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ABSTRACT Recently, deep neural networks are widely used in recommendation systems, but most of
them are used to process auxiliary information of recommendation systems such as items’ descriptions and
images. When it comes to how to learn a better interaction function to model the relation between user
latent features and item latent features, which is the most critical step in a recommendation task, most works
employ matrix factorization together with the inner product. However, it is sub-optimal because of ignoring
many correlations between latent factors. As deep neural networks perform well in building more complex
non-linear models, we employ deep neural networks to improve the collaborative filtering algorithm,
solving the problem of implicit feedback which is the most common scene in real applications. Some
recent work has contributed to finding better interaction function, but these functions are not exact enough
to model comprehensive correlations among latent features. In this work, we propose the Convolutional
Neural Networks based Deep Collaborative Filtering model (CNN-DCF) to solve the key problem in the
recommendation system. Based on the outer product and deep neural networks, we develop a correlation
extraction module that can learn high-order correlations between item latent features and user latent features.
Extensive experiments on the public implicit feedback dataset Yelp show that the proposed CNN-DCF model

brings significant improvements over the state-of-the-art methods.

INDEX TERMS CNN, collaborative filtering, implicit feedback, neural network, outer product.

I. INTRODUCTION

In recent years, with the rapid development of the Internet and
the Internet of Things (IOT) [28], data is growing rapidly at
an exponential rate. However, massive data not only brings us
more information and knowledge but also brings the problem
of information overload. So, how to obtain the information in
need of large-scale data quickly and accurately has become
a major issue in both academia and industry. Nowadays, per-
sonalized recommendation technology has become an impor-
tant method for handling information overload and has been
widely used on the Internet. For example, most e-commerce
platforms such as Amazon and Taobao, have developed per-
sonalized product recommendation engines to increase the
total transaction volume (GMYV). Besides, online video sites
such as Netflix and YouTube use the recommendation system
to increase video clicks.
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The conventional recommendation system methods can be
divided into three major categories [11], [14]: collaborative
filtering methods [3], content-aware methods [2], and hybrid
methods [5], [7]. At present, the most widely used method
is the collaborative filtering algorithm [6], [23], [35], [38]
based on matrix factorization (MF) [18], [25], [34]. MF is
used to obtain user latent vector and item latent vector (also
termed as user embedding and item embedding) respectively,
and the correlation between user latent factors and item
latent factors is modeled by an interaction function. Since
MF-based approaches are highly accurate and easily scalable
in addressing CF problems, some works based on MF make
great progress [36], [37].

Nowadays, most matrix-based methods use inner product
as the interaction function [26], [29], [33], [40]. However,
applying an inner product has some drawbacks. The inner
product simply combines user latent vector and item latent
vector linearly, which is not exact enough to capture the
complex features of the user’s historical behaviors. Specifi-
cally, applying the inner product is reasonable only when the
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dimensions of latent vectors are independent of each other.
But because these dimensions can be considered as certain
characteristics of users and items, which is not independent
in the real world, using the inner product is not rational in the
real recommendation tasks.

In order to find a more effective interaction function, fol-
lowing [31], we adopt the outer product of the user latent
vector and item latent vector as an interaction function to
model the relationship between latent factors in this work.
Reference [31] uses the convolutional neural network (CNN)
to learn the output of the outer product in the ConvNCF
model. Compared with the conventional MF methods which
use inner product, it gets better results because using outer
product models more correlations between latent factors.
Although CNN has achieved good results in the field of
image processing [10], [13], [20], [24], it is irrational to use
CNN in the ConvNCF model. The inspiration of CNN is that
individual cortical neurons only respond to stimuli in a recep-
tive field because features in a receptive filed have a certain
correlation. Therefore, it is not necessary for each neuron
to perceive the global image, while local connectivity can
reduce the number of parameters. However, the interaction
map obtained by the outer product obviously does not have
the same local connectivity as images. So, it is unreasonable
to use CNN to learn the high-order correlation between the
latent factors.

In this paper, we present an effective method for recom-
mending in an implicit feedback scenario. The contributions
of our work are:

1) We develop a CNN based Deep Collaborative Filtering
model (CNN-DCF) in this work. CNN-DCF combines
deep learning with collaborative filtering based on the
outer product, which improves the speed and accuracy
when recommending for users.

2) We present a correlation extraction module to learn
more comprehensive correlations between latent fac-
tors. By this special module, we can model high-order
correlations among entries in interaction map and rec-
ommend for users more accurately.

