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ABSTRACT One of the most important challenges in the analysis of high-throughput genetic data is
the development of efficient computational methods to identify statistically significant Single Nucleotide
Polymorphisms (SNPs). Genome-wide association studies (GWAS) use single-locus analysis where each
SNP is independently tested for association with phenotypes. The limitation with this approach, however,
is its inability to explain genetic variation in complex diseases. Alternative approaches are required to
model the intricate relationships between SNPs. Our proposed approach extends GWAS by combining deep
learning stacked autoencoders (SAEs) and association rule mining (ARM) to identify epistatic interactions
between SNPs. Following traditional GWAS quality control and association analysis, the most significant
SNPs are selected and used in the subsequent analysis to investigate epistasis. SAERMA controls the
classification results produced in the final fully connected multi-layer perceptron neural network (MLPNN)
by manipulating the interestingness measures, support and confidence, in the rule generation process. The
best classification results were achieved with 204 SNPs compressed to 100 units (77% AUC, 77% SE, 68%
SP, 53% Gini, logloss = 0.58, and MSE = 0.20), although it was possible to achieve 73% AUC (77% SE,
63% SP, 45% Gini, logloss= 0.62, and MSE= 0.21) with 50 hidden units – both supported by close model
interpretation.

INDEX TERMS Association rules, autoencoders, deep learning, epistasis, genome-wide association studies
(GWAS), obesity.

I. INTRODUCTION
Understanding the genetic architecture of common diseases
remains a significant challenge. Advances in the field have
identified genetic variations that underlie common disorders
such as obesity, type 2 diabetes, and certain cancers [1].
However, we are no closer to identifying the precise
genetic markers that result in the manifestation of complex
phenotypes.

Single nucleotide polymorphisms (SNPs) [2] are the most
common type of genetic variation among humans. These
have become the genetic marker of choice in the genetic
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mapping of complex traits. Genome-Wide Association Stud-
ies (GWAS) [3] utilise SNP Information and this has helped
to improve our knowledge and understanding of disease
genetics. GWAS implements single-loci analysis where SNPs
are independently tested for association with phenotypes of
interest, without consideration of the interactions that occur
between loci. This is amajor limitation inGWAS, particularly
when studying complex disorders caused by SNP-SNP,
gene-gene and gene-environment interactions. Therefore,
to better understand the missing heritability inherent in
GWAS it is necessary to examine epistasis interactions [4].
This approach assumes that genes do not work independently
but create ‘‘gene networks’’ that have major effects on tested
phenotypes. Hence, identifying epistatic interactions will
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help us to understand biological mechanisms and predict
complex traits from genotype data.

Combinatorial effects between genes are termed epistatic
interactions or epistasis [5]. Different perspectives exist:
biological (or functional epistasis) and statistical epistasis [5].
Statistical epistasis is investigated in this paper as it provides
a suitable strategy for discovering new genetic pathways.
This provides a foundation for new discoveries and testable
hypotheses.

Traditional statistical methods such as logistic regression
have shown limited power in modelling high-order nonlinear
interactions between genetic variants [6]. Additionally,
the high dimensionality present in genetic data makes it
computationally difficult to exhaustively evaluate all SNP
combinations. This is a well-known computational challenge
in the field of computer science [7]. Finally, it is important to
interpret gene-to-gene interactions in the context of human
biology before any results can be translated into specific
recommendations and treatment strategies. However, making
etiological inferences from computational models has been
considered the most relevant but difficult challenge [8].

One approach worth considering is Association Rule
Mining (ARM), which is an unsupervised learning method
used to find relationships between items (variables) that
co-occur in large data sets [9]. The discovery of association
rules depends on the discovery of frequent itemsets, where
association rules are required to satisfy support and confi-
dence user defined constraints. This technique has been used
to discover binding cores in protein-DNA [10] and to find
associations between the regulation of gene expression levels
and phenotypic variations in gene expression analysis [11].
An application of the Apriori algorithm [12], in the context
of case-control association studies and epistasis analysis,
is AprioriGWAS [13]. This tool was applied to age-related
macular degeneration (AMD) and bipolar disorder (BD)
data with promising interactions between genes found. The
approach in [13] uses frequent itemset mining (FIM)
with Apriori to look for genotype patterns with different
frequencies in cases and controls.

