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ABSTRACT Foam-cemented paste backfill (FCPB) has become a trend to solve the problem of
roof-contacted filling. In order to solve the time-consuming and labor-intensive disadvantages of laboratory
uniaxial compressive strength (UCS) tests, a hybrid artificial intelligence model which combines random
forest (RF) algorithm and grid search optimizer (GSO) was proposed for FCPB strength prediction.
Moreover, the effects of foaming agent on cement hydration and pore structure characteristics were studied.
The results showed that GSO can effectively tune the hyper-parameters of the proposed GSO-RF model
and the developed model is an efficient and accurate tool to predict the UCS for FCPB. Though the foaming
agent will not change the influence trend of cement-tailings ratio, solid content and curing time, the influence
degree will be weakened by the foaming agent. The ranking of the relative importance of influencing
variables is: cement-tailings ratio > curing time > foaming agent dosage > solid content. In addition,
the foaming agent has no significant effect on the hydration of cement. The foaming agent mainly changes
the strength by changing the pore structure characteristics (especially the large pore volume). This research
can provided some guidance for developing UCS prediction model for FCPB.

INDEX TERMS Foam-cemented paste backfill, uniaxial compressive strength, random forest, grid search
optimizer, variable importance.

I. INTRODUCTION
Cemented paste backfill (CPB) is a mining filling material
prepared from dewatered processing tailings, cementitious
materials (such as cement) and water [1]–[3]. It has many
advantages such as the disposal of tailings waste, reduced
ore loss and dilution rate, controlled surface subsidence and
improved working environment[4]–[10]. A detailed review
for CPB has been provided in Ref [11], where the current
status and future perspectives were discussed. Although CPB
is favored by mining workers due to the above advantages,
there are still many engineering and technical problems. One
of the outstanding problems is that due to the dewatering and
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consolidation of CPB [12], it is difficult for the hardened CPB
to contact the roof (see Fig. 1), which not only affect mineral
resources recycling, underground mining operations security,
but can also trigger a series of engineering geological haz-
ards [13]–[16]. Therefore, it is necessary to study the backfill
that can achieve the purpose of roof contacting.

In view of the problem of roof-contacted filling, many
mines in China (such as the Aoniu Ironmine, JinchuanNickel
mine) have adopted foam-cemented paste backfill (FCPB)
and achieved good results [17]. Therefore, FCPB is likely
to become an effective method to solve the problem of
roof-contacted filling. FCPB is a mixture of CPB and foam-
ing agent, which reduces the gap area between roof and
backfill by foaming (foaming agent generates gas-phase
void) [18]. Moreover, compared with CPB, FCPB shows
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FIGURE 1. Schematic comparison of the effects of FCPB and CPB.

lower cement consumption and higher capability to absorb
blasting energy [19], [20]. Like CPB, the advantages of
FCPB depend on its mechanical stability [21]–[23]. The
mechanical stability of CPB or FCPB is usually characterized
by the uniaxial compressive strength (UCS). It can be said
that the UCS is an important factor to be considered in the
design of CPB or FCPB [23]–[26]. Based on this, numerous
researchers [19], [26]–[31] have investigated the UCS of CPB
or FCPB. Yin et al. [28] examined the effect of solid content
(SC) on strength of CPB. It was found that an increase in
the water content has a negative influence on the mechanical
strength. Cao et al. [27] investigated the effect of cement-
to-tailings (c/t) ratio on the mechanical properties of CPB.
They found that the UCS performance of CPBs increases
with increasing cement-to-tailings ratio and a linear equation
can quantify the relationship between UCS and cement-to-
tailings ratio. Fall et al. [29], Fall and Pokharel [30], and
Yilmaz et al. [26], [31] also investigated experimentally the
influence of curing time (T) on strength of CPB samples.
One can observe from those works that CPB samples tend
to get hardened with increasing curing time mainly due to the
progress of cement hydration. Xu et al. [19] found that the
foaming agent dosage had an important effect on the UCS of
FCPB.

