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ABSTRACT In this paper, a new full-speed-range position estimation method for the interior permanent
magnet synchronous machine (IPMSM) is proposed. This method is designed for high power traction motor
drives. In such application, variable speed operation from zero to high speed is desired. The objective of
this paper is to obtain smooth position estimation in full speed range to guarantee high reliability of the
motor control system. Firstly, a quadratic cost function based on the stator voltage equations is constructed.
The rotor position in the full speed range is obtained by numerically solving an optimization problem. After
obtaining the rotor position, the motor speed is then obtained through a phase-locked loop observer. In such
a way, only one variable in the optimization problem has to be solved. Therefore, the numeric calculation
burden is greatly reduced. The convexity of the quadratic cost function considering sampling noise as well
as parameter mismatch is discussed in detail. Thus, the solvability and accuracy of the estimation result is
guaranteed. At last, experiments on a traction motor are conducted to verify the effectiveness of the proposed
position estimation method.

INDEX TERMS IPMSM, position sensorless control, Newton method, full speed range.

I. INTRODUCTION
Due to its features of light weight, low volume, high effi-
ciency, high torque density and wide operating speed range,
Interior Permanent Magnet Synchronous Machine (IPMSM)
is more and more preferred as the traction motor for auto-
mobile and railway application. To drive the IPMSM effi-
ciently, the information of rotor position is required by the
motor drive. The rotor position is often obtained by a posi-
tion sensor mounted on the machine’s rotor shaft. How-
ever, the hash environment of the automobile and railway
application, the vibration of the motor and mechanical sys-
tem increase the fault rate of the position sensor. Therefore,
the position estimationmethod which doesn’t use the position
sensor is required. The estimated position can be used either
to diagnose the health status of the rotor position sensor or to
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be fed into the motor control algorithm if fault occurs on the
position sensor.

The commonly used position estimation methods for
IPMSM can be divided into to two categories. One category is
based on the extended back-electromotive force (Back-EMF),
such as the Kalman filter method [1], [2], the model reference
adaptive method [3]–[5], the observer method [6]–[9], and
the artificial intelligence (AI) based method [10], [11]. Since
Back-EMF is small and difficult to be observed when the
rotating speed is low, these methods are only effective in the
medium speed and high speed range. Another category is
based on the saliency effect of the IPMSM. The inductance of
the IPMSM changes according to the rotor position. High fre-
quency voltage or current is injected into the stator to observe
the rotor position [12]–[15]. Sometimes, the PWM voltage
can also be taken as a kind of high frequency signal [16],
[17]. This category of position estimation method is often
applied at zero and low speed, when the Back-EMF is small.
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However, this method uses high pass filters and low pass
filters to extract useful information. Therefore, the dynamic
response is limited. Moreover, additional high frequency sig-
nal has to be injected into the stator, which causes additional
losses and noises. Therefore, if the motor speed raises to the
extent that the Back-EMF is adequately large, this category
of position estimation method is then not preferred.

Normally, for the position estimation of IPMSM, the two
estimation methods have to be used at the same time.
A saliency effect based method is applied at zero and low
speed. An extended Back-EMF based method works at
medium and high speed [18]–[22]. A switching method has
to be designed if the motor speed varies from low to high, or
goes from high to low. If the motor speed varies often, as the
traction motor in the railway application, the two estimation
methods have to switch pretty often. The switching of the two
independent method increases the complexity of the control
algorithm. The switching may also cause oscillations on the
estimated position and speed because both of the methods
need initialization.

To solve the estimation method switching problem, a uni-
fied position estimation method for IPMSM in the full speed
range is proposed in [23], [24]. This method obtains the rotor
position and speed by solving an optimization problem using
theNewtonmethod at both low speed and high speed. No high
pass or low pass filters are needed. No method switching is
required. Therefore, the estimated position and speed during
speed variation are smooth. However, the Hessian matrix
has to be obtained by this method, which is computational
complex. This method iterates both the position and speed at
the same time while solving the optimization problem, thus
increases the calculation burden. High performance micro-
controller is required by this method. In [25], another opti-
mization method with only one variable is formulated. Thus,
obtaining the Hessian matrix is avoided and the calculation
burden is reduced. However, the analysis on the convexity of
the problem, the sensitivity on sampling noise and parameter
mismatch are not addressed in detail.

In this paper, based on [25], an improved unified posi-
tion estimation method for IPMSM with reduced numeric
calculation burden is proposed. Like [23]–[25], this paper
also turns the position estimation into solving an optimiza-
tion problem. However, the proposed method only iterates
the rotor position while solving the optimization problem.
The motor speed can be estimated through a phase-locked
loop (PLL) observer. In this way, the calculation burden of
the micro-controller is reduced. Detailed analysis on con-
vergence of the problem, sensitivity of sampling noise and
parameter mismatch are provide to prove the feasibility of the
proposed method. The effectiveness of the proposed position
estimation method is then experimentally verified on a tested
traction motor.