3) We conduct extensive experiments on public dataset
Yelp, which show that CNN-DCF performs better than
state-of-the-art implicit collaborative filtering methods,
proving the rationality and effectiveness of CNN-DCF.

Il. RELATED WORK

A. MPLICIT FEEDBACK IN RECOMMENDATION SYSTEM

In general, there are two typical scenarios when recommend-
ing to a user: explicit feedback which the user has a direct rat-
ing on the item and implicit feedback which does not directly
represent the user’s propensity. The user’s interest can only
be judged by whether the item has been clicked in implicit
feedback scenario. Although explicit information is more
reliable than implicit information, explicit information is dif-
ficult to acquire. Compared with explicit feedback, implicit
feedback is more widely used in our daily lives, such as
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browsing websites and purchasing items. Since users do not
give ratings to items clearly in most cases, users’ preferences
can be collected more easily and conveniently in implicit
feedback. Therefore, it is necessary to study recommendation
technology based on implicit feedback. However, because of
its natural sparsity, it is more difficult in implicit feedback
research.

Let U be the set of all users and I the set of all items. # and
i are a user and an item in the system respectively. In user-
item interaction matrix ¥ € RM*N with implicit feedback,
M denotes the number of users and N denotes the number of
items. Each entry y,; in Y can be defined as

1, if user u has interacted with item i
Yui = . (D
0, otherwise

Currently, there are some methods for recommending
based on implicit feedback. Rendle et al. propose a rank-
ing recommendation framework called Bayesian Personal-
ized Ranking (BPR) [29]. It transforms the ordering problem
into a binary classification problem through the partial order
relationship between the item pairs. Wang er al. propose
a collaborative topic regression (CTR) model, combining
collaborative filtering and probabilistic topic modeling [8].
Specifically, each item is generated by a topic model such
as LDA and contains a latent variable which can capture the
user’s performance for the item based on historical scoring
information. Depending on the topic model, this method can
not only recommend existing items but also predict new items
to solve common cold-start problems in recommendation
systems.

B. APPLICATION OF DEEP LEARNING IN
RECOMMENDATION SYSTEM

Deep Learning provides an end-to-end and non-linear mod-
eling approach that improves the recommendation system’s
efficiency. Particularly, Deep Learning provides different
neural network architectures for different types of data and
is suitable for scenarios where multiple types of data coexist
in the recommendation system. Deep Learning has become
the main research direction in the field of recommendation
systems. Various Deep Learning models include Multilayer
Perceptron (MLP), Autoencoder, Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), Attention
model, and Deep Reinforcement Learning have been applied
in different recommendation tasks.

Deep Learning can be used to handle large-scale data
so that it is widely used in collaborative filtering rec-
ommendation issues. Salakhutdinov et al. first use Deep
Learning in the recommendation system and propose a
model that uses Restricted Boltzmann machines for col-
laborative filtering [27]. Wu et al. propose Collaborative
Denoising Auto-Encoders (CDAE) which uses DAE (Denois-
ing Autoencoder) for top-N recommendation systems [39].
Besides, because Gated Recurrent Unit (GRU) [9] can cap-
ture the dependencies between behaviors in the session,
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Hidasi et al. [4] apply the collaborative filtering method
based on the Recurrent Neural Network (RNN) [12] to use
the historical behavior records in the current session to pre-
dict the probability of clicking each item in the next step.
DeepFM [17] integrates the decomposition machine and
MLP seamlessly. The Factorization-Machine captures linear
interaction information between each pair of features through
inner product and addition operation while MLP using non-
linear activation function and deep network structure to
model higher-order feature interactions. Through learning
from Factorization-Machine MLP paralleled, the prediction
results including the combination of low-order and high-order
features are obtained finally. In addition to blending with
existing recommendation models such as matrix factorization
and Factorization-Machine, MLP can also improve the rec-
ommendation by extract feature expression. Google’s Wide
& Deep model [15] consists of a wide module and a deep
module, where the wide module is a single-layer perceptron,
which is a generalized linear model; the deep module is a
multilayer perceptron. By combining the wide module with
the deep module, this model can improve memory and gener-
alization capabilities simultaneously. The memory capability
is obtained by the wide module by modeling the original
features, and the generalization capability is realized by the
deep module by extracting more generalized and abstract
feature representations.