With regards to the discovery of SNP-to-SNP interactions,
deep learning (DL) has shown promise. Deep learning is a
type of artificial neural network (ANN) and one of the most
active fields in machine learning today. DL architectures have
proved to be particularly useful in image and speech recog-
nition, natural language understanding and most recently,
in computational biology [14]. They are characterised by
deep hidden layers and neurons. In Bioinformatics, DL has
been used to select regulatory SNPs with functional impact
before association analysis is conducted (DeepWAS) [15].
The study focused on variants (SNPs) that alter functional
regulatory elements (i.e. elements that control gene expres-
sion and DNAmethylation) which are identified using a deep
learning-based algorithmic framework: DeepSEA [16].

This paper extends these works and combines ARM and
DL techniques to investigate genetic epistasis in obesity.
Obesity is considered one of the most difficult clinical and

health challenges worldwide [17]. It has become a global
epidemic, also contributing to the growing rates of type
2 diabetes (T2D) and cardio vascular disease among other
non-communicable diseases [18]. The ubiquitous availability
of low-cost hypercaloric food combined with a sedentary
lifestyle and other environmental factors, have played a
fundamental role in the obesity epidemic. Surprisingly, not
every individual exposed to such environments, also known
as obesogenic environments, becomes obese. Therefore,
the lack of understanding about the mechanisms that underlie
individual differences in the predisposition to obesity have
motivated this study. While GWAS has identified several
variants associated with obesity traits (i.e. FTO and MC4R),
they do not explain the variability of obesity attributable to
genetic factors. Interactions between genes, namely epistasis,
will help to provide a better understanding of polygenic
obesity. This is regarded as a much more intuitive approach
given that complex diseases cannot be reduced to single
univariate SNP-phenotype interactions.

In body mass index (BMI) and obesity GWAS, gene-gene
interactions have received little attention [19]. Thus, a novel
methodology is considered in this paper, in which a subset of
loci after quality-control (QC) and association analysis was
selected (statistical filtering). Epistatic interactions within
the remaining genetic variants are investigated using deep
learning stacked autoencoders (SAE) and ARM. Basic
statistical analysis methods and techniques for the analysis
of genetic SNP data from population-based genome-wide
studies are considered, particularly logistic regression. Sub-
sequent analysis of epistasis is carried out using SAEs to
learn the deep features and, ARMwith the Apriori algorithm,
to discover a set of frequent patterns expressed as association
rules. Both, SAE and ARM describe relationships between
SNPs in extreme cases of obesity (Body Mass Index (BMI)
> 40 kg/m2) and normal samples from a subset of cases
and controls within the Geisinger MyCode project [20].
The performance of the features selected by ARM and
those extracted by SAE are objectively measured using a
multi-layer feedforward artificial neural network.

II. MATERIALS AND METHODS
This section introduces the data used in the study, quality con-
trol (QC), and association and statistical epistasis analysis.

A. eMERGE DATA
Case-control data was obtained from the database of
Genotypes and Phenotypes (dbGaP) [21]. Controls were
obtained from the eMERGE Geisinger eGenomic Medicine
(GeM) - MyCode Project Controls (dbGaP study accession
phs000381.v1.p1), while cases were obtained from the
eMERGE Genome-Wide Association Studies of Obesity
project (dbGaP study accession phs000408.v1.p1).

The case-control dataset contains 2,193 participants
(917 males and 1,236 females). Each participant contains
594,034 genetic markers. Furthermore, 99.5% of the partici-
pants are from a white ethnic background (Caucasians).
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B. DATA PRE-PROCESSING
Individuals reported as white were selected to conduct GWAS
to reduce potential bias caused by population stratifica-
tion [22]. QC and filtering procedures were performed on
individuals and SNPs, following standard QC protocols and
guidance in [22].