This paper is organized as follows: In Section II, the math-
ematical model of IPMSM used in this paper is described.
Then, the proposed unified position estimation method,
as well as the convexity examination under different cases are

presented in Section III. The sensitivity of sampling noise and
parametermismatch are also discussed in this section. Finally,
the efficient method of solving the optimization problem is
given. In Section IV, the effectiveness of the proposed posi-
tion and speed estimation method is experimentally tested
under different speed and load. At last, conclusions are drawn
in Section V.

II. MATHEMATICAL MODELING OF IPMSM
In order to demonstrate the proposed position estimation
method, the model of IPMSM used in this paper have to be
presented first.

The voltage equation of the IPMSM in the αβ stationary
coordinate is given as[

uα
uβ

]
= RS

[
iα
iβ

]
+ La (θe)

[
piα
piβ

]
+ ωeLb (θe)

[
iα
iβ

]
+ωeψf

[
− sin (θe)
cos (θe)

]
(1)

and
La (θe) =

[
L1 + L2 cos(2θe) L2 sin(2θe)
L2 sin(2θe) L1 − L2 cos(2θe)

]

Lb (θe) =2 L2

[
− sin(2θe) cos(2θe)
cos(2θe) sin(2θe)

] (2)

where uα , uβ , iα and iβ are the voltages, currents in
the αβ coordinate respectively. RS is the stator resistance.
L1=

(
Ld + Lq

)
/2 and L2=

(
Ld − Lq

)
/2, where Ld and Lq

are the stator inductances in the dq-axis, respectively. p is the
differential operator and ωe is the electrical angular velocity
of the motor. θe and ψf are the electrical position of the rotor
and permanent magnet flux linkage, respectively.

In order to implement digital control and estimation, (1) is
then transformed into discrete domain by using the forward
Euler method. The voltage equation of the IPMSM in discrete
domain in the αβ stationary coordinate is given as:

uαβ (k)

= RS iαβ (k)+ La (θe (k))
1iαβ (k)

T

+ωe (k)Lb (θe (k)) iαβ (k)+ ωe (k) ψf

[
− sin (θe (k))
cos (θe (k))

]
1iαβ (k)

T
= ωe (k)

[
0 −1
1 0

]
iαβ (k)+

iαβ (k)
T

−

[
cos (ωeT ) − sin (ωeT )
sin (ωeT ) cos (ωeT )

]
iαβ (k − 1)

T
(3)

where uαβ =
[
uα (k) uβ (k)

]T and iαβ =
[
iα (k) iβ (k)

]T rep-
resent the voltage and current in the αβ stationary coordinate,
respectively. k donates the time step and T is the sampling
period.

III. THE PROPOSED UNIFIED POSITION ESTIMATION IN
FULL SPEED RANGE
Based on the mathematical model presented above, this paper
presented a unified position estimation method in full speed
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range. Firstly, since (3) is effective at both low speed and
high speed, an optimization problem related to the rotor
position is constructed based on (3). Then the convexity of the
cost function is examined under different cases. Later, some
details of the optimization problem, such as sampling noise
sensitivity, injected high frequency signal at zero and low
speed, as well as parameter sensitivity are presented. At last
the Newton method is implemented to solve the optimization
problem to obtain the rotor position.

A. CONSTRUCTION OF THE OPTIMIZATION PROBLEM
A cost function G is constructed based on (3):

fe
(
θ̂e (k) , ω̂e (k)

)
= uαβ (k)− RS iαβ (k)

−La
(
θ̂e (k)

) 1iαβ (k)
T

− ω̂e (k)Lb
(
θ̂e (k)

)
iαβ (k)

−ω̂e (k) ψf

 sin
(
θ̂e (k)

)
− cos

(
θ̂e (k)

)
×G

(
θ̂e (k) , ω̂e (k)

)
=

∥∥∥fe (θ̂e (k) , ω̂e (k))∥∥∥2 (4)

where θ̂e and ω̂e are the estimated value of the position
and electrical angular velocity. ‖·‖ is the norm operation.
Equation (4) shows that there are only two unknown param-
eters in G. If the IPMSM parameters are accurately known
and the sampling of voltage and current are accurate, then,
the value of the cost function will be zero when the estimated
position and velocity equal to their actual values.

Based on above points, the position and velocity estimation
can be obtained by solving G = 0. However, the process
of directly solving G = 0 is complicated and is difficult to
implement. In order to simplify the solution, the problem can
be transformed to an optimization problem and then is solved
by nonlinear optimization algorithm. The estimated position
and velocity values that make G the minimum are the finally
estimated position and velocity of the IPMSM:

min
θ̂e(k),ω̂e(k)

G
(
θ̂e(k), ω̂e(k)

)
(5)

Moreover, if the estimated position θ̂e(k) is obtained,
the estimated angular speed ω̂e(k) could be obtained by feed-
ing θ̂e(k) into a PLL observer. If the dynamic of the observer
is fast enough, there will be ωe (k) ≈ ω̂e (k). In this case,
the optimization could be simplified as:

min
θ̂e(k)

G
(
θ̂e(k), ωe(k)

)
(6)

In (6), only one variable has to be optimized, which greatly
reduces the computation burden of the digital controller.

