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ABSTRACT Machine learning based bottom-up saliency detection (MLBU) methods are very popular
recently. These MLBU methods firstly use prior knowledge to select some regions from the given image
as training samples and label them. Based on training set, a saliency classifier is learned to classify salient
object and background by applying machine learning algorithms in the given image. Nevertheless, training
labels obtained by prior knowledge are not always accurate in some complex scenes, inaccurate training
set is hard to make subsequent learning process succeed. To solve this problem, we propose an inaccurate
supervised learning (ISL) based saliency detection framework, which assumes that training labels obtained
by prior knowledge might be inaccurate and constructs three checking rules to remove mislabeled samples
for more accurate training set construction. The refined training set is used to learn a saliency classifier which
can better predict each image region. To obtain more accurate saliency inference, the proposed ISL process
is introduced into a novel iterative feedback (IF) framework to generate better saliency result. Finally, we use
smoothness operator to further smooth saliency result for performance improvement. Experimental results
on three benchmark datasets demonstrate adequately the superiority of the proposed method.

INDEX TERMS Saliency detection, prior knowledge, inaccurate supervised learning, iterative feedback
classification, smoothness optimization.

I. INTRODUCTION
Saliency detection has become an important topic in com-
puter vision and image processing tasks. Its goal is to identify
the most interesting regions that attract human eye atten-
tion in a natural scene. Thus, saliency detection is widely
applied to numerous computer vision and image process-
ing applications, such as image classification [1], scene
recognition [2], image segmentation [3] and so on. More
and more researchers focus on saliency detection field.
Generally speaking, state-of-the-art methods are divided into
two strategies, i.e., top-down (TD) methods and bottom-up
(BU) methods.

Top-down methods are usually driven by specific tasks,
they need to learn saliency model from numerous training
images with the ground truth. Deep neural network (DNN)
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based methods [7]–[10] are the most popular top-down
methods, which can better exploit the high-level seman-
tic information of image due to hierarchical architecture.
Thus, DNN based methods have achieved the promising
performances recently. However, for DNN based methods,
collecting training images with manual annotation is a time-
consuming work. As a result, using DNN for saliency detec-
tion, although effective, is relatively less economical than
bottom-up approaches.

In contrast, bottom-up methods are faster and simpler than
top-down methods, because training images with manual
annotation are not needed. These methods usually exploit
saliency cues by utilizing various prior knowledge, e.g.,
background prior, center prior, contrast prior, spatial prior
and so on. However, prior knowledge only can provide a
coarse but imprecise indicator in most scenes. Based on this
observation, machine learning algorithms are widely applied
to bottom-up methods (i.e., MLBU methods), which usually
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contain two stages: training set construction, saliency classi-
fier construction and prediction. For an input image, the first
stage is to use prior knowledge to select some regions from
input image as training samples and then give them training
labels (positive label for ‘‘foreground’’ and negative label
for ‘‘background’’), it’s noticed that various MBLU methods
may use different prior knowledge. In the second stage, the
selected training set is used to learn a saliency classifier based
on different machine learning algorithms, such as bootstrap
learning [4], multi-instance learning [5], dictionary learning
[6] and so on. The learned saliency classifier can predict each
image region to be foreground or background. As a result, a
binary saliency map is obtained by MLBU strategy.

Different from top-down (TD) methods, the labeling task
of training samples in MLBU methods is determined by
prior knowledge, which is more time-saving than top-down
ones. Nevertheless, a vital drawback is that training labels
obtained by prior knowledge might be inaccurate, especially
in some complex scenes. Because various prior knowledge
only provide coarse but imprecise indicators for subsequent
learning process. It means that a terrible training set easily
lead to bad saliency result. In other words, strongly super-
vised information is hard to obtain in MLBU methods.

Inaccurate supervised learning, which is one of the most
important weakly supervised learning frameworks, assumes
that a subset of training set is mislabeled and aims to construct
different rules to check and correct inaccurate samples. This
setting is widely applied to various learning tasks, such as
image classification, face recognition and so on. We find that
inaccurate supervised learning framework also contributes to
MLBU methods, because strongly supervised information is
not always obtained in MLBU strategy.