Samples with discordant sex were removed. Related
and duplicate samples were removed using Identity by
Descent (IBD) coefficient estimates (IBD> 0.185). Principal
component analysis (PCA) was performed to identify outliers
and hidden population structure using EIGENSTRAT [23].
SNPs with minor allele frequency (MAF) lower than 5%,
Hardy-Weinberg Equilibrium (HWE) P-value lower than
1× 10−5 in control subjects and, a call rate lower than 99%
were excluded from further analysis. After QC, 1,997 indi-
viduals (879 cases and 1118 controls) and 240,950 genetic
variants were retained for subsequent analysis.

C. STATISTICAL FILTERING
Association analysis is used to reduce the computationally
large number of genetic variants (240,950 SNPs). Statistical
association testing between SNPs and the obesity phenotype
was conducted under an additive model using logistic
regression [24].

Statistical filtering is used to reduce SNPs with insignif-
icant marginal effects to meet the computational needs
required for epistatic analysis and machine learning tasks.
Therefore, only SNPs with P-values lower than 1× 10−2 are
utilised for detecting epistatic interactions and to minimise
computational overheads.

D. MULTI-LAYER FEEDFORWARD ARTIFICIAL
NEURAL NETWORK
A multi-layer feedforward artificial neural network also
known as the multilayer perceptron (MLPNN), is imple-
mented based on the formal definitions in [25], to conduct
binary classification. MLPNNs in this study use labelled
training samples (x(i), y(i)) from case-control genetic data
where y(i) ∈ R2, to train the network for supervised learning
tasks. A non-linear hypothesis hw,b(x) is defined using a
feed forward ANN, with parameters W,b fitted to the data.
The parameter x is a vector of input features representing
individuals while outputs for the two class labels (obese or
non-obese) are represented using y. The weight and bias
parameters are learnt by minimising the cost function with
stochastic gradient descent [26]. The learning process is
performed using the back-propagation algorithm and gradient
descent [27].

E. AUTOENCODERS
Deep feedforward Autoencoders (AE) are used in this
study for unsupervised feature learning and non-linear
dimensionality reduction [28]. An AE is a three-layer neural
network that learns an output x̂ that is similar to the input x.
Hence, an AE tries to learn a function hW ,b(x) ≈ x, given a

set of unlabelled training samples {x(1), x(2), x(3), . . .}, where
x(i) ∈ Rn. The second layer or hidden layer generates the deep
features by minimizing the error between the input vector and
the reconstructed output vector.

First, the encode phase maps input data into a feature
vector z so that, for each sample x(i) from the input set
{x(1), x(2), x(3), . . .}, we have

z(i) = f
(
W (1)x(i) + b(1)

)
(1)

while in the decode phase, the decoder reconstructs the
input x, producing a reconstructed space x̂ defined as

x̂(i) = f
(
W (2)z(i) + b(2)

)
(2)

where W (1) and W (2) represent the input-to-hidden and the
hidden-to-output weights respectively, b(1) and b(2) represent
the bias of hidden and output neurons, whereas f(·) denotes
the activation function.

ParametersW (1),W (2), b(1) and b(2) in the AE are learnt by
minimising the reconstruction error

J (W , b; x, x̂) =
1
2

∥∥hW ,b(x)− x̂∥∥2 . (3)

This is a measurement of discrepancy between input x
and reconstructed x̂ with respect to a single sample. For a
training set ofm samples, the cost function of an autoencoder
is defined as:

J (W , b) =

[
1
m

m∑
i=1

J
(
W , b; x(i), x̂(i)

)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W (l)
ji

)2
=

[
l
m

m∑
i=1

(
1
2

∥∥∥hW ,b (x(i))− x̂(i)∥∥∥2)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W (l)
ji

)2
(4)

where m denotes the overall training set size, s denotes the
number of nodes in layer l, λ is the weight decay parameter
and the square error is used as the reconstruction error
for each training sample. The second term is introduced to
decrease the magnitude of the weights which helps prevent
overfitting. Equation (4) can be minimised using stochastic
gradient descent.

