
Received April 13, 2020, accepted April 23, 2020, date of publication April 28, 2020, date of current version May 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2991076

A Novel Path Planning Algorithm for Warehouse
Robots Based on a Two-Dimensional Grid Model
BO YANG , WENTAO LI , JIANRONG WANG, JINGJIE YANG, TIANTIAN WANG, AND XIN LIU
School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China

Corresponding author: Wentao Li (lwtcon@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant U1610116 and Grant 61403240, in part
by the Natural Science Foundation of Shanxi under Grant 201801D221171, and in part by the Key Research and Development Program of
Shanxi under Grant 201903D121145.

ABSTRACT In this paper, the path planning problem of goods transportation is formulated as a traveling
salesman problem (TSP). A novel path planning algorithm for warehouse robots based on a two-dimensional
(2D) grid model is proposed to solve this type of TSP. Firstly, we simplified the traditional pile type
warehouse as a node-based 2D grid model. Then, a new concept called the largest convex polygon (LCP)
is introduced to illustrate the shortest path to traverse all goods locations in an ideal condition. Next,
the remaining locations are classified by their relationship with LCP and designed path planning rules
separately. Finally, we merged the paths of different types of cargo locations to get the final path. The
experimental results show that, compared with ant colony optimization (ACO) and genetic algorithm (GA),
our proposed algorithm could effectively reduce the computation time and total path length.

INDEX TERMS Warehouse robots, path planning, TSP, 2D grid model, largest convex polygon.

I. INTRODUCTION
At present, the e-commerce industry has ushered in the best
development period. Various e-commerce companies have
sprung up, and the trend of people shopping online has
continued to rise, which has created many challenges for
all aspects of e-commerce [1]. Among them, the logistics
industry is the foundation and guarantee of e-commerce [2].
With the increasing number of online orders, the logistics
industry will face more difficult challenges, so it is nec-
essary to ensure the efficiency of logistics. The efficiency
of storage and retrieval of goods in the warehouse has the
most direct impact on the efficiency of logistics operations.
Many intelligent warehouses have used automated equip-
ment instead of manpower, the most representative of which
is the automated guided vehicles for cargo transportation.
In this paper, we refer to such automated guided vehicles
as warehouse transportation robots, and warehouse robots
for short.

The warehouse robots can effectively reduce the labor cost
in the logistics process, which does not require any manual
control. It can receive the transportation task assigned by
the central controller, and such transportation task mainly
includes the coordinates of all the goods that the warehouse
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robot needs to pick up. Under the calculation of the
warehouse robot’s own CPU, the robot can obtain an order
to traverse all the positions of the goods. Then it will auto-
matically move from the parking position to the calculated
first goods position to complete the loading task, and then go
to the next goods position. After completing all the loading
tasks, it will return to the parking position to deliver all
the cargo, thus realizing the automatic goods transportation.
Therefore, an excellent robot path planning algorithm can
greatly improve the efficiency of cargo transportation and
reduce manual errors. Moreover, The path planning process
for transport robots picking up goods in turn can be con-
sidered as a type of TSP. So improving the path planning
algorithm of the warehouse robot has a significant impact on
improving its transportation efficiency.

The type of path planning for warehouse robots can be
divided into two categories: conventional path planningmeth-
ods and heuristic path planning methods. Many conventional
methods such as A* algorithm [3] can obtain good results
in warehouses with fewer goods locations. While the goods
locations increase, however, the time-out problem of A*
algorithm becomes serious. Based on the characteristics of
A* algorithm, Zheng et al. [4] optimized the node search
mode and search speed, and add the angle evaluation cost
function to the cost function of A* algorithm to find the
path with the least inflection point. But they did not suggest
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any solution to optimize the long calculation time. Besides,
Kusuma et al. [5] used A* algorithm to find the shortest
path based on the coordinates of the current position and
the coordinate of target position. And their research goal
is that when the robot deviates from the target, the robot
can approach the target object and change route. Because
they did not perform any optimization on A* algorithm,
the long calculation time of A* algorithm is still not solved.
To reduce calculation time, many heuristic methods rep-
resented by evolutionary computation have been proposed.
Evolutionary computation is a kind of adaptive optimization
probabilistic search algorithm, mainly including GA [6]–[8],
ACO [9]–[12], improved ACO [12]–[15], particle swarm
optimization [16], [17], improved particle swarm optimiza-
tion [18]–[20], and artificial bee colony [21], [22] etc.