Based on above observation, we attempt to solve this prob-
lem about existing MLBU methods by proposing an itera-
tive feedback based inaccurate supervised learning (IFISL)
framework. (1)For one thing, we exploit saliency cues based
on an inaccurate supervised learning framework (ISL). For
input image, we firstly construct a coarse training set by inte-
grating three well-known prior knowledge, i.e., background
prior, global contrast prior and objectness prior. Secondly,
the ISL assumes that a subset of training labels might be
inaccurate due to the limitation of prior knowledge. We are
surprised to find that this setting is of great importance but
studied rarely in bottom-up methods. To achieve this goal,
we propose three checking rules (i.e., local consistency rule,
feature contrast rule and spatial distribution rule) to check
the label reliabilities of all training samples and remove
mislabeled samples from training set. Thirdly, more refined
training set is used to learn a saliency classifier to classify
each region to be foreground/background in the given image.
(2) For the other thing, in order to obtain better saliency result,
we introduce the proposed ISL process into a novel iterative
feedback framework (IF), in which each iteration is a ISL pro-
cess with feedbackmechanism. In our IF framework, saliency
result is updated constantly to the optimized stable state,
which is associated with an accurate saliency map. Finally,

we use smoothness operator to further smooth saliency map
for performance improvement. To better emphasize the dif-
ference between the proposed IFISL and MLBU framework,
we show respectively their frameworks in Fig.1.

In summary, the contributions of our work are listed as
follows:
• We are the first to introduce inaccurate supervised learn-
ing (ISL) into MLBU framework. The ISL is able to
solve the problem that training labels might be inaccu-
rate in MLBU by constructing three checking rules, and
generate better saliency result than conventional MLBU
methods, especially in some complex scenes.

• We introduce the proposed ISL framework into a novel
iterative feedback (IF) framework, the introduction of
feedback regulation mechanism can further improve the
quality of saliency result.

II. RELATED WORK
Deep neural network (DNN) based methods are the most
popular top-down methods, which have achieved top perfor-
mances recently. e.g., Wang et al. [7] construct two deep
neural networks to exploit saliency cues based on global
and local perspectives, they are respectively global search
network and local estimation network. He et al. [8] propose
a novel network named Super-CNN to generate superpixel-
level saliency map. Qin et al. [9] attempt to use pre-trained
network to extract deep features which can exploit the high-
level semantic information of image. Zeng et al. [10] con-
struct an iterative randomwalk model to take both advantages
of low-level features and high-level features. However, the
annotation work is very tedious for top-down methods, and
training sets with accurate annotations remain scarce and
expensive. To solve this problem, weak supervision informa-
tion is applied to top-down methods containing DNN based
methods, which aim to train a top-down model when we do
not have sufficient labeled data or only have limited labels.
e.g., Wang et al. [33] provide a new paradigm for learn-
ing saliency detectors with weak supervision, which only
requires less annotation efforts. Qian et al. [34] propose a
novel feature matching network based on weak supervision
framework to explore the natural relationship between lan-
guage and image, which provides an important saliency prior
for detection. Zeng et al. [40] attempt to train a classifica-
tion network based on multiple weak supervision sources.
Hsu et al. [41] learn a classifier-driven map generator under
weak supervision framework. Besides, Tang et al. [35] pro-
pose a deep saliency quality assessment network which can
better evaluate the quality of saliency map.

In contrast, some bottom-up methods detect salient
object based on various prior knowledge. As one of the
most popular priors in saliency detection, background
prior [11]–[13], [28]–[30] firstly defines image boundary
regions to be background seeds, and then each region’s
saliency value is its feature contrast with the background
seeds. e.g., Zhang et al. [11] compute each region’s manifold
ranking score with image boundary regions to represent its
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FIGURE 1. The flows of conventional MLBU methods and the proposed IFISL. There are two contributions in the proposed
IFISL:(1)Three checking rules are proposed to check label reliabilities to generate refined training set (2) An iterative feedback
mechanism is introduced into learning process.

saliency value. Li et al. [12] construct a label propagation
mechanism which propagates saliency value from image
boundary regions to other regions. Contrast prior is also com-
mon prior knowledge, which assumes that regions with high
feature contrast values are more likely to be salient region.
e.g., Cheng et al. [13] compute different color attributes’
global contrast information to represent saliency cues. In [14],
the saliency value of each region is determined by the contrast
between its feature and image’s mean feature. In addition,
center prior defines that image center regions are more likely
to be salient object because human eye tends to detect center
regions instead of surrounding regions.

Recently, machine learning algorithms are widely applied
to bottom-up strategies, we call themMLBUmethods, which
contain two stages: For an input image, prior knowledge is
firstly utilized to select some regions as training samples and
then label them. Secondly, the selected training samples are
used to learn a saliency classifier based on various machine
learning algorithms, such as bootstrap learning [4], multi-
instance learning [5], dictionary learning [6] and so on. The
learned saliency classifier can classify salient object and
background so that a saliencymap is generated. Nevertheless,
a vital drawback about MLBU strategy is that a subset of
training set obtained by prior knowledge might be mislabeled

in some complex scenes, because prior knowledge loses eas-
ily effectiveness when image content is very complex and
rich. As a result, unreliable training set is hard to make
subsequent learning process succeed.