AEs are stacked layer by layer to produce a Stacked
Autoencoder (SAE) [29]. Once a single layer AE has been
trained, a second AE is trained using the hidden layer from
the first AE as shown in Fig. 1. By repeating this procedure,
it is possible to create SAEs of arbitrary depth.

AEs are stacked to enable greedy layer-wise learning
where the lth hidden layer is used as input to the l + 1
hidden layer in the stack. The results produced by the SAE are
utilised to pre-train the weights of a fully connectedMLPNN,
rather than randomly initialising the weights to small values.
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FIGURE 1. Example of SAE formed by two single AEs.

This approach helps models initialise parameters near to a
good local minimum and improve optimisation.

This shows that smoother convergence and higher overall
performance in classification tasks is possible using this
approach.

An SAE with 2,000, 1,000, 500 and 50 hidden neurons
in each hidden layer is used during experimentation. The
proposed SAE architecture extracts a mapping that decodes
the input (set of SNPs) as closely as possible without losing
significant SNP-SNP patterns.

The SAE configuration decreases the dimensionality of
the original data stack by stack, leading to a reduction
in noise while preserving the most important information
for MLPNN tuning. The complexity of this approach is
that it is difficult to determine what SNPs contribute to
classification accuracy. ANN models in general are very
difficult to interpret. Therefore, SAEs are combined with
association rule mining to describe what SNPs and associated
interactions contribute to classification results.

F. ASSOCIATION RULE MINING (ARM)
Association rules are implemented to reveal biologically
relevant associations between SNPs. If SNPs frequently
appear together, there is an underlying relationship between
them. Exploring the intrinsic relationships in the data
is performed using frequent pattern mining (FPM). This
technique extracts all frequent itemsets from a dataset, which
are then used to generate association rules. In the proposed
method, the idea is to extract important rules identified in
cases and controls separately.

Using association rule mining, frequently occurring SNPs
as items are identified (itemsets) in different individuals as
transactions. In other words, individuals are transactions,
SNPs are items, and SNP combinations are itemsets. Single
SNPs tend to have small effect sizes in polygenic diseases.
Therefore, by looking at the joint effect of multiple SNPs,
explanatory power can be increased.

Typically, ARM assumes a common strategy for decom-
posing mining problems into two principal subtasks: 1) Fre-
quent itemset generation and, 2) rule generation.
Itemsets are sets of k-items where k starts with 1 to

infinity. Unnecessary itemset candidates are produced if at
least one of its subsets is infrequent. Hence, the frequent
itemset generation is equippedwith pruning steps to eliminate

k-itemset candidates based on a minimum support threshold.
Support is the number of transactions that contain a particular
itemset.

Frequent itemsets are independent sets of SNPs (itemsets)
in the Geisinger MyCode dataset whose support is greater
than or equal to a given minimum support threshold σ .
Itemsets whose support count is lower than the minimum σ ,
are removed. This strategy based on support measures is
termed support-based pruning.

Once frequent itemsets have been obtained the generation
of association rules is performed. Association rule mining
discovers sets of SNPs that frequently occur together in the
MyCode dataset and creates a relationship between those
SNPs in the formX → Y . This relationship implies that when
X occurs it is likely that Y also occurs. Such a relationship
is called an association rule. An association rule is defined
as an implication of the form X → Y, where X, Y ⊆ I and
X ∩ Y = ∅. X refers to the left-hand side (LHS) or antecedent
of the rule, Y is the right-hand side (RHS) or consequent, and
I is a set of items.
Given a set of transactions T,ARMsearches for all the rules

with support ≥ σ and confidence ≥ δ where σ and δ are the
corresponding minimum support and confidence thresholds.
Support and confidence are formally defined as (5) and (6)
respectively.

support(X → Y ) =
support(X ∪ Y )

|T |
(5)

confidence(X → Y ) =
support(X ∪ Y )
support(X )

. (6)

Rules are generated from each of the frequent k-itemsets.
Hence, the total candidate association rules produced can be
up to 2k–2, excluding those that are null in the antecedent (X )
or consequent (Y ).
The significance of the association rules is measured in

terms of their support and confidence although other interest
measures such as lift or Chi-Square can be used to validate
rules. The support of a rule is the probability that the samples
in a dataset contain bothX and Y . Rules with very low support
may occur by chance, therefore, support is an important
measure that can be used to eliminate unimportant rules.
Confidence of a rule, on the other hand, is the probability
that a case contains Y given that it contains X . It provides an
estimate of the conditional probability of Y given X , P(Y|X).