B. PLL OBSERVER FOR SPEED ESTIMATION
Since the rotor position and angular speed are not indepen-
dent, the ωe needed by (6) could be estimated from a simple

PLL observer. In this way, the computation burden of solving
the optimization problem is reduced.

FIGURE 1 shows the structure of the proposed rotor
position and angular speed estimation method. The position
estimated by the PLL observer θ̂PLL(k) is compared with
the position estimated by solving the optimization problem
θ̂e(k). A PI regulator then takes the difference to calculate
the estimated angular speed ω̂e(k). The rotor position of the
next sampling step θ̂PLL(k + 1) is predicted with a simple
integrator. θ̂PLL(k + 1) can also be used as the initial point
for solving the optimization problem at next sampling period.
Since the sampling frequency is usually high, angular speed
changes relative slow. Therefore, θ̂PLL(k + 1) is very close to
the optimal solution θ̂e(k + 1) of the next step. In such a way,
the iteration step could be reduced. It has to be noted that,
since the estimated angular speed ω̂e(k) is only known after
θ̂e(k) is obtained, ω̂e(k−1) is used instead of ω̂e(k) for solving
the optimization problem. If the angular speed changes slow
with regard to the sampling frequency, the replacement is
feasible.

The performance of the PLL observer is determined by its
transfer function and it is easy to be designed using conven-
tional linear control theory.

C. CONVEXITY EXAMINATION OF THE COST FUNCTION
The optimization problem can be solved only if the the cost
function is at least locally convex. Therefore, before apply-
ing the proposed method, the convex examination has to be
performed.

1) ZERO AND LOW SPEED
If the angular speed is as low as zero, the term associated
with ωe in (4) could be neglected. The cost function could be
rewritten as

fe
(
θ̂e (k) , 0

)
= uαβ (k)− RS iαβ (k)

−La
(
θ̂e (k)

) 1iαβ (k)
T

G
(
θ̂e (k) , 0

)
=

∥∥∥fe (θ̂e (k) , 0)∥∥∥2 (7)

substituting (3) into (7), there is

G
(
θ̂e (k)

)
=

∥∥∥∥(La (θe (k))− La (θ̂e (k))) 1iαβ (k)T

∥∥∥∥2 (8)

It is clear that if the term1iαβ (k) is zero,G
(
θ̂e (k)

)
is always

zero. Thus, the optimization problem can’t be solved. If the
term 1iαβ (k) is not zero, G

(
θ̂e (k)

)
will be zero if θ̂e = θe,

thus the optimization is solved. In order to keep the term
1iαβ (k) not being zero, high frequency current has to be
injected into the stator when the motor speed is low or zero.
After the current injection, (8) becomes

G
(
θ̂e (k)

)
= 4L22sin2

(
θ̃e (k)

)
1iαβT1iαβ

/
T 2 (9)

where

θ̃e (k) = θe (k)− θ̂e (k) (10)
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FIGURE 1. Structure of the proposed rotor position and angular speed estimation method.

It is clear that (9) is a periodic function with period π .
With any estimated rotor position θ̂e, G

(
θ̂e (k)

)
is locally

convex in the range [θe − π/2 + nπ, θe + π/2 + nπ ],
n = ±1,±2,±3, . . ., thus the optimization could be solved.
And the result will be θ̂e = θe, or θ̂e = θe + nπ . Therefore
the correct solution of the θ̂e(k) can only be obtained if the
initial value of θ̂e(k) in the iteration is ±π/2 close to θe(k).
Otherwise, θ̂e(k) will converge to another solution which is π
away from the θe(k). In this paper, the conventional polarity
determination is performed to determine the initial value of
the θ̂e(k) in the iteration.