Inaccurate supervised learning, which is an important
branch of weakly supervised learning idea, concerns the sit-
uation in which the supervision information is not always
ground-truth; In other words, label information might suffer
from some errors. Thereby inaccurate supervised learning
aims to construct various rules to check the label reliability
of each instance. e.g., Muhlenbach et al. [36] propose a
data-editing approach to check label noises. Zhou [37] aim
to infer the ground-truth label based on ensemble strategy.
Considering that this situation often occurs in real world,
inaccurate supervised learning framework is widely applied
to many real tasks, such as image classification [38], deep
learning [39] and so forth.

Following the above analysis, we notice that there is a
strong relationship between inaccurate supervised learning
framework and MLBU methods. Because training labels in
MLBU rely on prior knowledge, which may lead to noisy
labels in some complex scenes. Thus, the goal of our work is
to construct various rules to check noisy labels and improve
the quality of training set, which can make subsequent
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learning process succeed. To the best of our knowledge, this
setting is of great importance but not studied in previous
MLBU methods, even all bottom-up methods. Furthermore,
we also develop a novel iterative feedback framework and
introduce the proposed inaccurate supervised learning pro-
cess into this framework for better performance achievement.

III. THE PROPSOED METHOD
In this section, the proposed method will be detailed. Firstly,
in SecIII-A, we detail feature descriptor which is used to
describe each image region in our framework. Then, the
proposed inaccurate supervised learning framework is intro-
duced in SecIII-B. Furthermore, we describe the content of
iterative feedback framework in SecIII-C. Finally, smooth-
ness operator is utilized in SecIII-D.

A. FEATURE DESCRIPTOR
Given an input image I , the SLIC algorithm [15] is firstly
utilized to segment it into N superpixels as basic units, which
are defined as S = {s1, s2, . . . , sN . Inspired by [9], we use
pre-trained VGG19 net [16] to extract multiple deep feature
maps from input image to describe its content, which can
better exploit the high-level semantic information of image.
As suggested in [9], the first and last layer of VGG19 net is
utilized to extract deep feature maps from input image. The
total number of the extracted deep feature maps about input
image I is set to M , so that superpixel si (i = 1, 2, . . . ,N ) is
represented by a M -dimensional deep feature vector, where
m-th component is the value of superpixel si in m-th deep
feature map. We define the deep feature of superpixel si to
be di in our method.

B. INACCURATE SUPERVISED LEARNING
For input image I , we aim to learn a saliency classifier to
classify salient object and background by applying machine
learning algorithms. Generally, training set construction
about input image plays an important role in learning pro-
cess. Similar to previous MLBU methods, prior knowledge
is firstly used to provide a coarse indicator for training set
construction. In our framework, three prior maps containing
background-based map, objectness map and global contrast
map are constructed, we compute them as follows:
Background-based map: Background prior defines image

boundary superpixels to be background seeds, then the
saliency value of each superpixel is determined by its feature
contrast with the background seeds. Thus, the background-
based map B = [B1,B2, . . . ,BN ]T is constructed as follows:

Bi =
1
nb

nb∑
j=1

exp(

∥∥∥di, dbj ∥∥∥
θ

) (1)

where Bi is the background-based value of superpixel si, sbj is
j-th boundary superpixel. nb is the total number of boundary
superpixels. di and dbj are the deep features of superpixel si
and boundary superpixel sbj , θ is set to 0.1.

Global contrast map: Global contrast prior assumes that
superpixels with high feature contrast are more likely to
be salient object. Thus, the global contrast map G =

[G1,G2, . . . ,GN ]T is constructed as follows:

Gi =
1
N

N∑
j=1

exp(

∥∥di, dj∥∥
θ

) (2)

where Gi is the global contrast value of superpixel si. N is
the number of superpixels. di and dj are the deep features of
superpixel si and sj, θ is set to 0.1.
Objectness map: Objectness prior is proposed in [31], it

uses five prior cues to compute the likelihood of the given
window containing salient object. Five prior cues contain
multi-scale saliency, color-contrast, edge density, superpixel
straddling and location plus size. Here, we generate directly
Objectness map without any modifications, which is defined
as O = [O1,O2, . . . ,ON ]T , where Oi is the objectness value
of superpixel si.

The visual results of three prior maps are shown in
Fig.2(b)-(d). Then the coarse saliency map U is constructed
by integrating three prior maps, i.e., U = B + O + G;
Fig.2(e) shows the visual result of the coarse saliency map
integrating three prior maps, we can see that it can further
improve performance than any prior map. Based on the coarse
saliency map U , we can select some superpixels as training
samples by setting appropriate threshold. i.e., superpixel si is
selected as positive sample (foreground) if its coarse saliency
value is higher than th + β, and superpixel si is selected as
negative sample (background) if its coarse saliency value is
lower than th − β, where th is the mean value of the coarse
saliency map and parameter β is set to 0.3 in our method. As
a result, a coarse training set is constructed, Fig.2(f) shows
the result of the coarse training set, superpixels covered by
red and blue regions are respectively positive samples and
negative samples. For the first image, it’s observed that an
accurate training set is generated. While we also find that
there are some noisy labels in the coarse training set for some
images, such as the second and third image, these inaccurate
training samples fail to make subsequent learning process
succeed.