1Il. DEEP COLLABORATIVE FILTERING BASED ON OUTER
PRODUCT

In this part, we compare the inner product and outer product
in section A. And then, we introduce the framework of the
CNN-DCF model and the objective function applied in this
work in section B and section C respectively.

A. MF BASED ON OUTER PRODUCT

In the collaborative filtering algorithm based on MF, latent
vectors can be obtained by MF. And the different dimensions
of user latent vectors and item latent vectors can be viewed
as the different features of users and items. When the inner
product is employed as an interaction function to model
the correlations between user latent features and item latent
features, it all based on the hypothesis that dimensions of
latent space are independent of each other. However, these
latent factors also mean users’ and items’ features which are
interrelated with each other in the real world. Therefore, just
using an inner product to model the interaction function is
illogical. Besides using the inner product, the other interac-
tion function used in [33] is simply concatenating user latent
vectors and item latent vectors. However, experiments in [31]
show that just concatenating latent vectors doesn’t perform
well. The reason is that concatenation is too simple to learn
complex information from latent features.

To learn more complicated information from data, the
outer product is a better choice. Compared with methods of
employing the inner product or simply concatenating latent
factors, the outer product can learn more information between
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FIGURE 1. CNN-DCF model’s framework.

latent features. We show equations of the inner product (2)
and outer product (3) respectively,

a®Ob=aq,ba, +agba, + ... +agba, (2
aq,bq, aq.baq,
al @b =a'b = : : 3)

aqba, aq bay

where a, b are row vectors and denote K-dimensional latent
vectors. From (2), (3), we can figure out that the output of
outer product includes the output of inner product (diago-
nal elements). So outer product can learn more correlations
between a and b than inner product.

B. CNN-DCF

To model the pairwise correlations between the dimensions of
latent vectors and learn high-order correlations more compre-
hensively, we propose our CNN-DCF model. Fig.1 illustrates
the CNN-DCF model. The aim of model is to predict a
personalized score y,; which can reflect the preference of user
u for item i.

1) OUTER PRODUCT
We obtain user latent matrix P € RM*K and item latent
matrix @ € RY*X by decomposing the User-Item interaction
matrix. M is the number of users and N is the number of
items. K denotes the number of latent features as well as
embedding size. User latent vector p,, and item latent vector
q; are the u-th row of P and i-th row of Q respectively.

In CNN-DCF model, applying the outer product on p,, and
q;, we can obtain an interaction map O via (4)

0=ploq =plg (4)

where O € RE*K As we have mentioned, compared with the
result of the inner product, the interaction map contains more
correlations between users’ and items’ latent features, which
is more meaningful in the real world. What’s more, compared
with using concatenation simply [1], [32], [33], it is more
useful to model latent factor’s correlations explicitly when
using a deep learning model on sparse data.

2) CORRELATION EXTRACTION MODULE

To extract more comprehensive information from the inter-
action map, we consider developing a correlation extraction
module after the interaction map. This module aims to find
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a better function to learn more details from the interaction
map. We first flat the interaction map into a vector, then feed
itinto a fully connected layer so that we can learn correlations
between all entries in the interaction map. In practice, around
the fully connected layer, we also apply a residual connection
to speed up the convergence. Besides, to reduce the number
of parameters, we employ CNN. Specifically, we reshape the
output of the fully connected layer into a 2-D matrix and feed
it into a CNN network. The calculations are as follows.

Given the interaction map O € RX*K we first flat it to
vector V| of size K% and feed V| into the fully connected
layer ().

fFV) =aWlv,+by) )

We apply a residual connection around fully connected
layer (6),

Vo=Vi+f(V1) (6)

where W, by are parameters of the fully connected layer, a
is the ReLU activation function. The purpose of the residual
connection is to avoid gradient vanishing and speed up the
convergence.

Before CNN layers, V; is reshaped into a 2-D matrix
E € R¥*K_Then, a set of CNN layers followed by a fully
connected layer are applied to get the prediction score ;.
The computation is as follows:

Yui = WCNN (E) + b (N

3) RATIONALITY OF CNN-DCF

Here are the reasons why CNN-DCF is more reasonable to
learn complete information from the interaction map which
is the output of the outer product.