2) MEDIUM AND HIGH SPEED
If the motor speed goes higher, ωe is not zero. The value
of G

(
θ̂e(k), ωe(k)

)
will change according to θ̂e(k) even

if no additional high frequency current is injected into
the stator winding. Then, substituting (3) into (4), there
will be

fe
(
θ̂e (k) , ωe (k)

)
= L2

[
˜cos (2θe (k)) ˜sin (2θe (k))
˜sin (2θe (k)) − ˜cos (2θe (k))

]
1iαβ (k)

T

+2L2ωe (k)

[
− ˜sin (2θe (k)) ˜cos (2θe (k))

˜cos (2θe (k)) ˜sin (2θe (k))

]
iαβ (k)

+ωe (k) ψf

− sin (θe (k))+ sin
(
θ̂e (k)

)
cos (θe (k))− cos

(
θ̂e (k)

) 
×G

(
θ̂e (k) , ωe (k)

)
=

∥∥∥fe (θ̂e (k) , ωe (k))∥∥∥2 (11)

where

˜sin (2θe (k)) = sin (2θe (k))− sin
(
2θ̂e (k)

)
˜cos (2θe (k)) = cos (2θe (k))− cos

(
2θ̂e (k)

)
(12)

For most motors, L2 is usually small, and the back-EMF
is the most significant term in fe

(
θ̂e (k) , ωe (k)

)
at high

speed. Therefore, if the term associated with L2 is neglected,

G
(
θ̂e (k) , ωe (k)

)
becomes:

G
(
θ̂e (k) , ωe (k)

)
≈

∥∥∥∥∥∥ωe (k) ψf
− (sin (θ (k))− sin

(
θ̂e (k)

))
cos (θ (k))− cos

(
θ̂e (k)

) ∥∥∥∥∥∥
2

=
(
2ωe (k) ψf

)2 sin2 ( θ̃e (k)
2

)
(13)

It is shown from (13) that G
(
θ̂e (k) , ωe (k)

)
is a periodic

function with period 2π and is convex between [0, 2π ].
Therefore, the rotor position could be obtained at any θe by
solving the optimization function.

FIGURE 2. The waveform of G
(
θ̂e

(
k
)
, ωe

(
k
))

at position π/2 rad and
rated speed.

FIGURE 3. The waveform of G
(
θ̂e

(
k
)
, ωe

(
k
))

at position π/2 rad and
10% of the rated speed.

FIGURE2, FIGURE3 show the value ofG
(
θ̂e (k) , ωe (k)

)
calculated by (11) and (13) at the rated speed and 10% of the
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rated speed with rated current. It is shown that the shapes
of (4) at different speed are all convex in the range [0, 2π ).
And there is little difference between the results from (11)
and (13). Thus, the rotor position could be estimated by
solving the optimization problem. In addition, the maximum
value of G increases as the speed increases. This feature
indicates that this method has stronger robustness at higher
speed.

3) LOW SPEED
At low speed, the situation becomes complex. Both Back-
EMF and current injection exits. None of the terms in (11)
could be neglected, which makes the analyzing complex.
To analyze the cost function, (11) is Taylor expanded around
θe:

G
(
θ̂e (k) , ω̂e (k)

)
= A (θe (k)) θ̃e(k)2 (14)

where A (θe (k)) is the slope of G
(
θ̂e (k) , ωe (k)

)
at θe (k):

A (θe (k))

=

∥∥∥∥∥∥∥∥∥∥∥∥

4L2ωe (k)
[
cos (2θe (k)) sin (2θe (k))
sin (2θe (k)) − cos (2θe (k))

]
iαβ (k)

+2L2

[
sin (2θe (k)) − cos (2θe (k))
− cos (2θe (k)) − sin (2θe (k))

]
1iαβ (k)

T

+ψf ωe (k)
[
cos (θe (k))
sin (θe (k))

]

∥∥∥∥∥∥∥∥∥∥∥∥

2

(15)

FIGURE 4 shows the waveform of G
(
θ̂e (k), ωe (k)

)
cal-

culated from (11) and (14) at position π/2 rad with 10%
and 2% of the rated speed. Where FN is the rated working
frequency. It is shown from both (14) and FIGURE 4 that
G
(
θ̂e (k) , ωe (k)

)
is locally convex near θe (k) with any

speed and current as long as A (θe (k)) is not zero. Therefore
the rotor position could be obtained by solving the optimiza-
tion problem as long as the initial value of θ̂e (k) is close
to θe (k). This condition could be easily satisfied as long
as the correct rotor position is obtained at zero speed while
starting up.

FIGURE 4. The waveform of G
(
θ̂e

(
k
)
, ωe

(
k
))

at position π/2 rad and
10% and 2% of the rated speed.

D. SAMPLING NOISE SENSITIVITY
The analyze above are all based on ideal situation, which
means all the sampled variable and motor parameters are

assumed accurate. However, in real implementation, there
may be noise in the sampled variables. The process of current
sampling and PWM output could bring noise to the iαβ and
uαβ , respectively. In voltage equation (1), the current noise
will eventually turn to voltage noise. Therefore, the sampling
noise on current and voltage could be expressed by a lumped
noise voltage 1uαβ =

[
1uα1uβ

]T . The error caused by
discretization from (1) to (3) could be also included in1uαβ .