It is noteworthy that almost all the above studies obtained
strength through laboratory UCS tests. Although the UCS
test is simple, it is tedious and time-consuming, especially
when a large number of UCS tests are needed [32], [33].
Some studies [34]–[38] conducted numerous tests and the
relationship between UCS and ultrasonic pulse velocity, UCS
and electrical resistivity, and UCS and microstructural char-
acteristics were established to predict the strength of CPB.
However, the above methods are often restricted to one type
of tailings and require specific experimental equipment [34].
In addition, hydrogen peroxide is extremely oxidizing and

may affect the hydration degree of binder materials [39].
Moreover, the gas produced by the decomposition of hydro-
gen peroxide will introduce many extra-large pores (close to
the millimeter level), which makes FCPB more loose and
porous than CPB. Li et al. [40] concluded that extra-large
pores greatly affect the strength characteristics of materials.
On the other hand, when the environment in which the hydro-
gen peroxide is located changes (such as cement-tailings
ratio, solid content, etc.), the foaming effect also changes,
that is, the bubbles have different properties (i.e., number,
size, and stability) in fresh backfill [41]. It has been reported
that the strength of backfill materials depends on the pore
structure and hydration degree [42]. Therefore, the existing
strength prediction model of CPB is no longer applicable to
FCPB, and the importance degree of influencing factors of
FCPB has not been studied before. It is of great significance
for FCPB design to find a convenient and accurate method to
predict the UCS of FCPB.

Artificial intelligence (AI) technique has been widely
used in engineering areas due to its high accuracy in
modeling the relationship between input variables and
output variables [43]–[46]. At present, some literatures
have used AI technique to study the performance of
CPB [32], [34], [47]–[50]. For example, Orejarena and
Fall [47], [48] employed artificial neural network (ANN) to
predict the UCS of CPB, considering the effect of sulphate
attack. Qi et al. [32] forecasted the compressive strength
of CPB by associating the boosted regression trees (BRT)
model with the particle swarm optimization (PSO). To predict
the performance (for example, the slump, the bleeding rate,
the compressive strength) and get the optimal mix proportion
of the cemented filling material, Xue-jie et al. [49] estab-
lished an improved BP Neural Network model. Qi et al. [50]
introduced a genetic programming (GP) model to predict the
compressive strength of CPB, where the characteristics of
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tailings, cement-tailings ratio, solid content and curing time
were selected as inputs. Lu et al. [34] utilized the state-of-the-
art ensemble learning method to improve the effectiveness of
UCS prediction models of CPB.

Although these previous studies have made significant
progress in predicting the strength of CPB by using AI
technique, all of these models are developed for CPB and
have limited guidance for FCPB. Therefore, the purpose
of this paper is to propose a new hybrid model to accu-
rately predict the strength of FCPB and study the degree
of effect of influencing variables. Random forest (RF) is
widely used in regression tasks [51], [52], mainly due to
its high prediction accuracy, strong robustness, and ability
to process high-dimensional data [53]. RF can also rank
the importance of input variables, and when faced with
high-dimensional data, it can reduce overfitting problems
caused by data redundancy [54], [55]. In addition, the suc-
cessful application of RF requires the combination of hyper-
parameter optimization algorithms. Grid search algorithm
(GSO) algorithm is widely used in hyper-parameter tun-
ing and its stability in hyper-parameter tuning has been
proved [56]–[58]. Therefore, this paper utilized the GSO to
optimize the hyper-parameters of RF. To the author’s knowl-
edge, there are no relevant reports about using AI technology
to predict the strength of FCPB. In addition, it is the first
time in the literature to study the combined effects of cement-
tailings ratio, solid content, curing time and foaming agent
dosage (HP) and quantify the relative importance of these
variables of FCPB.

II. METHODS
This section is divided into three parts, including the method-
ological backgrounds of RF and GSO, the descriptions of
k-fold cross-validation and model performance measures.