Lamini et al. [23] proposed an improved crossover oper-
ator, for solving path planning problems using genetic algo-
rithms (GA) in static environment. The proposed crossover
operator avoids premature convergence and offers feasible
paths with better fitness value than its parents, thus the algo-
rithm converges more rapidly. Kumar and Kumar [24] design
a robot path planning algorithm to avoid collision under
four warehouse models but the complexity of the algorithm
does not seem to be taken into account compared with other
algorithms. YongBo et al. [25] studied the problem of UAV
path planning in 3D space by minimizing the multi-objective
cost function. They improved the traditional wolf pack search
algorithm (WPS) by introducing the concepts of chromo-
some and gene in GA. Simulation results show that the
trajectory generated by the improved WPS algorithm is far
superior to traditionalWPS algorithm,GA and random search
methods. Harshal et al. construct a new objective function
with the help of distance between robot to obstacle and
goal in [26]. Then they demonstrate the exploration rate are
more effective than conventional particle swarm optimiza-
tion in their proposed APSO algorithm. Finally, it is veri-
fied that the robot can avoid the obstacle and follows the
target path.

For most heuristic algorithms, the calculation time is sig-
nificantly reduced, however, it is not stable enough to obtain
the optimal solution. To solve the problem of too long com-
putation time in the traditional algorithms and the problem
that the optimal solution cannot be obtained steadily in these
heuristic algorithms, a novel path planning algorithm for
robots is proposed in this paper under a 2D grid model of
logistics warehouses. After establishing a node-based 2D grid
model represented by the center of the grids, we introduce a
new concept called LCP to find the shortest path to traverse
all goods locations in an ideal condition. Next, the remaining
locations inside the LCP are classified according to their rela-
tionship with LCP and designed path planning rules. Finally,
the paths of different types are merged to get the complete
path. The experiments are performed to demonstrate that the
proposed algorithm could effectively reduce the computation
time and path length.

FIGURE 1. The aerial view of the pile type warehouse.

II. PROBLEM DESCRIPTION
As shown in Fig. 1, it is the aerial view of the pile type ware-
house. The rough black rectangular box is the area occupied
by a shelf, and the black solid square inside the rectangular
box is the location where the robot picks up goods; the gray
squares represent the roads that the robot can travel between
two goods position. The rough black boxes are overhead so
that the robot can freely pass under it.

Later, we consider simplifying this layout by using nodes
to represent the robot pick-up positions, and straight lines to
represent the roads, shown in Fig. 2.

FIGURE 2. The simplified warehouse model.

G(V ,E, ω) is used to express the grid model, where V is a
set of all pick-up positions. E is a set of the driving routes, i.e.
the grid edges in the 2D grid model. ω represents the set of
weights determined by the distance between any two pick-up
positions. V , E , and ω of the grid model G are generated
according to real demands.

All shelves are located at the intersections of grid lines.
P represents the parking location of a robot (i.e. the starting
position when performing a task and the destination after
completing the task). Note that, the path planning for ware-
house robots in this paper is designed for a single robot and
does not consider the collision avoidance and cooperation of
multiple robots during driving, just optimize the performance
of each robot in the task.

Specifically, a warehouse robot will start from P (starting
position) when receives a task including the quantity and
position of the shelves to be picked up, then go to each
shelf position Pi according to the traversal order calculated
by the robot CPU, where i denotes the shelves number,
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FIGURE 3. Task distribution.

i = 1, 2, · · · , n. Finally, robots transport all goods back to
P (destination). As Fig. 3 shows, solid nodes P1, P2, P5, P6
and P7 indicate that there are goods to be picked up at these
locations; hollow nodes P3, P4 and P8 mean that the robot
does not have to go to these locations.

According to different research priorities, this type of robot
task can be divided into several parts. Among them, step
‘‘Task release’’ could be optimized through an excellent task
distributing and scheduling, which can reduce the overall cost
by assigning more suitable positions for each robot. Step
‘‘Starting moving’’ can be improved by more rapid and accu-
rate data transmission, because there may be multiple robots
working at the same time in real logistics warehouses, which
may cause a lot of noise and information misplacement. If the
robot have already picked up all goods, it will return to the
parking position P.