1) ZERO SPEED
Considering 1uαβ , (8) becomes:

G
(
θ̂e (k)

)
=

∥∥∥∥(La (θe (k))−La (θ̂e (k))) 1iαβ(k)T
+1uαβ (k)

∥∥∥∥2 (16)
Considering the high frequency current injection, (16) will
eventually become:

G
(
θ̂e (k)

)
= 4L22sin2

(
θ̃e (k)

)
1iαβT1iαβ

/
T 2
+
∥∥1uαβ∥∥2

+2AnL2 ·
(
cos (2θe (k)−θn)−cos

(
2θ̂e(k)−θn

))
(17)

where

An =

√∥∥1uαβ∥∥21iαβT1iαβ/T 2 (18)

and θn is the angle caused by the noise. θn will be random if
the noise is random.

It is shown from (17) that G
(
θ̂e (k)

)
can no longer reach

zero, and the optimal solution for θ̂e (k) is no longer the real
rotor position θe (k). The difference between the optimized
θ̂e (k) and θe (k) is

1
2
arctan

 sin (2θe (k)− θn)

L2
√
1iαβT1iαβ

/
T 2

‖1uαβ‖
− cos (2θe (k)− θn)

 (19)

It is indicated from (19) that, in order to reduce the position
error1θe (k), the amplitude of noise has to be reduced. Other-
wise, the amplitude of the injected current has to be selected
as large as possible. According to (9), the amplitude of the
injected current actually determines the slope of G

(
θ̂e (k)

)
.

This means the larger the slope is, θ̂e (k) is the less sensitive
to noise.

2) HIGH SPEED
Adding 1uαβ into (13), the estimated position error caused
by sampling could be expressed as

1θe (k) = arctan
cos (θe (k)− θn)

2ψf ωe(k)
‖1uαβ‖

− sin (θe (k)− θn)
(20)

It is shown from (20) that, in order to reduce the position
error 1θe (k), the amplitude of noise should be reduced.
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Otherwise, the termψf ωe (k), which is the back-EMF, should
be as large as possible. This means the estimated position is
less sensitive to sampling noise at higher speed.

It has to be noted that even though the sampling noise could
bring error to the estimated position, however, by properly
designing the bandwidth of the PLL observer, the effect of
sampling noise will be significantly attenuated.

E. THE INJECTED HIGH FREQUENCY SIGNAL AT ZERO
AND LOW SPEED
At low speed, even though G

(
θ̂e (k), ωe (k)

)
is still convex,

however, both its value and slope get smaller as the speed
decreases. The noise on current and voltage signals is easy to
bring errors on the estimated position. In order to keep good
estimation accuracy against noise, the amplitude of A (θe (k))
in (14) has to be kept as large as possible. Therefore the high
frequency current or voltage signal has to be injected and
A (θe (k)) has to be carefully analyzed. At low speed, the term
ωe (k) is small, therefore, the term associated with L2ωe (k)
is assumed to be neglected, then A (θe (k)) becomes

A (θe (k)) ≈ 4L221iαβT1iαβ
/
T 2
+ ψf

2ω2

+4L2ψf ω1iαβT
/
T
[

sin (θe (k))
− cos (θe (k))

]
(21)

In order to keep A (θe (k)) constant at any position, the last
term of A (θe (k)) in (21) has to be kept at zero. To achieve
this purpose, in this paper, there is

∣∣1iαβ ∣∣ = 1IH
 cos

(
θ̂e (k)

)
sin
(
θ̂e (k)

)
 (22)

After θ̂e (k) approximates θe (k), A (θe (k)) will become
4L221IH 2/T 2

+ ψf
2ω2, which is constant. The amplitude

of A (θe (k)) is determined by 1IH as well as the back-EMF.
Transforming (22) into the estimated dq coordinate, there

will be: ∣∣1idq∣∣ = 1IH [ 10
]

(23)

This indicates the current variation every sampling period
should be 1IH . An additional square voltage wave with
amplitude being Ld1IH/T should be added to the d-axis
to achieve this goal. The frequency of the injected voltage
wave does not influence

∣∣1idq∣∣. Nevertheless, higher voltage
frequency will lead to lower amplitude of current ripple. The
value of 1IH determines the amplitude of A, and according
to (19), It should be as large as possible to reduce the position
estimation error caused by noise. However, larger current
variation will cause more power loss and acoustic noise.
In this paper, if the amplitude of current sampling noise is
Inoise, 1IH is recommended to be

1IH ≥ 4
max(Ld ,Lq)
|L2|

× Inoise (24)

Thus, according to (19), the position estimation error caused
by noise is bounded within π/8 rad.

On the other hand, producing the current variation of 1IH
need sufficient voltage supply. Thus, there should be

1IH 6
T
Ld

√(
80%

VDC
2

)2

− (ωBψ)
2 (25)

where ωB is the boundary between high speed and low speed.
VDC is the DC bus voltage.