A. RF MODEL
RF algorithms arewidely used in classification and regression
problems, which mainly profits from good robustness, high
accuracy, and returnable characteristic measures [59]–[61].
Using bootstrap aggregating technology to extract multiple
samples from the original sample and model each bootstrap
sample with a decision tree (the data set size of each sample
is the same) [62], [63]. A RF regression predictor [64] can be
expressed as:

f̂ nRF (x) =
1
n

n∑
i=1

Si(x) (1)

where x and n represent the vectored input variable and the
number of trees, respectively; Si(x) refers to a single regres-
sion tree constructed from a subset of input variables and the
bootstrapped samples.

The main implementation steps of RF (Fig. 2) are summa-
rized as follows:

FIGURE 2. Main steps of RF model (adapted from [43]).

1) Using bootstrap to generate n samples from the original
sample set to form a subset, these subsets are used to grow
the tree [65];

2) When establishing a decision tree, a certain number of
features are randomly selected, and the most suitable feature
is selected as the split node according to themean square error
until it no longer splits [66]. Part of the data in the original
sample (1/3 of the total data) will not be used for training and
is called Out-of-Bag (OOB) data, which is used to estimate
the model’s generalization error [67], [68];

3) In the end, the output of the RF is determined by n
decision trees, where the output of the regression problem is
the average of the output of the n decision trees, and the output
of the classification problem is determined by the voting of
the n decision trees [66].

B. GRID SEARCH OPTIMIZER (GSO)
Grid search algorithm, also known as exhaustive attack
method, is often used to solve the problem of constrained
nonlinear extremes. The principle of the algorithm is to divide
the hyper-parameters into grids at a certain interval within a
certain spatial search range, and each intersection in the grid
corresponds to an objective function value [69]. By travers-
ing each point in the grid regularly to find the intersection
of the optimal objective function, the optimal combination
of hyper-parameters can be obtained [69], [70]. In the grid
search algorithm, the hyper-parameters of each group are
independent of each other, and the multi-solution problem
caused by possible coupling between hyper-parameters is
avoided in the optimization process [71], [72].

C. K-FOLD CROSS-VALIDATION AND MODEL
PERFORMANCE MEASURES
In this study, a k-fold cross-validation method was adopted.
This method randomly divides the training set (UCS data)
into k folds, the first fold is used as the validation set and
the remaining k-1 folds are used as the training set [43].
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FIGURE 3. 10-fold cross-validation (adapted from [43]).

FIGURE 4. Characteristics of tailings: (a) grain-size distribution, (b) XRD.

It is worth noting that every fold of data will be trained
and validated, and the model overfitting can be reduced
in the k training-validating rounds [20], [21]. The 10-fold
cross-validation is adopted to optimize the process of hyper-
parameters tunning (Fig. 3).

The model performance is evaluated by the mean square
error (MSE), the mean absolute error (MAE), and the coeffi-
cient of multiple determinations (R2). The calculations are as
follows:

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (2a)

MAE =
1
n

n∑
i=1

|yi − ŷi| (2b)

R2 = 1−

∑n
i=1 (yi − ŷi)∑n
i=1 (yi − ȳ)

(2c)

where n is the sample size; yi is the predicted value; ŷi is the
observed value; and ȳi is the mean of ŷi.