In step ‘‘calculation’’, however, improving the path plan-
ning algorithm is prominent to reduce the cost of completing
a task, which mainly includes the computational time of CPU
and the length of the resulting path. This paper is mainly for
designing the path planning algorithm, focusing on having the
ability of obtaining better solutions with shorter computing
time under a smaller number of nodes.

When the robot receives a task, it starts initialization to
locate its current position. Then, according to the position
coordinates of all nodes given by the task, the proposed
algorithm is used to calculate the traversal order. Based on the
obtained traversal order, the robot moves to the next position.
The termination criterion T is that the robot has loaded all
goods in the task. If it is satisfied, it returns to the parking
position P, otherwise, it continues the task.

III. ALGORITHM DESIGN
In this section, under our grid model, an algorithm is created
to solve this type of TSP. A partial solution S is repre-
sented as an ordered list, where |S| expresses the number of
nodes in S.

S = (v1, v2, · · · , v|S|) (1)

S̄ = (r1, r2, · · · , r|S̄|) (2)

Note that, the nodes in S and S̄ are unknown at this time.
When the LCP is found for the first time, the nodes in S and
S̄ will be determined initially. Simultaneously, S̄ = V − S
denotes the remain nodes of V , where |S̄| expresses the
number of nodes in S̄. S is continuously filled and the initial
S is actually the list of the vertexes on LCPmentioned earlier.
Afterward, the remain nodes will be inserted continuously
after a specified node v∗i in S with the least cost. Then,
the partial solution S will be extended as

S := (S, rj), (3)

v∗i := argmin
vi

c(S,G) (4)

And (S, rj) denotes appending rj to a selected position in
the ordered list S. v∗i means the node in S where rj will
be inserted after. This step is repeated until the termination
criterion T is satisfied. The total path cost is calculated by
the cost function c(S,G), which is written as

c(S,G)=
|S|−1∑
i=1

ω(S(i), S(i+1))+ω(S(|S|), S(1)) (5)

The termination criterion T is S = V .
For illustration, (M ,N ) is the shortest route between node

M and N . Suppose the coordinates of M and N are (xM , yM )
and (xN , yN ), respectively. The shortest distance between two
nodes can not be calculated by Euclidean distance under
our grid model, but by Manhattan distance, which could be
obtained by the following:

dMN = |xM − xN | + |yM − yN | (6)

In this paper, we use the calculated shortest Manhattan
distance dMN between M and N as the weight ω of the
path (M ,N ).

ω(M ,N ) = dMN (7)

The idea of our algorithm is essentially a insertion method.
The algorithm will obtain a solution by inserting these nodes
into a certain partial solution S, that can minimize the incre-
ment of cost function. The subpath is referred to the straight
line linking two certain adjacent vertex on the LCP that all
nodes can form. Below, we will propose a few concepts to
design path planning algorithm.

A. BOUNDARY ATTRIBUTE
In this subsection, boundary attribute (BA) of nodes is pro-
posed to design path planning rules for robots in transporting
tasks. This section starts with the case of two pickup posi-
tions, then this problem can be considered as a three-point
of TSP. In Fig. 4, P is the parking position, and P1, P2 are
two shelves nodes. So there are only two orders to traverse
the three nodes, that is P→ P1 → P2 → P and P→ P2 →
P1→ P.

Next, a rectangular coordinate system is established with
the robot parking position P as the origin, and then assume
that the coordinates of P, P1, and P2 are (0,0), (x1, y1)
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FIGURE 4. The shortest path of traversing these three nodes in the grid
model.

and (x2, y2), respectively. Let these nodes with the maxi-
mum Y value have the ‘‘up boundary attribute’’ (UB). These
nodes with the minimum Y value have the ‘‘down boundary
attribute’’ (DB). The ones with the maximum X value have
the ‘‘right boundary attribute’’ (RB) and the nodes with the
minimum X value have the ‘‘left boundary attribute’’ (LB).

FIGURE 5. The search process of LCP.

Since the robot can only travel horizontally or vertically,
the shortest path length is the sum of four boundary lengths,
as the red lines shown in Fig. 5. The shortest length is
calculated by

dmin = 2(|xmax − xmin| + |ymax − ymin|) (8)

Next, we can generalize this problem into four nodes. This
situation can be viewed as placing a new node inside or
outside of the triangle formed by the first three nodes, which
is represented as the dashed black lines shown in Fig. 5. These
two different distributions will make the path connecting the
four nodes form a convex or concave quadrilateral. Both
distributions will be considered as follows.