As the motor speed gets higher, the back-EMF term in (21)
rises. The high frequency signal injection is then no longer
needed. According to (20), ωB has also to be selected accord-
ing to the sampling noise level of the system to guarantee
bounded position estimation error. For example, the voltage
noise level

∥∥1uαβ∥∥, which includes the DC bus sampling
error, the PWM output error, and the current sampling error,
could be limited below 4% of VDC in a normal motor drive
system. Thus, ωB is recommended to be 4%VDC/ψf , so that
the position estimation error caused be noise is bounded
within π/8 rad. This means if the rated back-EMF of the
motor is designed around VDC/2, the high frequency signal
injection could stop at about 8% of the motor’s rated speed.
Note that if the noise level of the motor is reduced, the ωB
could be selected even smaller. It is recommended that a
transition speed range should be set around ωB so that the
high frequency current is added or canceled gradually instead
of in sudden.

F. PARAMETER SENSITIVITY
In digital implementation, the parameters of the motor
adopted in the controller may not exactly match the parame-
ters of the real motor. The mismatch of the inductance may
cause position estimation error at zero and low speed, since
the back-EMF is low. The estimated angular speed ω̂e may
not match the real angular speed ωe, especially during the
dynamic response. This may also bring position estimation
error.

1) ZERO SPEED
At zero speed, the term of back-EMF is low and is neglected.
Therefore, only the mismatch on inductance and resistance
are studied.

Mismatch of L2:
Firstly, it is assumed at L1 is accurate, there is only

mismatch in L2. Then (8) becomes

G
(
θ̂e (k)

)
≈
1IH 2

T 2

 4L22
(
sin
(
θe (k)− θ̂e (k)

))2
+1L22

+4L21L2
(
sin
(
θe (k)− θ̂e (k)

))2
 (26)

where 1L2 is the difference between the real L2 and that
used in the controller. It is shown from (26) that even though
G
(
θ̂e (k)

)
will no longer reach zero with the mismatched

inductance, however, the optimal solution for θ̂e (k) is still
θe (k). Thus, mismatched L2 will not bring in position esti-
mation error. However, it is shown that too large mismatch
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may reduce the slope of G
(
θ̂e (k)

)
, therefore1L2 should be

carefully measured.
Mismatch of L1:
If there is mismatch in L1 while L2 is accurate in the digital

controller. Then (8) becomes

G
(
θ̂e (k)

)
≈ 1L121IH 2

/
T 2

+4L2 (L2 −1L1)1IH 2
/
T 2
(
sin
(
2θe (k)− 2θ̂e (k)

))2
(27)

where 1L1 is the difference between the real L1 and that
used in the controller. It is shown that if there is mismatch
in L1, the optimal solution for θ̂e (k) is still θe (k). However,
it has be to noted that too large 1L1 may reduce the slope of
G
(
θ̂e (k)

)
or even turn it from convex to concave. Normally,

L1 is much larger than L2, therefore, the mismatch of L1
should be reduced to the lowest level as possible.

Mismatch of RS :
If RS in the controller is not accurate, position estimation

error may occur. Assuming that the reference current in the
d-axis is zero, then the estimation error could be expressed
as:

1θe (k) ≈ ∓
îq cos (4θe (k))

41IH

1(
2L2/T
1RS
− 1

) (28)

where 1RS is the difference between the real value of rotor
resistor and the value used in the digital controller. îq is the
current in the estimated q-axis. It is shown that the term
2L2

/
T has to be much larger than 1RS to reduce 1θe (k).

This condition is relatively not difficult to be satisfied in
most machines. (28) also indicates that larger current in the
estimated q-axis increases the position estimation error, while
larger1IH helps reduce the position estimation error. It has to
be noted that 1θe (k) alternates from positive to negative all
the time, therefore it will be greatly decreased after feeding
the estimated position to the PLL observer.

2) HIGH SPEED
During high speed operation, the voltage drop on the induc-
tance and resistor is neglected. Because they is usually small
compared to the back-EMF. Therefore, at high speed, the dif-
ference between ωe and ω̂e is studied. If ωe and ω̂e don’t
match in (13), then (13) will become:

G
(
θ̂e (k) , ω̂e (k)

)
≈ ψf

2
·


(
ωe (k)− ω̂e (k)

)2
+4ω̂e (k) ωe (k)

(
sin

θe (k)− θ̂e (k)
2

)2


(29)

It is shown from (29) that even thoughG
(
θ̂e (k) , ω̂e (k)

)
will

not reach zero, the optimized solution of θ̂e (k) is still θe (k).
No position estimation error is introduced. The result will

be the same if there is mismatch in ψf . It has to be noted
that if the inductance is considered at high speed, position
estimation error may be introduced. But the introduced error
is still small.

It has to be noted that even though the proposed posi-
tion method has some immunity on parameter mismatch,
an additional online parameter estimation method is recom-
mended to work together with the proposed position method
to improve the robustness of the whole control system.