1) APPRIORI ALGORITHM
The generation of association rules is conducted using the
Apriori algorithm [12]. The Apriori algorithm performs
a breadth-first search (BFS), enumerating every single
frequent itemset by iteratively generating candidate itemsets.
Candidate itemsets of length k are generated from k-1
itemsets. The support of every candidate itemset is calculated
iteratively where itemsets with support values under a defined
threshold are disregarded.

Tomanage the very large number of discovered association
rules, the patterns are filtered, grouped and organized.
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This is a crucial step to focus on the most interesting
association rules. Nearly all search algorithms rely on
support-based pruning. If an itemset X is not frequent (given
a minimum support), then none of its supersets Y ⊃ X
can be frequent. This property is known as anti-monocity
of the frequency. Furthermore, if the support value is set
too low (close to 0), a large number of spurious rules
are generated. This makes the problem computationally
intractable. Conversely, if the value for support is too high
(close to 1), a very small number of rules (or no rules at
all) are extracted, which means several significant rules could
be missed. Accepting or rejecting spurious patterns (rules) is
known in statistics as type 1 and type 2 errors respectively.
To reduce type errors, the traditional support-confidence
framework is replaced by a support-dependence framework.

Standard minimum support and confidence measures set
by the user are employed by the algorithm to prune unin-
terested association rules. However, the minimum frequency
and confidence requirements do not guarantee statistical
dependence or significance. Hence, it is also possible to
add additional objective interest measures to each rule, e.g.
the P-value threshold computed using the Chi-square test or
Fisher’s exact test to evaluate the significance of the rules.

2) ADDITIONAL INTEREST MEASURES
Limitations with support-confidence based rule mining [30]
has resulted in other interestingness measures to evaluate the
quality of the patterns identified. Examples of these measures
are lift, P-value thresholds computed using the Chi-square
test or Fisher’s Exact test, and a collection of other objective
symmetric and asymmetric interestingness methods [30].
In this study, those described previously are used in addition
to lift and Chi-squared to determine significant rules, as they
allow us to measure which rules are more correlated.

Lift or interest, is a symmetric measure which divides
the rule’s confidence by the support of the itemset in the
rule consequent as shown in (7). It can be used to analyse
the relativity of association rules mined and for measuring
how many times more frequently X and Y occur together
than expected under statistically independent conditions. Lift
indicates a positive correlation between X and Y when its
value is greater than one, negative correlation when its value
is lower than one, and independence when lift is equal to
one. As an example, a lift(X → Y ) > 1 indicates that the
appearance of X promotes the appearance of Y , resulting in a
positive correlated rule. Thus, the higher the lift, the stronger
the positive correlation and the more dependent the SNPs are.
In this paper, only positive correlated rules are of interest

lift(X → Y ) =
confidence(X → Y )

support(Y )

=
support(X ∪ Y )

support(X )support(Y )
(7)

Findingmeasures that can be used with lift to make the best
selection of rules is crucial. Despite the numerous alternatives
for expressing the dependence between the antecedent and

the consequent of an association rule, the classic Chi-square
test statistic

(
χ2
)
, can be used to determine the statistical

significance level of association rules [31]. Thus, rules
can be pruned in case of independency, meaning that the
itemsets (SNPs) in the rule are not correlated. χ2 helps
deciding whether items in the rules are independent of each
other, but it is not useful for ranking purposes by itself. The
standard Chi-squared test statistic

(
χ2
)
is defined as:

χ2
=

∑ (f0 − f )2

f
(8)(

χ2
)
is a summed normalized square deviation of the

observed values from the expected values. An important fact
about the Chi-square test is that it can be used to calculate
the P-value to determine the significance level of the rule.
For instance, if the P-value of the rule is lower than 0.05,
that is a χ2 value higher than 3.84, we can tell that X and
Y are significantly dependent and, therefore, the rule X → Y
can be considered for subsequent analysis. This is one way to
identify the direction of a rule when summarizing unpruned
rules, by the type of correlation the rules have, as similarly
performed by lift (positive correlation, negative correlation or
independence). To some extent, χ2 improves the traditional
framework of the interestingness measure provided by lift.