B. THE LARGEST CONVEX POLYGON
This subsection proposes a method of finding the LCP with
any number of nodes, explained in algorithm 1 and shown
in Fig. 5.

Algorithm 1 Search Process of LCP Which Can be Formed
With n Nodes
Input: All nodes positions
Output: The vertexes set N of the LCP that all nodes can

form
1: Set the node with the minimum value Y on the left

boundary as the initial node P.
2: ACartesian coordinate is established with P as the origin

and makes a directed line Ld overlapped with the y-axis.
3: Termination criterion T : Ld repasses through the initial

node P.
4: Initializes node subset N = {P}.
5: While Not T Do
6: if other nodes just above P then
7: According to the distance between these positions

and P, add them into N from near to far, N := (N ,Pi),
where i = 1, 2, · · · , n− 1.

8: end if
9: Move the rotation center to Pi newly added to N .
10: Rotate Ld clockwise until intersects any node. If Ld

passes through more than 1 node at a certain angle, then
append these nodes to S from near to far.

Note that the LCP here is the polygon with the largest size.
Besides, the position of P can also be arbitrary. In this paper,
we place P at the down-left corner of the grid model.

C. SUBPATH COVERAGE AREA
A new concept called subpath coverage area (SCA) is pro-
posed to solve the problem tominimize cost increments. Each
subpath refers to the path connected by two adjacent nodes
of the LCP. The shortest length of a subpath is calculated by
Manhattan distance, but there may be several actual routes
with the same shortest length. For example, the shortest dis-
tance between P and P1 is 4, but more than one path can be
selected, as displayed in Fig. 6(a-e). Note that, we assume that
the length of each segment of the grid line is 1 in this paper.
All the shortest routes locate in the rectangle formed by the
two nodes. Then, if a new node P2 locates in the rectangle
formed by P and P1, the length of the newly generated path
P → P2 → P1 will not increase after inserting P2, as the
gray area shown in Fig. 6(f). So we call the rectangle as the
coverage area of this subpath. Meanwhile, some subpaths can
only cover a grid edge, such as P → P1, P8 → P11 and
P10 → P in Fig. 5. So we can draw a conclusion: if a new
node locates in a SCA, the new path length will not increase
after inserting it into the subpath.

IV. ATTRIBUTION OF THE INTERIOR NODES
If a node to be inserted does not locate in any SCA, it can be
called as an interior node, such as P4, P5, P6, P9, P12 and P13
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FIGURE 6. Several actual routes with the same shortest length between
two nodes.

FIGURE 7. Subpath coverage areas.

in Fig. 7. Next, the problem can be translated into: find the
shortest path between each interior node and a certain SCA.

When searching the SCA closest to P4, only the distances
between P4 and four boundaries of each SCA needs to
be determined. And each boundary is a line segment, not
a straight line. The calculation method of the distance of
point-to-line segment is different from the distance of point-
to-straight line extremely, as explained in algorithm 2.

The problem is viewed as finding out the shortest distance
of point-to-line segments, but there are still many boundaries
to be considered.

To reduce automatically the number of boundaries to be
considered, the following concept called ‘‘region between
boundary’’ (RBB) is introduced to remove unused boundary.
RBB is composed of the rectangular frame and the straight
lines connected by the nodes with boundary attributes.
In Fig. 8, the gray areas are the RBBs, which represent the
active range of the remaining vertices of the LCP. Then these
subpaths in the RBBs can be generally classified as k > 0
and k < 0 in terms of slope k . But it is not concluded that
the boundary selection of SCAs is on the basis of k . Such
as P1 → P3 and P11 → P10, the the bottom and right
side of SCA of P1 → P3 is obviously closer to the interior

Algorithm 2 Calculation Method of Point-to-Line Segment
Distance Based on the Grid Model
Input: The coordinate of node N (xN , yN ). The coordinates

of the two vertices U and V of the line segment (xU , yU )
and (xV , yV ).

Output: The closest distance between N and the line
segment.