In the interaction map, each element o;; is the product of
ki-th user latent factor and kj-th item latent factor, reflect-
ing the correlation between them. The fully connected layer
captures the correlation among every element in interaction
map 0. Of course, an MLP can be simply employed after the
fully connected layer, which is termed as ONCF-mlp in [31].
However, applying CNN above the fully connected layer is a
better choice. Here are two reasons:

o Comparison with ConvNCF. We have learned corre-
lations between all elements in the interaction map via
the fully connected layer. As a result, despite the local
connectivity of CNN, the correlations among different
elements of the interaction map will not be lost when
employing CNN-DCF.

o Comparison with ONCF-mlp. In CNN, each filter is
replicated across the entire visual field and these repli-
cated units share the same parameters. Thus, apply-
ing correlation extraction module instead of MLP can
reduce the number of parameters significantly.

C. OBJECTIVE FUNCTION
Since recommendation can be considered as a personalized
ranking task, we optimize the model with a ranking-aware
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objective function in CNN-DCF. In implicit feedback,
observed interactions should be ranked higher than unob-
served interactions. So, we use the Bayesian Personalized
Ranking (BPR) objective function for optimization [29].
Being different from usual approach which items are ranked
by sorting them according to prediction data, BPR optimizes
for correctly ranking item pairs instead of scoring single
them.

In the BPR optimization criterion, there is a partial order
>,. If user u has viewed item 7 but not item j, we can assume
that u prefers i over j, i.e., i >, j. Besides, there are two
assumptions when applying BPR:

1) All users act independently with each other.

2) The ordering of each pair of items for a user is indepen-

dent of the ordering of every other pair.
In order to find the best personalized ranking, the following
posterior probability should be maximized.

p (B >u) xp (>, |0)p(®)

To simply the formula, we apply ® instead of parameters in
the model. Based on the above two assumptions, p (>, |®)
can be rewritten as follows:

[TrGuie= [] p>ujl@)@D
uelU (u,i,))eU xIx1

(1= p (i >4 1) “HDFP)
where

L ifbi
5(b):={’ lfblstrue’

0, else

and D := {(u,i,j)|i €y Ajey,}. yI denotes items that
have interacted with user u and y,; denotes items that have not
interacted with user u. Hence, this formula can be simplified
to:

[[rui®= ] pi=4l®)

uel (u,i,j)eD

More specifically, in this work, we define the individ-
ual probability that user u prefers item i to item j as
P (i >4j1©) :=0(ui (©) — $,i(©)), where o (x) := o= is
the sigmoid function.

We have discussed the likelihood function. To complete
the Bayesian modeling approach, we assume prior density
p (®) is a normal distribution with zero mean and variance-
covariance matrix Xg, i.e., p(®) ~N(0,Xg). In the follow-
ing, we set X9 = A@l to reduce the number of unknown
hyperparameters. Now we can obtain the personalized rank-
ing objective function BPR objective function by calculating
the maximum posterior estimator.

BPR: =1Inp (G| >,)
=lnp(>,|0)p(®)
=i ] o(u® -3i®)p©)

(u,i,j)eD
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= Z Ino (3ui (©) — 3,4(©)) + Inp (©)
(u,i,j)eD

= D o (i (©) = 3,4©) — 2o O]
(u,i,j)€D

where Ag are model specific regulation parameters.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
To evaluate our model comprehensively, we conduct experi-
ments in order to answer the following questions:

Q1 Do our proposed model performs better than the state-
of-the-art recommendation models?

Q2 Do applying outer product instead of inner product
improve the performance of models?

Q3 Is learning more comprehensive correlations from
interaction map helpful?

Q4 Is the CNN-DCF a better choice in application com-
pared with other models based on the outer product?

1) DATASET

We implement a series of experiments on the public dataset
Yelp. Yelp open dataset is a user rating dataset published
by the review website Yelp. It is an explicit feedback data,
so we transform it into implicit data by marking each entry
as 0/1(0/1 indicate whether the user reviewed the item).
Because the original Yelp dataset is too sparse to evaluate
recommendation models, we filter out users and items with
less than 10 interactions. As a result, there are 25,815 users,
25,677 items, and 730,791 times interactions in the final
dataset.

2) EVALUATION PROTOCOLS

We adopt the leave-one-out evaluation to measure the per-
formance of our models. For each user, we select the last
item the user interacted with and other 999 items the user
has never interacted with to form the test dataset. We employ
Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG) as the evaluation standard to measure the
performance. HR @k is a recall-based metric which measures
if the testing item is in the top-k position among all items in
the test set. NDCG @k assigns higher scores to items at top-k
ranks. For all models below, we calculate the average of every
user’s evaluation score.