III. MATERIALS AND EXPERIMENTS
The tailings tested were obtained from the ore processing
plant of Aoniu Iron Mine (Liaoning province, China). The
particle size distribution of tailings was determined using a
Malvern laser Mastersizer 2000, as shown in Fig. 4(a). It can
be seen that the fine (minus 20 µm) content of tailings is
15.31%, which can be classified as a coarse size tailings
material [21]. The mineral characteristics of tailings were
obtained by X-ray diffraction (XRD), as shown in Fig. 4(b).
As can be seen from the figure, the crystalline components
in tailings are mainly quartz, calcite and dolomite. In addi-
tion, X-ray fluorescence (XRF) analysis results showed
that the main chemical components of tailings are SiO2
(64.4%), Fe2O3 (18.04%) and Al2O3 (5.65%), as detailed
in Table 1. The binder used in this study was ordinary Port-
land cement (OPC) type 32.5R according to Chinese National
Standard GB 175-2007 [73]. The main chemical composition
of the cement is shown in Table 1. Tap water was used to
mix the materials to achieve the desired consistency of the
slurry.
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FIGURE 5. (a) Foaming agent; (b) Foam stabilizer; (c) FCPB specimens; (d) UCS test.

TABLE 1. Chemical characteristics of tailings and OPC.

TABLE 2. Mix proportions Of FCTB samples.

In this experiment, hydrogen peroxide (H2O2, Fig. 5 (a))
with a concentration of 30% was selected as the foaming
agent. In alkaline environment, hydrogen peroxide is decom-
posed to produce oxygen (see formula (3)), leading to the
volume expansion of the slurry. In addition, calcium stearate
(Fig. 5 (b)) was added as foam stabilizer to improve the
bubble distribution in the slurry and subsequent to improve
the mechanical strength of FCPB [74]. It is worth noting that,
after a lot of preliminary experiments, the optimal dosage of
foam stabilizer is 0.7% of the total mass of tailings and OPC.

2H2O2→ 2H2O+ O2 ↑ (3)

After the experimental materials were prepared according
to the experimental scheme in Table 2, the FCPB slurry
was manufactured according to the experimental steps shown
in Fig. 6, and then the slurry was poured into a plastic mould
with a diameter of 50 mm and a height of 100 mm. After
sealing, the mould was cured in a curing box. The curing
conditions are consistent with those described in Ref [22].

Following a predetermined curing time of 3, 7, 14 and 28
days, the FCPB specimens (Fig. 5 (c)) were demoulded and
subjectedUCS test (Fig. 5(d)). TheUCS tests were performed
at a loading rate of 0.5 mm/min using a computer-controlled
mechanical press (Humboldt HM-5030, USA), and the ratio
of the maximum stress value (F) in the stress-strain curve to
the compression area of the specimen (A) was regarded as
UCS (see formula (4)).

UCS =
F
A

(4)

FIGURE 6. Preparation procedure of FCPB specimens (adapted from [40]).

To have a better understanding of the influence of the
foaming agent on the cement hydration process and pore
structure evolution, thermogravimetric (TG) analyses and
pore structure measurement tests were conducted on cement
paste and FCPB specimens, respectively. The water-cement
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TABLE 3. Statistical description of inputs and outputs.

ratio of the cement paste sample is 1:1, and the curing time is
4 hours [75]. FCPB samples with fixed variable values (solid
content: 72%, cement-tailings ratio: 1:4 and curing time:
28 days) were prepared at foaming agent dosage varying from
0% to 3 %. It is worth noting that due to the measurement
range of the mercury intrusion porosimetry (MIP), this paper
uses image processing methods to measure the size of the
large pores (>200µm). The specific operation steps can refer
to the Ref [40].

IV. RF WITH GSO
This section will introduce how to combine the GSO with
RF to predict the FCPB strength. The modelling process
of GSO-RF mainly includes three parts: datasets, feature
correlation analysis, and hyper-parameter optimization.

A. DATASET
In this paper, a total of 432 UCS tests were performed. Three
tests were performed for each mix proportion of FCTB and
the mean value was used for modelling. Therefore, 144 data
were eventually used for model training and performance
evaluation.