1: if yV−yUxV−xU
= 0 then

2: if xU ≤ xN ≤ xV or xV ≤ xN ≤ xU then
3: dmin = |yN − yU | = |yN − yV |
4: else dmin = min(dNU , dNV )
5: end if
6: else if yU ≤ yN ≤ yV or yV ≤ yN ≤ yU then
7: dmin = |xN − xU | = |xN − xV |
8: else dmin = min(dNU , dNV )
9: end if

FIGURE 8. Region between boundaries (RBB).

nodes, while P11 → P10 is the left and top side. Even if the
slope k of both paths is greater than 0, the selected boundaries
are different. Therefore, if the slopes of several paths are all
greater or less than 0, it cannot be relied on this principle to
classify subpaths roughly.

As shown in Fig. 8, we use the boundary attributes of nodes
to determine the four boundaries of the LCP, namely PP1, P7,
P8P11 and P10P, respectively. Although P7 is only a node,
it also represents a boundary. These nodes can form a list
of boundary nodes, B = {P,P1,P7,P8,P11,P10,P}. After
extending these boundaries separately, the obtained rectan-
gular frame will generate RBBs with the polygon connected
by the boundary nodes in sequence. Then all the remaining
vertices of the LCP are in the gray area.

The selection rules of SCA boundaries are given in table. 1.
For the subpaths in the RBB formed by the left and top
boundary, the bottom and right side of the SCA is selected.
For the subpaths in the RBB formed by the top and right
boundary, we choose the bottom and left side of the SCA.
For the subpaths in the RBB formed by the right and down
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TABLE 1. The selection rules of SCA boundaries in different RBBs.

boundary, we select the top and left side of the SCA. For the
subpaths in the RBB formed by the left and bottom boundary,
the top and right side of the SCA will be picked.

As can be seen from table. 1, the selected sides of a SCA
and the formed boundaries of a RBB are complementary.
Such as the selected sides of the SCA of P1 → P3 and
P3→ P7 are bottom and right side by the proposed selection
rules, while the RBB is formed by the top and left boundaries.
When unnecessary boundaries are eliminated, these selected
boundaries will make up the minimum range of SCA, as the
black thick lines shown in Fig. 9. The distance between a
interior node and the selected boundaries of a SCA will be
calculated as algorithm 3. After calculating the nearest SCA
boundary, the interior node will belong to the subpath that
form this SCA.

FIGURE 9. Minimum range of SCAs.

Algorithm 3 Calculate the Nearest Boundary of a SCA to a
Interior Node
1: Use algorithm 1 to find the LCP.
2: Determine the mathematical representation of RBBs.
3: Determine the RBB which the remaining vertices locate

in, respectively.
4: According to the path selection rules in table 1, obtain the

minimum range boundary of all SCAs.
5: Algorithm 2 is used to calculate the distance from the

node to each boundary di(i = 1, 2, · · · , n).
6: The nearest boundary of SCA to a node is calculated by
dmin = min{d1, d2, · · · , dn}.

V. PATH PLANNING IN COMPLEX SITUATIONS
After formulating the simple path planning rules, three situ-
ations are considered in this section as follows: (1) multiple
interior nodes locate in the same SCA; (2) multiple interior
nodes do not locate in any SCA; (3) path fusion of the two
types of nodes above.

A. PATH PLANNING FOR MULTIPLE
NODES IN A SAME SCA
This subsection mainly introduces the path planning rules
for multiple nodes in the same SCA. Following the LCP
is determined, the SCAs will be created by two adjacent
vertexes. As shown in Fig. 10(a), there are six nodes in the
SCA of P → A. It is considered that inserting all the six
nodes into subpath P → A with a minimum cost. As shown
in Fig. 10(b), the thick black lines are the edges of the
LCP that all interior nodes can form. The edges of the LCP
obtained by algorithm 1 are P → C , C → F , F → G and
G → A beside P → A. There are several new SCAs and
three interior nodes B, D and E in the newly formed convex
polygon. The newly produced SCAs is given as the gray areas
in Fig. 10(b).

FIGURE 10. Path generation process of the nodes in the same SCA.

The interior nodes D and E does not locate in any new
SCAs. So find the nearest SCAs to the two interior nodes
is necessary. First, table 1 is used to find out the minimum
range of the SCAs, as the thick black lines in Fig. 10(c). Then
algorithm 2 and 3 are used to find the nearest SCA boundary
to D and E , respectively. The final path is P → D → C →
E → B→ G→ A, as shown in Fig.10(d).
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B. PATH PLANNING FOR MULTIPLE INTERIOR
NODES NOT IN ANY SCA
This subsection will mainly design the rules for path planning
under the background of multiple interior nodes not in any
SCA, as shown in Fig.11.