Considering that a subset of training set might be misla-
beled due to the limitation of prior knowledge. We propose
to construct various rules to find these inaccurate samples
which might be mislabeled by prior knowledge. To the best
of our knowledge, this setting is rarely studied but of great
importance in MLBU methods. To achieve this goal, we
propose three checking rules to check the label reliability of
each training sample and remove mislabeled samples from
the coarse training set. It’s noticed that the label values of
positive sample and negative sample are respectively set to 1
and 0 in subsequent computation.

1) LOCAL CONSISTENCY RULE
The local relationship between adjacent superpixels is still
an important factor in saliency cues exploitation. Inspired by
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FIGURE 2. The visual results of various steps (a)Image (b)Global contrast map (c)Background-based map (d)Objectness map (e) Coarse saliency map
(f)Coarse training set, red and blue regions refer to positive samples and negative samples (g)Saliency result obtained by ISL (h)Ground Truth.

FIGURE 3. The visual result of three checking rules in the ISL (a)Input
image (b)Coarse training set obtained by prior knowledge (c) Refined
training set obtained by three checking rules.

graph theory [11], two adjacent superpixels are more likely
to be assigned to similar saliency values. In other words,
there is a label consistency between adjacent samples. Thus,
a training sample’s label might be inaccurate if its label is
different from its most adjacent samples’ labels, we name this
kind of sample as ‘‘isolated sample’’, whose label is usually
hard to be detected correctly, such as sample covered by
yellow box in Fig.3(b). Thus, a sample will be removed from
the coarse training set if its most adjacent samples’ labels are
opposite with it. More specifically, given a sample ri, it is
introduced into the following equation:

1
nri

∑
rj∈adj(ri)

∣∣L (ri)− L (rj)∣∣ > th1 (3)

where L (ri) is the label value of ri and adj(ri) is the set of
adjacent training samples of ri, rj is the adjacent training sam-
ple of ri and L

(
rj
)
is its label value. nri is the total number of

the adjacent samples of ri. th1 is set to 0.8.
∣∣L (ri)− L (rj)∣∣ =

0 if they have the same label, 1 otherwise. Equation (3)
means that more than 80% of the adjacent samples have
opposite labels with sample ri, thus, sample ri will be defined
as ‘‘isolated sample’’, we will remove it from training set,
because it is more likely to be inaccurate sample.

2) FEATURE CONTRAST RULE
Generally, there is a feature difference between salient object
and background, this kind of feature difference is still existed
even if salient object and background have similar features.
Thus, we can infer that there is also feature difference
between positive samples set and negative samples set. In

other words, a sample should share more similar features with
samples which have the same label with it. Based on above
observation, given a training sample ri, it is introduced into
the following equation

1
na

∑
rj∈SC

exp(−‖ci−cj‖
θ

)

1
nb

∑
rj∈DC

exp(−‖ci−cj‖
θ

)
< 1 (4)

where SC is the set of samples which have the same label with
sample ri. DC is the set of samples which have the opposite
label with sample ri. ci and cj are the deep features of sample
ri and rj. na and nb are the total number of samples in the
set SC and DC , parameter θ is set to 0.1. Training sample
ri is more similar with samples in the set DC if it satisfies
equation(4), i.e., it is more similar with samples which have
opposite label with it. Thus, we consider that sample ri might
be inaccurate and remove it from the coarse training set.

3) SPATIAL COMPACTNESS RULE
Different from the first two rules, spatial compactness rule
focus on the label reliabilities of all positive samples. Gener-
ally, salient object has compactness spatial structure instead
of wide spatial distribution. It means that positive samples
tend to be clustered for each other in most images. Thus,
a positive sample is considered to be unreliable if it is far
from most positive samples, such as samples covered by
black boxes in Fig3(b), they will be removed from the coarse
training set. Specifically, given a positive sample ri, it is
introduced into the following equation:

‖p (ri)− w_center‖ > th2 (5)

where

w_center =
1
Np

∑Np

j=1
(U (rj)× p(rj)) (6)

In equation(5), ri is i-th positive sample and p (ri) is the
position coordinate of ri (The position coordinate of a sample
is the mean position coordinate of pixels within this sample),