There are four input variables of GSO-RF model, namely,
cement-tailings ratio, solid content, foaming agent dosage
and curing time. The output of GSO-RF is UCS of FCPB.
Table 3 shows the statistical results of input and output. In the
supervised task, the original data is divided into training
set and testing set. The training set is selected for hyper-
parameter optimization, while the testing set is utilized for
evaluating the generalization ability of the model. The train-
ing set is obtained by randomly extracting 70% of the original
dataset, and the remaining 30% is used as testing set. The spe-
cificmethod is to gradually increase the size of the training set
until a steady model performance is reached [43]. Therefore,
the UCS data of the training set and the testing set are 100 and
44, respectively.

B. FEATURE CORRELATION ANALYSIS
Before the variables are introduced into the model, it is nec-
essary to perform a correlation analysis to avoid the decrease
of the model prediction accuracy caused by the redundancy
between the data [76]. Pearson correlation coefficient is
widely used in correlation analysis between data [77]–[79].
Therefore, this paper chooses the Pearson correlation coeffi-
cient to analyse the four input variables. From Fig. 7 it can
be seen that low correlation exists between the four input
variables, which can be used as input to the model.

FIGURE 7. Correlation coefficient plot of input variables.

FIGURE 8. Procedures for predicting UCS of FCPB using GSO-RF model.

C. HYPER-PARAMETERS TUNING
For different datasets, the optimal performance of RF depends
on the optimal combination of different hyper-parameters.
Based on the results of previous studies and data character-
istics, this paper focuses on analysing four hyper-parameters
of RF, including: the number of decision tree (Ntree),
the maximum depth (Max_depth), the minimum samples
required at a leaf node (Min_samples_leaf) and the mini-
mum number of samples required to split an internal node
(Min_samples_split). The 10-fold cross-validation and grid
search algorithm were used to optimize different combina-
tions of hyper-parameters, and the mean square error was
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TABLE 4. Hyper-parameters of RF tuned by GSO.

FIGURE 9. The influence of a) C/t ratio (SC:76%, HP:3%, T:14 d), b) SC (c/t:1:4, HP:1.5%, T:14 d), c) HP (c/t:1:4, SC:76%, T:14 d) and d) T
(c/t:1:4, SC:76%, HP:1.5%) on the UCS of FCPB/CPB.

utilized to evaluate the model performance under different
combinations of hyper-parameters. Although the grid search
algorithm takes more time to optimize hyper-parameters, this
method has been proved to be feasible and stable in hyper-
parameter optimization (Table 4) [80], [81]. Fig. 8 illustrates
the procedures for predicting the UCS of FCPB by applying
the proposed GSO-RF model.

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL RESULTS
1) RESULTS OF UCS TESTS
The cement-tailings ratio, solid content, foaming agent
dosage, and curing time are the four major factors that affect

the strength of the FCPB. To better study the influence of
these factors on the UCS of FCPB, the control variable
method was used for further analysis [23]. As can be seen
from Figure 9, the cement-tailings ratio, curing time and solid
content are positively correlated with the UCS of FCPB. This
indicates that the UCS increases with the increase of these
factors. The overall positive relationship between the above
factors and the UCS of FCPB is consistent with findings in
CPB samples [4], [23], [35], indicating that the foaming agent
will not change the influence trend of these factors.

It is worth noting that although the influence trend of these
factors on the strength of FCPB is generally unchanged, it can
be clearly seen that the degree of influence is weakened
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FIGURE 10. Portlandite content for 4 h cement paste with various HP.

compared to CPB. For example, when FCPBs at the age
of 3, 7, 14 and 28 days (cement-tailings ratio, solid content
and foaming agent dosage are fixed at 1: 4, 76% and 1.5%,
respectively), the UCSs are 0.47, 0.92, 1.16 and 1.34 Mpa,
the corresponding growth percentages are 96.6%, 146.6%
and 185.5%, while the corresponding values of CPB are
101.2%, 189% and 250.8%. As for foaming agent dosage,
it can be seen that the UCS of FCPB has a significant negative
correlation with the foaming agent dosage, that is, with the
increase of foaming agent dosage, the strength UCS continu-
ously decreases. This is to be expected because the increase
in foaming agent dosage leads to increased porosity in the
FCPB, which reduces the compactness and makes FCPB
more prone to failure during loading.