G. SOLVING THE OPTIMIZATION PROBLEM
Since the convexity of G

(
θ̂e (k) , ωe (k)

)
near θe (k) is

guaranteed, the optimization problem could be numerically
solved even though noise and parameter mismatch are intro-
duced. Conventional Newton or Quasi-Newton method can
be used to solve the problem.However, in digital applications,
these methods have problems such as complex calculation
of second derivative or vary small divisor. In this paper,
a simple method with Taylor expansion is adopted. The
fe
(
θ̂e (k) , ω̂e (k)

)
in (4) could be expanded near θ̂e(k)i−1 as:

fe
(
θ̂e(k)i, ω̂e (k)

)
= fe

(
θ̂e(k)i−1, ω̂e (k)

)
+fe′

(
θ̂e(k)i, ω̂e (k)

)
1θ̂e(k)i

1θ̂e(k)i = θ̂e(k)i − θ̂e(k)i−1 (30)

where i = 1, 2, 3, . . . is the iteration time and θ̂e(k)0
means the initial value of θ̂e(k) for calculation. Thus
G
(
θ̂e(k)i, ω̂e (k)

)
could be expressed as:

G
(
θ̂e(k)i, ω̂e (k)

)
= fe

(
θ̂e(k)i, ω̂e (k)

)T
fe
(
θ̂e(k)i, ω̂e (k)

)
= fe′

(
θ̂e(k)i, ω̂e (k)

)T
fe′
(
θ̂e(k)i, ω̂e (k)

)
1θ̂e(k)i

2

+2fe
(
θ̂e(k)i−1, ω̂e (k)

)T
fe′
(
θ̂e(k)i, ω̂e (k)

)
1θ̂e(k)i

+fe
(
θ̂e(k)i−1, ω̂e (k)

)T
fe
(
θ̂e(k)i−1, ω̂e (k)

)
(31)

fe′
(
θ̂e(k)i, ω̂e (k)

)
is the derivative of fe

(
θ̂e (k) , ω̂e (k)

)
at

θ̂e(k)i and is expressed as:

fe′
(
θ̂e (k) , ω̂e (k)

)
=

fe
(
θ̂e (k) , ω̂e (k)

)
d θ̂e (k)

= 4ω̂e (k)L2

 cos
(
2θ̂e (k)

)
sin
(
2θ̂e (k)

)
sin
(
2θ̂e (k)

)
− cos

(
2θ̂e (k)

) iαβ (k)
−2L2

− sin
(
2θ̂e (k)

)
cos

(
2θ̂e (k)

)
cos

(
2θ̂e (k)

)
sin
(
2θ̂e (k)

)  1iαβ (k)
T

+ψf ω̂e

 cos
(
θ̂e (k)

)
sin
(
θ̂e (k)

)  (32)
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According to (31), the optimal solution to minimize
G
(
θ̂e(k)i, ω̂e (k)

)
is

1θ̂e(k)i = −
fe
(
θ̂e(k)i−1, ω̂e (k)

)T
fe′
(
θ̂e(k)i, ω̂e (k)

)
fe′
(
θ̂e(k)i, ω̂e (k)

)T
fe′
(
θ̂e(k)i, ω̂e (k)

)
= −

fe
(
θ̂e(k)i−1, ω̂e (k)

)T
fe′
(
θ̂e(k)i, ω̂e (k)

)
A
(
θ̂e(k)i

) (33)

According to the discuss above, A
(
θ̂e(k)i

)
is guaranteed to

be larger than zero by either high frequency signal injec-
tion or the back-EMF. Therefore 1θ̂e(k)i could always
be obtained without numerical calculation error. Even if
G
(
θ̂e(k)i, ω̂e (k)

)
becomes concave because of parameter

mismatch, the solution of 1θ̂e(k)i is still correct. It has to
be noted that 1θ̂e(k)i should be limited to a small range to
reduce the effects of noise and parameter mismatch. In this
paper, 1θ̂e(k)i is bounded within ±π/8.

After several iterations, the final estimated rotor position
at time t = kT is obtained. After obtaining θ̂e (k), it is
fed into the PLL observer, and the estimated angular speed
ω̂e (k) as well the the estimated rotor position θ̂PLL(k) are then
obtained.

IV. EXPERIMENTAL VERIFICATION
The effectiveness of the proposed position estimation method
is tested on the experimental setup as shown in FIGURE 5.
The tested motor is connected with a Dyno. A motor con-
troller is used to drive the tested motor and estimate the
rotor position. A resolver is installed on the motor shaft
to measure the rotor position. The measured position pro-
vided by the resolver is used for comparison. The digital
controller is TMS320C28346 provided by TI, and runs at
300 MHz. Thus, it is sufficient to solve the optimization
problem in one sampling period. The variables of the algo-
rithm are able to be recorded on an external RAM and
then be transferred to the PC for analysis. The parameters
of the tested motor and the control algorithm are listed
in TABLE 1. The bandwidth of the PLL is set to 10 Hz.
Only two iterations are performed to calculate θ̂e (k) so that
the algorithm does not take too much calculation resources.
The proposed position estimation method is firstly tested at
standstill, and then on several speeds. At last, the position
estimation error on variable speed is provided to verify the
effectiveness of the proposed method. It has to be noted
that, in this paper, the recorded rotor position is in electri-
cal angle while the recorded rotor speed is in mechanical
speed.