3) BASELINES
We compare CNN-DCF with these methods:

ItemPop This model recommends the most popular item
to users, which is not a personalized model. This model is
always taken as a baseline for recommender methods.

MF-BPR [29] This is an MF model which adopts BPR
function as the loss function.

MLP [33] This model concatenates user latent vector
and item latent vector, then uses MLP to learn interaction
function. It is a Neural network-based Collaborative Filter-
ing (NCF) model.
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TABLE 1. HR@K performance.

Models HR@5 HR@10 HR@20
TtemPop 0.0710 0.1147 0.1732
MF-BPR 0.1752 02817 0.4203
MLP 0.1766 0.2831 0.4203
JRL 0.1858 02922 04343
NeuCF 0.1881 0.2958 0.4385
ConyNCF 0.1901 0.3010 0.4403
CNN-DCF 0.1936 0.3042 0.4438

JRL [38] This model is an NCF model too. It uses inner
product to model correlations between user latent vector and
item latent vector. Different from Generalized Matrix Factor-
ization (GMF), it uses multiple hidden layers above the inner
product.

NeuCF [33] This model combines the advantage of GMF
and MLP to learn interaction function between user latent
factors and item latent factors. It unifies the advantages of
linearity of MF and non-linearity of MLP.

ConvNCF [31] This model employs multiple convolution
layers above the interaction map to learn high-order informa-
tion from the user’s past behaviors.

4) PARAMETER SETTINGS

For MLP, JRL and NeuCF, we pre-train their embedding
layers by MF-BPR. As for models based on outer prod-
uct, namely ConvNCF and CNN-DCF, we pre-train their
embedding layers via OMF (Outer product-based MF),
which places a fully connected layer after the interaction
map.

As for the correlation extraction module in CNN-DCEF,
we employ 5-layers CNN and 6-layers CNN when K = 32
and K = 64 respectively. Besides, we set each hidden layer
with 32 feature maps and we use a stride of 2 for both K = 32
and 64. Especially, for our proposed model, we optimize the
embedding layers and the rest part of the model by using
mini-batch Adagrad with different learning rates respectively.
Furthermore, for a fair comparison, we employ L, regular-
ization to avoid overfitting for all compared methods. The
regularization coefficients are tuned in the range of [0.001,
0.01, 1, 10, 100].

B. PERFORMANCE COMPARISON (Q1)

Setting k=5, 10, 20 respectively, we compare the top-k rec-
ommendation performance on the Yelp dataset by employing
different models (Table 1 and 2). Table 3 shows the average
improvement of CNN-DCF over the baseline respectively.
From these tables, we find the following conclusions.

o ConvNCF and CNN-DCF, which both apply the outer
product as interaction function, perform better than other
models which use the inner product. It proves that
applying the outer product improves the performance of
models.
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TABLE 2. NDCG@K performance.

Models NDCG@5 NDCG@10 NDCG@20
ItemPop 0.0365 0.0505 0.0652
MF-BPR 0.1104 0.1447 0.1796
MLP 0.1103 0.1446 0.1792
JRL 0.1177 0.1519 0.1877
NeuCF 0.1189 0.1536 0.1895
ConvNCF 0.1243 0.1543 0.1919
CNN-DCF 0.1268 0.1589 0.1940

TABLE 3. Average improvement over baseline.

Baselines RI
ItemPop +122.90%
MF-BPR +7.05%
MLP +6.99%
JRL +4.03%
NeuCF +3.27%
ConvNCF +2.16%

RI indicates the average improvement of CNN-DCF over the baseline when
applied in Yelp

NDCG@10

—— CNN-DCF with outer product
—— CNN-DCF with inner product
—— CNN-DCF with concatenation

0204 | —— CNN-DCF with outer product o010
—— CNN-DCF with inner product
—— CNN-DCF with concatenation 009

0 200 400 600 800 1000 o 200 00 600 800 1000
Epoch# Epoch#

FIGURE 2. HR@10, NDCG@10 of applying different operations above the
embedding layer in each epoch.

o CNN-DCF achieves better performance and gets high
improvement over all other models. It proves that learn-
ing more comprehensive correlations among interaction
map’s entries is more effective.

C. PERFORMANCE OF OUTER PRODUCT (Q2)

To show the efficacy of the outer product more intuitively,
we replace it with inner product and concatenation respec-
tively. With HR@K and NDCG@K as evaluation criterion
respectively, we compare their performance in each epoch
(Fig.2). From Fig.2, we observe that CNN-DCF with outer
product outperforms other methods on both HR@10 and
NDCG@10. The improvement demonstrates the efficacy of
outer product which models the correlation between different
embedding dimensions. It proves the rationality of learn-
ing more comprehensive correlations by applying the outer
product.