2) RESULTS OF MICROSTRUCTURE TESTS
Figure 10 shows the amounts of portlandite (Ca(OH)2)
formed in cement pastes with different dosages of foaming
agent. The amount of Ca(OH)2 is an important indicator
reflecting the degree of hydration [75]. It can be clearly seen
from the figure that the amounts of Ca(OH)2 corresponding
to the samples with different dosages of foaming agent are
almost the same, which shows that although hydrogen per-
oxide has strong oxidizing, it has no significant effect on
the hydration of cement. The reason for this phenomenon
may be that the dosage of hydrogen peroxide is too low, and
the relatively high water content further weakens the effect
of hydrogen peroxide. Figure 11 shows the pores of FCPB
or CPB with various foaming agent dosages. It can be seen
from Fig. 11(a) that the porosity of FCPB (49.8%, 60.25%)
is much larger than that of CPB (35.2%). Moreover, the more
the foaming agent is added, the larger the porosity. This is
caused by the decomposition of the foaming agent into gases.
The large pore volume is shown in Figure 11(b). It is clear
that the large pore volume of FCPB is much larger than that
of CPB. At the same time, the large pore volume is positively
correlated with the foaming agent dosage.

TABLE 5. Optimum hyper-parameters of RF.

B. RESULTS OF THE HYPER-PARAMETERS TUNING
This study used a grid search algorithm to optimize the hyper-
parameters of the UCS prediction model. Therefore, the four
hyper-parameters need to be divided according to a certain
distance. The specific division is as follows:

In the RF hyper-parameters, the number of decision
tree interval is 25, and the intervals of max_depth,
min_samples_leaf and min_samples_split are all kept con-
stant at 1. The 10-fold cross-validation was performed on
the data in the training set through a grid search algo-
rithm combined with the MSE evaluation function, and
finally the optimal hyper-parameters were obtained. It should
be noted that when the mean value of MSE reaches
the maximum under 10-fold cross-validation, the optimal
hyper-parameters of the UCS prediction model are opti-
mal (Table 5). The GSO-RF model equipped with the opti-
mum hyper-parameters is trained by utilizing the training
dataset and then the performance on the training set can be
obtained [43].

C. RESULTS OF THE GSO-RF MODEL
The performance of the GSO-RF model was verified on the
training set and the testing set using the R2, MSE and MAE,
which are determined by experimental and predicted UCS
values. In addition, the ratio of experimental UCS to predicted
UCS was analysed.

The comparison between the predicted UCS val-
ues obtained from the RF model with the optimum
hyper-parameters and the experimental UCS data in the train-
ing dataset as shown in Fig. 12. It can be seen from Fig. 12(a)
that most of the predicted UCS values are very close to the
corresponding experimental results. Consequently, it could be
said that the proposed GSO-RF model can reliably describe
the nonlinear relationship between UCS and the influencing
variables. In other words, the proposedmodel has great poten-
tial for the UCS prediction of FCPB. Moreover, as shown
in Fig. 12(b), the MSE and MAE of the GSO-RF model
are 0.0004 and 0.0158, respectively. The smaller MSE and
MAE, the lower the deviation between the experimental and
predicted UCS values [43]. The R2 between the predicted and
tested UCS values reached up to 0.99, which demonstrates
that a good positive correlation is achieved for the UCS
training set [32].

The testing set is used to verify the generalization capa-
bility of the proposed model [33]. Thus, the testing set was
used to evaluate the trained GSO-RFmodel, and the predicted
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FIGURE 11. a) Porosity, b) large pore volume for 28 d FCPB with various HP.