111486 VOLUME 8, 2020



Y. Pang et al.: Inaccurate Supervised Saliency Detection Based on IF Framework

w_center is the weighted position center of all positive sam-
ples, which is computed in equation(6), where rj is j-th posi-
tive sample, p(rj) is the position coordinate of sample rj.U (rj)
is the coarse saliency value of rj and Np is the total number of
positive samples. It’s noticed that theweighted position center
w_center is more likely to be the center of salient object,
such as the green point in Fig.3(b). Instead of computing
directly the mean position center of all positive samples,
each positive sample has a weight in the weighted position
center computation. Because positive samples are defined as
superpixels whose coarse saliency values are higher than a
unified threshold th + β in our method, i.e., various positive
samples might have different coarse saliency values even if
they all have positive labels. We consider that the weighted
position center tends to near positive samples with high
coarse saliency values, because they are more reliable. Based
on observation that salient object usually has compactness
spatial structure, positive sample ri will be removed from the
coarse training set if it satisfies equation(5), because it is far
from the weighted position center which is more likely to near
most reliable positive samples, such as samples covered by
black boxes in Fig.3(b). They are more likely to be inaccurate
samples.

In summary, given a training sample ri, above three rules
are utilized to check its label reliability. For one thing, sample
ri will be introduced into all three rules if it is positive sample.
We consider that positive sample ri might be inaccurate as
long as it satisfies any one of three rules. Thus, there is not
the priority between three rules. For the other, sample ri will
be introduced into the first two rules if it is negative sample.
Also, negative sample ri might be inaccurate as long as it
satisfies any one of the first two rules. After removing all
inaccurate samples from the coarse training set, so that an
optimized training set is generated.

Based on the optimized training set, we aim to learn
a saliency classifier to predict each superpixel to be
foreground/background by applying machine learning algo-
rithms. Here, simple support vector machine (SVM) is uti-
lized due to its effectiveness in classification problem. Based
on the optimized training set, SVM based saliency classifier
is learned as follows:

min
w,z

1
2
‖w‖2

s.t. L (ri)×
(
wT ci + z

)
≥ 1, i = 1, . . . , n (7)

where L (ri) is the label value of sample ri, ci is the feature
of sample ri. w and z are the parameters of saliency classifier.
Actually, equation(7) is the classical SVM solution formula,
the parameterw and z of saliency classifier can be obtained by
solving above function, then saliency classifier is generated
to predict each superpixel. As a result, we can obtain a binary
saliency map, in which each superpixel’s saliency value is
1(foreground) or 0(background). The visual result of the
proposed ISL is shown in Fig.2(g).

C. ITERATIVE FEEDBACK CLASSIFICATION FRAMEWORK
The proposed ISL can achieve better saliency result by
refining the quality of the coarse training set. However, the
ISL still rely on the performance of the coarse training set
obtained by prior knowledge. In other words, the ISL can
further refine saliency result on the premise that the coarse
training set is coarse and imprecise (i.e., most samples are
accurate, while a small subset is mislabeled, such as the
second image in Fig.2). However, the result of ISL is far
from satisfaction when most samples in the coarse training
set all indicate false labels (such as the third image in Fig.2).
Based on above observation, different from conventional
classification framework using directly training set to learn a
saliency classifier to implement classification task. We study
a novel iterative feedback (IF) framework and introduce the
ISL process into the IF framework for more accurate saliency
result.

We list the framework of the IFISL in Algorithm.1. The
IFISL is an iterative mechanism, the ISL process is imple-
mented at each iteration. i.e., an iteration contains four
stages: the coarse training set construction, mislabeled sam-
ples remove, saliency classifier construction, saliency result
generation. The coarse training set at t + 1-th iteration is self
adjusted according to the feedback of saliency result after
t-th iteration. So that an iterative feedback mechanism is
constructed, in which saliency result is optimized gradually
to an optimal state.

Next, the construction of the coarse training set at t + 1-th
iteration in the IFISL is detailed, we firstly define the coarse
saliency map at t + 1-th iteration to be U t+1, which is
computed as follows:

U t+1
=

∑
P⊂{B,C,G}

RS(P)× P (8)

where

RS (P) = 1−
1
N

N∑
j=1

exp(
∣∣Pi − S ti ∣∣) (9)

where the coarse saliency map at t+1-th iterationU t+1 is the
weight summation of three prior maps. P refers to prior map,
i.e., P ⊂ {B,O,G}, where B is the background-based map, O
is the objectness map andG is the global contrast map. RS(P)
is the weight of prior map P, it is computed by equation(9),
where S t is the saliency result after t-th iteration and S ti is the
value of superpixel si in S t . Pi is the value of superpixel si in
prior map P, N is the total number of superpixels. Actually,
higher RS(P) indicates that prior map P and saliency result
after t-th iteration S t are more similar, thus, we will improve
its weight in the construction of the coarse saliency map at
t + 1-th iteration (i.e., U t+1). It’s noticed that the weight
of each prior map is 1/3 in the initial coarse saliency map
construction, i.e., when t = 1. By setting adaptive threshold
to the coarse saliency map at t + 1-th iteration (it is defined
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FIGURE 4. Saliency results after different iteration times in the IFISL
(a)Image (b) T = 1 (c) T = 2 (d) T = 3 (e) T = 4 (f) Ground Truth.

in the first paragraph of SecIII-B), we can obtain the coarse
training set at t + 1-th iteration.