A. POSITION ESTIMATION AT ZERO SPEED
Firstly, the effectiveness of the position estimation method
at zero speed is tested. Both the reference currents of d-
axis and q-axis are set to zero. A 5 kHz square wave with

FIGURE 5. Experimental setup.

TABLE 1. Units for magnetic properties.

FIGURE 6. The estimated position and measured position at position 2.46
rad.

amplitude of 25V is injected into the estimated d-axis so that
1IH of about 5 A is generated. Since the sampling noise
level of the motor controller is about 0.2 A, the selection of
1IH satisfies (24). The conventional polarity determination
is performed to determine the initial value of the θ̂e(k)0
before start-up. The estimated position θ̂PLL(k) obtained by
the proposed method and the measured position measured
from the resolver is shown in FIGURE 6 during start up. It is
shown that, the estimated position converges to the measured
position in less than 100 ms. Little position estimation error
is observed.
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FIGURE 7. The estimated position and measured position, q-axis current,
estimated and measured speed at 100 r/min.

FIGURE 8. The estimated position and measured position, q-axis current,
estimated and measured speed at 350 r/min.

B. POSITION AND SPEED ESTIMATION AT MEDIUM AND
HIGH SPEED
Then, the proposed position estimationmethod is tested under
different speeds. The tested motor is driven by the Dyno to

FIGURE 9. The estimated position and measured position, q-axis current,
estimated and measured speed at 500 r/min.

FIGURE 10. The estimated position and measured position, q-axis
current, estimated and measured speed at 3000 r/min.

run at different speeds. 30 A current in the estimated q-axis is
applied during the test, the estimated and measured position
are recorded before and after the application of the q-axis
current. According to the parameters of the tested motor,
the amplitude of the injected voltage starts to decrease lin-
early when the motor speed exceeds 325 r/min, and decreases
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FIGURE 11. The measured speed and estimated speed, q-axis current and
position estimation error during acceleration and deceleration.

to zero when the motor speed exceeds 425 r/min. No method
switching is needed because of the proposed position estima-
tion method.

The waveform of the estimated position θ̂PLL(k) and
measured position, q-axis current, the estimated and mea-
sured speed at different speeds are shown in FIGURE 7,
FIGURE 8,FIGURE 9 and FIGURE 10. It is shown that
the estimated position follows the measured position very
well even if the q-axis current is applied. Also, the estimated
speed follows the measured speed very well. At higher speed
such as 500 r/min to 3000 r/min, where the back-EMF takes
the most significant part, the position estimation error is
almost neglectable, no matter there is q-axis current or not,
as shown in FIGURE 9 and FIGURE 10. However, as shown
in FIGURE 7 and FIGURE 8, it is observed that, at lower
speed when high frequency voltage is injected, slight position
estimation error appears when q-axis current is applied. This
may due to the unmodeled cross coupling between the d-
axis and q-axis of the tested motor. Nevertheless, the position
estimation error is still acceptable for current control and fault
diagnose.

C. POSITION AND SPEED ESTIMATION DURING DYNAMIC
PROCESSES
At last, the tested motor is accelerated and decelerated by
applying positive and negative q-axis current several times.
The process is recorded as shown in FIGURE 11. It is shown
that the estimated speed matches the measured speed very
well during acceleration and deceleration.

The position estimation error is maintained in very small
range. The position estimation error is a little bit larger when
high frequency voltage injection is adopted at low speed.
The slight estimation error may due to the mismatch of the
motor parameters between the model used in the controller
and the real motor. No speed oscillation could be observed
when high frequency voltage injection is removed. Thus,
the effectiveness of the proposed full-speed-range position
and speed estimation method is verified.

V. CONCLUSION
This paper proposes a full-speed-range position estimation
method for IPMSM. The position estimation problem is
converted to solving a single variable simplified quadratic
optimization problem. The convexity of the cost function is
checked at different cases to make sure that the optimization
problem is solvable. The sensitivity of sampling noise and
parameter mismatch are discussed to check the robustness
of the proposed method. The high frequency injection signal
at standstill and low speed is also discussed in detail, and it
is concluded that high frequency square wave voltage signal
best suite for the proposed method. Experiments are carried
out to verify the effectiveness of the proposed position esti-
mation method. The method is tested under both steady state
and dynamic state, the results show that the proposed method
have good tracking performance on both rotor position and
speed.
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