FIGURE 12. Performance of GSO-RF model for predicting UCS training set: (a) evaluation of experimental and predicted UCS, (b) regression.

results are illustrated in Fig. 13. Similar to the results shown
in Fig. 12, most of the predicted UCS values were in good
agreement with the experimental UCS values, with almost
no significant outliers. This can be attributed to the fact that
training samples are relatively sufficient. It is worth noting
that the R2 value of GSO-RF model on the testing set is
0.9586 (Fig. 13(b)), although lower than the R2 value on the
training set, the goodness of fit of the model can meet the
experimental prediction needs.

Fig. 14(a) and (b) show the histogram plots of the ratio of
experimental/predicted UCS values obtained by the training
and testing sets using the GSO-RF model, respectively. It can
be clearly seen that the median andmean of density curves for
both training and testing sets are close to one. Specifically,
the median mean and mean value of the training set are
0.9852 and 0.9821, respectively, while corresponding values
of the testing set are 1.028 and 1.058, respectively. This

indicates that in the training set, the UCS predicted by the
GSO-RF model was slightly less than the actual value, while
in the testing set, the result was the opposite. Nevertheless,
the results show that the proposed GSO-RF model can reli-
ably predict the UCS of FCPB.

D. RELATIVE IMPORTANCE OF INFLUENCING VARIABLES
To better understand the influence of variables on
UCS prediction, partial dependence plots [82] and feature
importance scores [83] were introduced to perform variable
sensitivity analysis. Partial dependency plots can be utilized
to explain the relationship between the output target and
each set of input features, and can intuitively reflect in
which direction a certain feature has a significant impact
on the target output [32]. The feature importance scores
provides an importance measure that can rank the impor-
tance of input variables [84]. When calculating the variable
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FIGURE 13. Performance of GSO-RF model for predicting UCS testing set: (a) evaluation of experimental and predicted UCS, (b) regression.

FIGURE 14. Histogram of ratio of experimental to predicted UCS: (a) training set and (b) testing set.

importance, the given variable is randomly permuted in
OOB and then obtain an error estimate [66]. The differ-
ence between this error estimate and the OOB error with-
out permutation named variable importance [54], [66]. The
greater the variable importance, the greater its impact on
UCS.

Results of partial dependence plots of the influencing vari-
ables for UCS of FCPB are illustrated in Fig. 15. It is clear
that the cement-tailings ratio, solid content, curing time and
foaming agent dosage are of great importance in responding
to the UCS of the prepared FCPB. As expected, increasing the
value of the cement-tailings ratio, solid content and curing
time used in the FCPB mix gives rise to the higher UCS.
An increase in the foaming agent dosage reduces the UCS
of FCPBs. These results are consistent with the experimental
results in Section V.A. This further verifies the accuracy
of the proposed GSO-RF model. Qi et al. [32] studied the
effect of solid content on CPB strength and found that 70%
was the critical content for strength growth, and after the

solids content greater than 70%, the strength accelerated.
It is worth noting that similar phenomena also appeared in
the strength growth of FCPB, but the critical content value
was 74%. This indicates that both CPB and FCPB have the
critical solid content to accelerate the strength growth, and
the variation of this value may be related to many factors,
such as the characteristics of tailings, the type and dosage of
admixtures, which need further experimental research. It is
worth noting that, by comparing the strength of FCPB in
Ref [19], the UCSs obtained in this paper are significantly
smaller when the four main factors, chemical properties of
tailings and binder type are similar. Comparing the tailings
grading used in the respective experiments, it is obvious that
the particle size of the tailings (D50 = 23 µm) used in
Ref [19] is significantly finer than the particle size of the
tailings (D50 = 106 µm) in this paper. In general, under
otherwise equal conditions the finer the tailings will lead
to higher strength [85]. It can therefore be inferred that the
tailings gradation can affect the foaming effect of the foaming
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FIGURE 15. Partial dependence plots of the influencing variables in the GSO-RF model for predicting UCS.

agent. In other words, the coupling effect of tailings gradation
and foaming agent affects the pore characteristics of FCPB
and hence the strength.