FIGURE 11. Path planning for multiple nodes classified to a same
subpath.

If multiple interior nodes get the shortest distance from a
same SCA boundary, then these nodes will be classified into
a group. As Fig.11 shows, P4 obtains the shortest distance
from the minimum range of the SCA of P3 → P7 and
P7 → P2, so it will be classified to these two subpath
randomly. The rest nodes P5, P6, P9, P12 and P13 are divided
to their corresponding category.

Such as subpath P7 → P2, a directed line is set from P7.
Then, the line is rotated as the way similar to algorithm 1
to find the LCP, until it interacts with the destination P2.
Note that, the LCP generated at this time is called the
second-generation LCP and the LCP determined by all nodes
for the first time is called the first-generation LCP. If there is
any new interior node in this new polygon, algorithm 2 and 3
are used to find out the closest new SCA.

C. PATH FUSION OF THE TWO TYPES OF NODES ABOVE
In this subsection, we consider fusing the paths of the
nodes in the same SCA and the nodes classified into
this SCA. As shown in Fig.12(a), the red triangles are
the first-generation SCAs and the gray areas represent the
second-generation SCAs.

As Fig.12(b) shows, the gray lines represent the path
planned for the nodes in the same SCA and the blue lines
represent the path designed for the nodes classified into a
same subpath. Note that, these straight lines between two
nodes does not indicate the actual routes, just highlight the
order of traversing nodes.

Next, two types of paths are considered to merge into one
path. Firstly, we divide the plane into four parts by extending
two right-angled sides of the triangle of SCA, as shown
in Fig.13(a), where part A1 ⊇ {X1,X2,X3,Y1,Y2,Y3,Y4},

FIGURE 12. Generation of two types of paths.

FIGURE 13. Path fusion process.

part A2 ⊇ {X4}, part A4 ⊇ {X5,X6,X7,Y5,Y6,Y7, J3} and
part A3 ⊇ {I1, I2, I3, I4, I5, I6, I7, J1, J2, J3}.
Then the path starts from J and finds the nearest node I1.

Meanwhile, determine whether there are other nodes in
region A3 with the same y value as node I1. If so, go to the
node next step; If not, go to X1 with the same y value as I1.
When selecting the next node, the node to be selected that is
consistent with the region of the current node has a higher
priority. Otherwise, continue searching the closest position
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along with Y axis. The rest may be deduced by analogy and
the complete path as shown in Fig.13(b). Notice a special case
appears in the subpath I4 → I5 → Y6. I4 choose I5 to be
the next node rather than Y6 that have the same x value with
it. That is because that I5 has the biggest x value than the
remain nodes (i.e. I5 is the farthest node from the bottom of
the SCA, the path will never arrive at this level) and the length
of I4→ I5→ Y6 is shorter than I4→ Y6→ I5. Having both
conditions at the same time will go forward in this order.

VI. ALGORITHM COMPLEXITY ANALYSIS AND
EXPERIMENTAL EVALUATION
ACO and GA are constantly considered classic algorithms to
solve this problem, so they are chose to compare with our
proposed algorithm on the performance of calculation time
and path length, respectively. The performance of algorithms
depends on the configuration of the computer and the pro-
gramming language used. During the experiments, the con-
figurations of the computer are Microsoft Windows 10,
the CPU of intel(R) Core(TM) i7-8550U CPU @1.80GHz,
the graphics card of NVIDIA GeForce MX150 and 8G RAM
for simulation. All algorithms are implemented by python
3.7 programming.

Moreover, to verify the performance of the three algo-
rithms on the number of small-scale positions, the experi-
ments will be executed separately with 20, 30, 40 and 50
random nodes. Our test instances in the experiments are
the random nodes on Cartesian coordinates rather than the
instances on TSPLIB, because we want to observe the per-
formances of our algorithm in this logistics warehouse grid
model rather than the effect in a particular environment.