As a result, the coarse training set will be gradually refined
by self adjusting the weight of three prior knowledge accord-
ing to the feedback. While three checking rules are also
utilized after the coarse training set construction of each
iteration for more accurate training set acquirement. So that
saliency classifier can be optimized gradually to generate sta-
ble saliency result. Based on experimental analysis, iteration
times T is set to 4 in our method. Fig.4 shows saliency results
after different iteration times. We can see that saliency result
is optimized gradually to optimal state with iteration. It’s
noticed that saliency result after the first iteration corresponds
to saliency result obtained by ISLwithout IF.We can find that
it is further refined by the proposed IF framework.

Algorithm 1 The Flow of the Proposed IFISL
Initialization: t = 1, T = 4
For t ≤ T
1: if t = 1
2: InitializeU t by giving the sameweight to each prior map
3: else
4: Compute U t according to equation(8)
5: end
6: Obtain the coarse training set Rt based on U t

7:Obtain the optimized training set Rto according to the
proposed three rules
8: Based on Rto, learn saliency classifier according to equa-
tion(7)
9: Obtain saliency map S t , in which each superpixel is
predicted to be foreground/background by learned saliency
classifier.
10: t = t+ 1
end
Output: ST

D. SMOOTHNESS OPERATOR
Finally, we use superpixel-level smoothness function to fur-
ther smooth saliency map obtained by IFISL. The affin-
ity matrix W εRN×N is firstly constructed to exploit the

FIGURE 5. The visual result of smoothness operator (a) Input image (b)
Saliency map obtained by IFISL (c)Saliency map obtained by smoothness
operator (d) Ground Truth.

relationship between superpixels, where element wij is com-
puted as follows:

wij =

{
exp

(
−
‖di−dj‖

θ

)
if sjεadj(sj)

0 otherwise
(10)

where wij is the weight between superpixel si and sj if they
are neighbors for each other, 0 otherwise. adj(si) is the set of
neighbors of superpixel si, di and dj are the deep features of
superpixel si and sj, parameter θ is set to 0.1.

Then, saliency map obtained by IFISL is defined to be
X = [x1, x2, . . . ,xN ]T , where xi is the value of superpixel
si in saliency map X . Then, smoothness saliency map Y =
[y1, y2, . . . ,yN ]T is computed according to Y = WX , where
yi is the value of superpixel si in the final smoothness saliency
map Y . i.e., the saliency value of each superpixel is deter-
mined by the weight summation of its adjacent superpixels’
saliency values in smoothness operator. The visual result of
smoothness operator is shown in Fig.5, it’s observed that
salient regions are better highlighted and background noises
are further suppressed by smoothness operator.

IV. EXPERIMENTS
The proposed method is compared with other 13 state-of-
the-art methods, includingMLSP[17], TLLT[18], BSCA[19],
LDS[20], MST[21], MAP[22], AE[23], SMD[24], HCA[9],
LEGs[7], S-CNN[8], FCB[25] and DGLS[6]. Where LDS,
MST and DGLS are machine learning based bottom-up
(MLBU) methods. HCA, LEGs, S-CNN and AE exploit
saliency cues by utilizing CNN based deep learning frame-
work. MLSP, TLLT, BSCA and MAP belong to graph-
based optimization methods. In addition, FCB and SMD
also achieve outstanding performances in recent years. All
saliency maps are obtained by running codes or directly
provided by authors. It’s noticed that we only can obtain
saliency maps about HCA, AE, LEGs and S-CNN on several
datasets instead of all datasets, because authors only provide
their results on several datasets.

All methods are compared on three benchmark datasets,
including ECSSD[26], DUT-OMRON[11] and SOD[27].
More specifically, ECSSD dataset is composed of 1000
images, most of which are natural scenes, such as peo-
ple, animal, tree and so on. SOD dataset is composed of
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FIGURE 6. Parameters analysis (a) Scale parameter N analysis (b) Parameter β analysis (c) Parameter th1 analysis (d) Parameter th2 analysis
(e)Iterative times T analysis.