Fig. 16 shows the relative importance score of the cement-
tailings ratio, curing time, foaming agent dosage and solid
content, respectively. It can be seen that the magnitude of rel-
ative importance is in a descending order as: cement-tailings
ratio > curing time > foaming agent dosage > solid con-
tent. This order (except the foaming agent dosage) is con-
sistent with some findings in the literatures [23], [32], [50].
The importance score of the cement-tailings ratio is 0.5201,
which overweighted the sum of the importance scores of the
other three factors. Therefore, the cement-tailings ratio is
still the primary consideration in the ratio design of FCPB.
The importance score of curing time is 0.3256, ranking sec-
ond only to the curing time. The early strength of backfill
is particularly important to improve mining efficiency and
production, and the strength does not change significantly
after a period of time [28]. Therefore, the UCS at 3 days,
7 days, 14 days and 28 days are generally studied. The

importance scores of foaming agent dosage and solid con-
tent were 0.1194 and 0.0349, respectively. The importance
of foaming agent dosage is self-evident: when the content
is insufficient, the expansion effect of FCPB is poor, thus
can’t play the purpose of roof connection; when the dosage
is excessive, the strength of backfill is not enough to con-
trol of surface subsidence. In this study, when the foaming
agent dosage increased from 1.5% to 3%, the strength of
FCPB decreased by 35 to 55%. The consistency of slurry
plays an important role in the formation and distribution of
bubbles [86]. Other things being equal, the higher the solid
content, the greater the viscous force of slurry, which is not
conducive to the formation of bubbles, and finally shows the
characteristics of low porosity of FCPB. However, the slurry
with low solid content will also have an adverse effect on
the formation of FCPB. Too low consistency will lead to
the escape of bubbles and the merger of small bubbles to
form large bubbles [87]. Therefore, reasonable solid content
is beneficial to the formation of bubbles and better pore size
distribution.
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FIGURE 16. Importance score of cement-tailings ratio, curing time, foaming agent dosage and solid
content.

VI. CONCLUSIONS
In this study, a hybrid artificial intelligence model
(GSO-RF) was proposed to predict the UCS of FCPB.
A total of 432 FCPB samples with different combina-
tion of influencing variables (the cement-tailings ratio,
the solid content, the forming agent dosage and curing time)
were performed for the construction of GSO-RF model.
The optimum hyper-parameters were obtained by GSO.
A 10-fold cross-validation was adopted to optimize the pro-
cess of hyper-parameters tunning. In addition, the hybrid
model performance is evaluated by MSE, MAE, and R2.
At last, partial dependence plots and feature importance
scores were introduced to perform variable sensitivity analy-
sis.

In terms of predicting FCPB strength, the GSO-RF model
shows great potential. The GSO can effectively tune the
hyper-parameters of the proposed GSO-RF model. In both
the training set and testing set, the hybrid model showed a
good prediction effect, which indicates that the model can
effectively and accurately predict the UCS of FCPB. Through
influencing variables sensitivity analysis, it can be found
that the foaming agent will not change the influence trend
of cement-tailings, solid content and curing time, but the
influence degree will be weakened by the foaming agent. The
ranking of the relative importance of influencing variables is:
cement-tailings ratio > curing time > foaming agent dosage
> solid content. In addition, there is a critical solid content
(74%) value that accelerates the strength growth of FCPB.
The Foaming agent has no significant effect on the hydration
of cement. The foaming agent mainly changes the strength
by changing the pore characteristics (especially the large pore
volume).

It is worth noting that the dataset splitting to the training
and testing set was only performed only once in the cur-
rent study. In this case, the performance analysis will suffer
from some randomness issue [88], [89]. Moreover, the input

variables in this study are relatively few, and factors such
as the physical and chemical characteristics of tailings and
cementing material types are not taken into account. There-
fore, correcting randomness issue and incorporating more
variables into the GSO-RF model will improve the prediction
accuracy and applicability of the model.
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