A. ALGORITHM COMPLEXITY ANALYSIS
Suppose the scale of the current TSP problem is n, i.e. there
are n nodes in total. The proposed algorithm starts with
finding the LCP. And the LCP search algorithm described in
Algorithm 1 can be understood as every time find a vertex of
LCP, all n nodes need to be traversed, so the time complexity
of the proposed LCP search algorithm is O(nh), where h is
the number of the vertexes of LCP. If all nodes are vertexes of
LCP, the time complexity of LCP searching algorithm is also
the time complexity of the proposed algorithm, i.e. O(n2).
In the meanwhile, the opposite of this situation is that the
number of the vertices of LCP are found to be the smallest
each time, that is, 4 vertexes.

As shown in Fig. 14, if the number of the vertexes of LCP
is 4, then the plane can be divided into 5 parts, which are the
SCAs composed of the four subpaths and an area between
them. Suppose the remain (n−4) nodes are evenly distributed
in these 5 parts, so there are (n−4)/5 node in each part. Next,
the process of finding new LCPs for the nodes in the first to
fourth parts and the division of the nodes in the fifth part will
be performed. At the same time, assume that the number of
vertexes of the new LCP is also the smallest, i.e. 3 vertexes,
so the time complexity so far isO(4n)+O(((n−4)/5+2)×4)+
O((n− 4)/5). We treat the calculation so far as a loop. Next,

FIGURE 14. The general distribution of 4 LCP vertexes.

after adding some nodes to the partial solution S, the remain
nodes will continue the process of finding LCP or division.
Assuming the number of loops is L and L is a constant. After
add all nodes are into S, the overall time complexity is

T (proposed) = L × (O(4n)+ O((
n− 4
5
+ 2)× 4)

+O(
n− 4
5

) ≈ O(n) (9)

So the upper bound of the time complexity of the proposed
algorithm is O(n2) and the lower bound is �(n).
We also analyzed the space complexity of the proposed

algorithm. Firstly, we use S to store the nodes have been
identified, and the initial S contains the vertexes of LCP,
so the space complexity is O(h). And if all the nodes are the
vertexes of LCP, the overall space complexity of the proposed
algorithm in this special case isO(n). Next, the remain (n−h)
nodes will continue to search for LCP or be assigned to a
subpath according to their location, and the space complexity
of this step isO(n−h). Simultaneously, several new subpaths
will be generated. If there are no unprocessed nodes in the
coverage area of a certain subpath, the subpath will not
continue to be stored. Later, the next loop will start, and L
also means the number of loops which is a constant. And
as mentioned above, if all nodes are the vertexes of LCP,
the overall space complexity isO(n), so the space complexity
of the proposed algorithm is

S(proposed) = L × (O(h)+ O(n− h)) ≈ O(n) (10)

B. LENGTH PERFORMANCE COMPARISON
From Fig.15, it can be seen that the proposed algorithm
achieves a better performance than ACO and GA. GA has
the worst performance in shortest path length and stability
ratio. The reason is that each step of GA requires local
optimization, which cannot guarantee global optimization.
Besides, the optimization degree is also related to starting
position. Note that, all length values are calculated from the
nodes coordinate without any units. And the length of each
segment of the grid line is 1.
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FIGURE 15. Length performance comparison.

Meanwhile, the local search ability of GA is poor, which
results in consuming time. The search efficiency is lower in
later stages of evolution, and it is easy to cause premature
convergence problems. With a large number of positions,
obtaining a satisfactory solution often requires an unbearably
quantity of iterations.

However, ACO performs much better than GA on con-
vergence, because it is not affected by the starting position
and the ending position. When the number of positions is
large, ACO is easy to fall into the non-optimal solution,
and even the detours and deadlocks may appear. Moreover,
if the parameters α and β are not set properly, the calculating
efficiency is very slow, and the quality of obtained solution
is particularly poor. In contrast, the proposed algorithm can
maintain good length performance in small-scale number of
random positions. The total traversal length is basically linear
with the number of positions n.
Note that the paths in the simulation pictures show that the

path between two positions is directly connected by a straight
line instead of the grid lines, which is to observe the traversal
order more intuitively. In fact, in the program we use the
Manhattan distance to calculate the two-position distance.

1) EXP 1 (WITH 20 RANDOM NODES)
From the experiments of 20 random positions, it is difficult
for ACO and GA to obtain the optimal solution. For ACO,
the most obtained solution of path length that can be achieved
with unlimited number of iterations is 3326 in Fig. 16(a). The
path lengths obtained in many tests are even longer. Then for
GA, the most obtained path length in Fig. 16(b) with 3329 is
not as good as ACO, and it needs more iterations than ACO.
The proposed method does not require iterative calculations,
and it can obtain the shorter path length with 3309 in each test
as shown in Fig. 16(c).