300 images and more complex than ECSSD, salient object
and background are hard to be separated in most images
of SOD dataset. In contrast, DUT-OMRON dataset con-
tains 5172 images, which have rich semantic information,
existing works are hard to achieve top performances on the
DUT-OMRON dataset. Above three datasets are very classi-
cal in saliency detection field.

There are three evaluation metrics in our experiments,
including Precision-Recall (PR) curve, F-measure score and
Mean Absolute Error (MAE) value. PR curve is obtained by
comparing the ground truth and binary map using different
thresholds from 0 to 255 to segment saliency map. F-measure
score is an overall evaluation metric incorporating preci-
sion rate and recall rate. As supplement, MAE value is also
introduced into our experiments, it evaluates performance
by computing directly the mean difference between saliency
map and the ground truth.

A. PARAMETERS ANALYSIS
In order to detect intuitively the performances of the pro-
posed method when various parameters are set to different
values. Two quantitative metrics are used to evaluate perfor-
mance, i.e., F-measure score and MAE value. In addition,
we only test parameters sensitiveness experiments on the
SOD dataset, then the best parameters are applied to other
datasets. Experimental results are shown in Fig.6. Firstly, our

method is superpixel-level method, thus, scale parameter N
is very important for the final result. The performance of the
proposed method when scale parameter N is set to different
values is shown in Fig.6(a), it’s observed that the best N is
set to 300. Secondly, parameter β is key parameter in the
coarse training set construction, we can find that the best
performance is obtained when parameter β is set to 0.3 by
observing Fig.6(b). In addition, Fig.6(c) shows the analysis
result of threshold parameter th1, it’s observed that the perfor-
mance when th1 = 0.8 is superior obviously to other values.
Furthermore, it’s surprised to find that the best threshold
parameter th2 is set to 0.4 in Fig.6(d). Finally, we test the
best iteration times of the proposed method, which play an
important role for the final performance improvement. We
can see that the iteration times T is set to 4 in Fig.6(e).
It’s noticed that the proposed method when T = 1 is an
inaccurate supervised learning framework without iteration
feedback mechanism, we are surprised to find that it makes a
great contribution for the final performance improvement.

B. ABLATION STUDY
To validate the effectiveness of each step in our method,
ablation experiments are tested, it’s noticed that the selection
of evaluation metric and dataset is the same with parameter
analysis experiments. Quantitative results are shown in Fig.7.
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FIGURE 7. The result of ablation experiment, ‘‘rule1’’ is local consistency rule, ‘‘rule2’’ is feature contrast rule and ‘‘rule3’’ is spatial compactness rule.
‘‘SM’’ refers to smoothness operator. ‘DL’, ‘DT’ and ‘SVM’ represent respectively Dictionary Learning, Decision Tree and Support Vector Machine.

Firstly, the proposed method considers that training labels
obtained by prior knowledge might be inaccurate and focuses
on constructing three checking rules to check the label reli-
abilities of training samples then remove these samples with
noisy labels, so that a more accurate training set is generated
to make subsequent learning process succeed. Two figures
in Fig.7 show that three checking rules all make contribu-
tions for the final performance improvement, especially the
local consistency rule and feature contrast rule (rule1 is local
consistency rule, rule2 is feature contrast rule and rule3 is
spatial compactness rule). Also, ‘‘without all three rules’’
indicates that there is not label checking process at each
iteration while others are unchanged. We can find that three
proposed checking rules play important roles in the whole
framework, it demonstrates the rationality of the proposed
ISL. Furthermore, we are surprised to find that the final
smoothness operator also contributes to the final performance
improvement. In our method, the classical SVM algorithm is
used in the construction of saliency classifier. Furthermore,
the influence of saliency classifier selection is also validated,
various saliency classifiers are utilized in our framework,
including dictionary learning (DL), decision tree (DT) and
support vector machine (SVM). i.e., we use DL or DT to
replace SVM to construct saliency classifier while other
components are unchanged in our framework. Experimental
result is also shown in Fig.7, the performance using SVM
is superior obviously to DL and DT on the premise that the
other components of the proposed method are invariable. As
seen from Fig.7, we also find that the influences of three
proposed checking rules are larger obviously than subsequent
saliency classifier selection (i.e., machine learning algorithms
selection) in the whole framework. This demonstrates the
necessity of the proposed method.

