The imaging result of target 6.

algorithms are executed in two scenes to yield the following
results as illustrated in Table 6.

It is observed that the proposed method can improve the
radar resource utilization while obtaining the required ISAR
image.

According to the above experiments, we can see that the
proposed method has the ability to acquire an effective strat-
egy profile to achieve the multi-target imaging task at suitable
time in radar network under the image quality requirement,
which improves the working efficiency of the radar network
significantly.

V. CONCLUSION

In this paper, we studied an optimization problem of task
scheduling for multi-target ISAR imaging in radar network.
Under restriction of limited radar resources, we devoted to
improve the radar resources utilization through optimizing
the task scheduling scheme. Image resolution is chosen as a
metric to evaluate the imaging task. The relationship between
the imaging resolution and task time is studied firstly, and
the imaging task is time sensitive due to the imaging start
moment. Then the task scheduling optimization model with
time window constrains has been constructed. An improved
Quantum Genetic Algorithm (IQGA) is proposed to solve the
problem. Finally, the proposed imaging task schedule opti-
mization method is applied to two scenarios. The experimen-
tal results showed that our method can design task scheduling
strategy, which is capable to improve the resource utilization
the radar network while the requirement of imaging resolu-
tion is fulfilled. We notice that only time resource is consid-
ered in this paper, while some other kinds of radar resources
such as energy and aperture are also important. We also notice
that only Conventional RD imaging algorithm is considered
in this paper, while some other imaging algorithms such as
CS-based sparse aperture ISAR imaging algorithms are also
important. In our future works, the proposed model can be
extended with consideration of more other kinds of radar
resources and imaging algorithms.
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