2) EXP 2 (WITH 30 RANDOM NODES)
Since the second experiment, the gap between the three algo-
rithms has expanded. Not only ACO and GA is difficult to get

FIGURE 16. Length performance of the algorithms in Exp 1. and Exp 2.:
(a) The most obtained solution with 3326 by ACO in Exp 1. (b) The most
obtained solution with 3329 by GA in Exp 1. (c) The most obtained path
with 3309 by our proposed algorithm in Exp 1. (d) The most obtained
path with 3520 by ACO in Exp 2. (e) The most obtained path with 3555 by
GA in Exp 2. (f) The most obtained path with 3508 by the proposed
method in Exp 2.

the same length as the path obtained by the proposed method,
but also many detours will appear in the path obtained as
shown in Fig. 16(d)-(f).

3) EXP 3. (WITH 40 RANDOM NODES)
In exp 3, deadlocks often occur in the paths obtained by ACO
and GA, that is, these two algorithms often fall into a local
optimum, and regard the current suboptimal solution as the
optimal solution. This is also the biggest drawback of these
two algorithms as shown in Fig. 17.

4) EXP 4. (WITH 50 RANDOM NODES)
In Fig. 17, ACO can still not avoid deadlock and detour
with 2000 iterations and even more, which is enough to see
the disadvantage of ACO. With fewer iterations, the result-
ing path will be worse in the face of 50 random nodes.
GA achieved themost obtained length performance similar to
ACO with 4773 by 2000 iterations. At this time, GA resolved
the detour that ACO had not resolved sometimes, but
another larger detour appeared. In some cases, as the num-
ber of iterations increases, the performance of the GA even
deteriorates.

Through the results of the experiments above, it can be
seen that the proposed method can solve the problem of local
optimum and detour in ACO and GA, respectively.
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FIGURE 17. Length performance of the algorithms in Exp 3 and Exp 4):
(a) The most obtained solution with 4126 by ACO in Exp 3. (b) The most
obtained path with 4189 by GA in Exp 3. (c) The most obtained solution
with 4039 by our proposed algorithm in Exp 3. (d) The most obtained
solution with 4698 by ACO in Exp 4. (e) The most obtained path with
4773 by GA in Exp 4. (f) The most obtained solution with 4627 by our
proposed algorithm in Exp 4.

C. TIME PERFORMANCE COMPARISON
The time optimization performance of each algorithm
is shown in Fig. 18. The data is the average value
of 100 experiments.

FIGURE 18. Time performance comparison.

It can be seen from Fig.18 that the ACO has a great advan-
tage on the stability of operation results. However, the perfor-
mance of ACO is determined by the pheromone. When the

initial pheromone is lacking, it is easy to cause the algorithm
to solve too slowly or fall into local optimum. In addition,
if α and β are set improperly. The calculation speed is also
slow, and the quality of resulting solution is particularly poor.
In order to obtain a satisfactory result, ACO often requires
a large number of iterations, but it is difficult to obtain the
optimal solution similar to GA due to a limited number of
iterations. The running time of the proposed algorithm is
linear with n and has the shortest running time compared with
others.

Note that, the execution time of an algorithm refers to the
time it spends converging to the optimal solution at the first
time. The data of all algorithms execution time is also the
average of 100 experiments.

As can be seen from Fig.18, the execution time of the
proposedmethod has been significantly optimized, which has
been reduced by 120.86, 137.74, 153.76 and 183.87 times
in 4 experiments compared with ACO and reduced by 144.70,
155.77, 179.14 and 232.69 times compared with GA.

VII. CONCLUSION
The paper is concerned with the path planning problem
for robots under a given logistics warehouse environment.
Two issues focused on in this paper are the calculation time
of the algorithm and the driving path length. We propose
a novel path planning algorithm for solving this type of
robot path planning. Through extensive experimental eval-
uation, the results demonstrate the superiority of the pro-
posed method compared with ACO and GA. In the future,
we will focus on the path planning problem in 3D space,
then the cooperation of multiple warehouse robots will also
be investigated.
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