D. PERFORMANCE OF CORRELATION EXTRACTION
MODULE (Q3)

To verify the efficacy of the correlation extraction module,
for embedding size is 32 and 64 respectively, the HR@10 and
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FIGURE 5. HR@10, NDCG@10 of applying CNN-DCF with and without
residual connection in each epoch.

NDCG@10 in each epoch of CNN-DCF and ConvNCF are
shown in Fig.3 and Fig.4. From Fig.3 and Fig.4, we observe
that no matter the embedding size is 32 or 64, CNN-DCF
always performs better than ConvNCF, which proves our
conclusion that the correlation extraction module is more
reasonable than CNN because correlation extraction mod-
ule learns more comprehensive information from interaction
map.

Besides, to verify the validity of the residual connection in
correlation extraction module, we compare the performance
of CNN-DCF with and without residual connection (Fig.5).
Fig. 5 shows that CNN-DCF with the residual connection
converges faster than CNN-DCF without residual connection.
It proves that applying residual connection can speed up the
convergence and improves efficiency and productivity in real
world applications.

E. ADVANTAGES OF CNN-DCF IN APPLICATION (Q4)

As the recommendation system is using more and more
in our daily life, the practicability of our proposed model
should be under consideration. To measure the practicability
of CNN-DCF clearly, we compare CNN-DCF with Con-
vNCF and ONCF-mlp which both perform well in implicit
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FIGURE 6. HR@k, NDCG@k of applying CNN-DCF, ConvNCF and ONCF-mlp
where K ranges from 10 to 20.

recommendation tasks. For embedding size is 64, we set
top-K item recommendation as the evaluation criterion where
K ranges from 10 to 20. We employ MLP with three hidden
layers in ONCF-mlp. Furthermore, we use the same CNN
network in CNN-DCF and ConvNCEF to ensure the fairness
of the experiment. Fig. 6 shows the best performance of each
model in the experiments.

Comparing ONCF-mlp and CNN-DCF separately, we find
that their best performances are very close. Although
ONCF-mlp performs a bit better than CNN-DCF because of
its huge number of parameters, ONCF-mlp has some disad-
vantages:

1) There are a large number of parameters in ONCF-mlp.
More parameters require large memories to store the
model and lots of training data to train the model well.
So, the model will be hard to train because it requires a
lot of data to avoid overfitting.

2) The performance of the model is unstable. Because
of the training difficulty, ONCF-mlp performs much
worse than ConvNCF sometimes [31].

3) Inorder to make sure good generalization performance,
itneeds a lot of manual labor to adjust the regularization
coefficient carefully.

The difficulty of training ONCF-mlp reduces efficiency and
increases costs in industrial applications. These drawbacks
make it hard for ONCF-mlp to be applied in reality.

From Fig. 6, we also observe that CNN-DCF performs
much better than ConvNCEF. It proves the effectiveness of
learning more comprehensive information from interaction
map. In addition to accuracy, computational time is also to
be considered in applications. It takes 4.48ms and 4.82ms
respectively for CNN-DCF and ConvNCEF to predict a user’s
favorite item among 1000 items on average. It demonstrates
that CNN-DCEF is more efficient when being applied in indus-
trial applications.

n conclusion, considering both recommendation perfor-
mance and training difficulty, CNN-DCF is the best choice
when being applied in practice.

V. CONCLUSION AND FUTURE WORK

In this work, we explore deep neural networks for collab-
orative filtering based on the outer product. Specifically,
we propose CNN-DCF which can learn more comprehensive
correlations between user’s latent features and item’s latent
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features. Experiments on Yelp dataset show that CNN-DCF
perform better than other models in recommendation task
with implicit feedback.

In the future, we will combine our model with content-
aware method and employ more auxiliary information like
item’s description, user’s geographic location and time infor-
mation to improve the efficacy of CNN-DCF. Besides,
in order to explore CNN-DCF to use in real application
scenarios like e-commerce, we will optimize our model
and reduce its time consumption. We consider employing
DenseNet or ResNet to explore the potential of CNN-DCF.
What’s more, as implicit feedback is the most common sce-
nario, we will be committed to finding better sampling meth-
ods to improve recommendation ability in implicit feedback.
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