C. TRAINING SET SIZE AND OVERFITTING PROBLEM
We do not set the size of training set in the proposed frame-
work. Instead, training set is constructed by setting adaptive

threshold, because the number of reliable samples we can
obtain might be different in various images; e.g., more train-
ing samples can be generated for the first image in Fig.2, in
contrast, we only can obtain relatively less training samples in
the second image of Fig.2. Generally, the size of training set
might be determined by salient object scale, image content
complexity and so on. Thus, for MLBU methods, it’s hard
to set a fixed training set size for an image in advance. In
addition, overfitting problem also needs to be analyzed due
to the existence of learning process. Although we do not set a
fixed training set size for each image, based on experimental
analysis, we find that the proportion of training samples per
image is about 55%, which is a reasonable range for avoiding
the overfitting problem of learning process. Furthermore,
three proposed checking rules can reduce effectively the noisy
labels of training set by exploiting the relationship between
samples. It’s no doubt that this operator also can further avoid
the overfitting problem.

D. COMPARISON EXPERIMENTS
The comparison results of all methods about F-measure
score and MAE value are listed in Table.1 (It’s noticed
that lower MAE value indicates better performance and
higher F-measure score refers to better performance. In addi-
tion, bold words represent the best values). It’s seen from
Table.1, it’s surprised to find that the proposed method
achieves the best performance on all datasets, especially
on the DUT-OMRON dataset, superiority is the largest. As
MLBU methods, LDS, MST and DGLS are all inferior
to the proposed method, it illustrates the effectiveness of
the proposed iterative feedback based inaccurate supervised
learning framework (IFISL). Furthermore, we also find that
the proposed method also outperforms AE, HCA, LEGs and
S-CNN, which are outstanding deep neural network (DNN)
based methods. Furthermore, Fig.8 shows the comparison
results of all methods about PR curve, we can see that the
proposed method is superior to other methods, especially
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FIGURE 8. The PR curve comparison results of all methods on three datasets (a) ECSSD (b)DUT-OMRON (c)SOD.

TABLE 1. The quantitative comparison results on three datasets (Bold words refer to the best values, ‘-’ indicates that we cannot obtain the saliency
results of corresponding methods).

severalMLBUmethods. Also, AE andHCAhave outstanding
performances, which are still inferior to our method. Three
datasets are composed of numerous complex scenes, some
of which have rich semantic information, top performances
demonstrate the superiority of the proposed method.

Fig.9 shows the visual results of all methods on some
example images, it’s surprised to find that the proposed
method can capture effectively the contrast between salient
object and background. For the first two images which have
rich features, it’s observed that the proposed method can
highlight completely salient region, the each component of
salient object can be detected even if it is composed of
multiple regions with different features. For the third image
where salient object and background share similar features,
the proposed method still can separate correctly salient object
and background. Considering that the background prior is
utilized in the coarse saliencymap construction, we also show

the performance of the proposed method when salient object
touches image boundary in the fourth image, a good result is
still generated by our method. We can infer that foreground
superpixels touching image boundary are still highlighted by
our method even if they are mistaken for background in the
coarse saliencymap. Furthermore, the last image is a very dif-
ficult image for existing works, where a part of salient object
is very similar with background while salient object has rich
features. It’s surprised to find that the proposed method still
can detect correctly salient object. For above images, other
comparison methods lose easily effectiveness, some even
mark falsely salient object. Visual comparison results further
validate the superiority of the proposed method.

E. RUNTIME ANALYSIS
Runtime analysis experiments are tested on the SOD dataset
for convenience. The average running time per image on
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FIGURE 9. The visual comparison results on several images. (a)Input image (b)Ground Truth (c)BSCA (d) TLLT (e) DGLS (f) FCB (g) LPS (h) MST (i) LEGs
(j)HCA (k)SMD (l)MLSP (m)Ours.

the SOD dataset is 1.54s. Actually, deep feature extraction
spends averagely 0.79s on each image, which is the most
time-consumingwork. Four iterations are implemented in our
method, each iteration in the IFISL spends averagely 0.17s.
Finally, 0.07s is spent by smoothness operator. In summary,
the proposed method achieves outstanding performance in
efficiency.

V. CONCLUSIONS
Based on observation that training set construction in existing
MLBUmethods usually rely on prior knowledge, which loses
easily effectiveness in some complex scenes. In this paper,
we present an iterative feedback based inaccurate supervised
learning framework for saliency detection. Given an input
image, an inaccurate supervised learning (ISL) framework is
proposed, which contains the coarse training set construction,
label reliability checking, saliency classifier construction and
saliency result prediction. Comparing with previous works,
the proposed checking rules can effectively refine the coarse
training set andmake subsequent learning process succeed, so
that a better saliency map is generated by our ISL. Further-
more, we introduce the ISL into a novel iterative feedback
(IF) framework. At each iteration, an ISL process is imple-
mented, and the coarse training set at certain iteration is self
adjusted according to the feedback of saliency result after last
iteration. As a result, saliency result is optimized gradually to
a stable state with iteration. Finally, smoothness operator is
also utilized to further smooth saliency map. Experimental
results on three datasets demonstrate adequately the superi-
ority of the proposed method.
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