A combination of different interest measures is necessary
to assess the strength and the dependency of the antecedent
and consequent of the rules. Discovered associations are
pruned to remove non-significant rules, and then a special
subset of the unpruned associations forms a summary of
the discovered associations which represent candidates for
epistatic interactions.

3) REDUNDANCY
Redundancy elimination tasks can be beneficial to reduce
complexity by identifying smaller sets of more general
rules which are easier to interpret than larger complex, and
frequently overlapping rules. Rules are considered redundant,
if a more general rule or rules with the same or higher
confidence values are present. Formally, for X ′ subset of X ,
a rule X → Y is redundant if,

confidence
(
X ′→ Y

)
≥ confidence(X → Y ). (9)

The idea is to find statistically significant rules after
support and confidence pruning, in addition to redundant rule
elimination. For this reason, several assumptions have been
considered to rank the rules. First, the rules must be common
in, at least, 60% of the individuals. Second, the higher the
confidence the more likely it is for Y to be present in
transactions that contain X . According to this, a support value
of 0.6 and a confidence value of 0.8 are used to generate rules
in this study.

G. MODEL PERFORMANCE
The exactness of a classification can be evaluated by comput-
ing a contingency table. In this study, classifier performance
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is assessed through sensitivity (SE), specificity (SP), gini,
logloss, area under the curve (AUC) and mean squared
error (MSE) as performed in [32], [33]. Classifiers with good
predictive capacity possess SE, SP, gini andAUC values close
to 1 with logloss and MSE values close to 0. Additionally,
hyperparameter optimisation is performed using random
search [34]. Random search has proven to be as good as,
or even better than, pure grid search when applied to ANNs,
saving computational time [34]. This is true since random
grid search can effectively search a larger, and often less
promising, configuration space.

III. RESULTS
In this section, the results are presented using the proposed
methodology outlined above. This is reported in four
experiments conducted after QC and association analysis
(Statistical filtering): 1) Baseline classification with GLM
using SNPs with P-value < 1 × 10−2; 2) MLPNN classifi-
cation using SNPs with P-value < 1 × 10−2; 3) SAE-based
classification using non-linear SNP-SNP interactions with
P-values < 1 × 10−2; and 4) our proposed approach,
SAERMA.

Genotype data for 960 cases and 1,223 control subjects
were analysed. After QC, a total of 240,950 variants
and 1,997 individuals passed subsequent filter analysis
and QC. Among the remaining phenotypes, 879 are cases
and 1,118 are controls. These are used to conduct asso-
ciation analysis of extreme obesity trait as a statistical
filtering approach. The results from association tests with
P-value < 1× 10−2 are considered, resulting in a subset
of 2,465 SNPs. The resulting outcomes are therefore,
considered as hypothesis generating.

A. GLM CLASSIFICATION
The first experiment conducted following QC and association
analysis utilises classification tasks and the filtered SNPs
(2,465). Before conducting experiments with more complex
approaches such as ANNs or SAEs, classification is per-
formed with a generalised linear model (GLM) [35].

Four different sets of SNPs (5, 32, 248 and 2,465 SNPs)
were derived using different P-value thresholds as indicated
in Table 1, and used to train a GLM to classify extremely
obese and non-obese observations. The data set is split
randomly into training (60%), validation (20%) and testing
(20%).

TABLE 1. Set of SNPs selected.

Regularisation parameters alpha and lambda were tuned,
and the optimal values were obtained using a random

search. Based on empirical analysis, alpha and lambda values
for set 1 (alpha= 0.5 and lambda= 0.00598), set 2 (alpha=
0.5 and lambda = 0.00204), set 3 (alpha = 0.5 and lambda
= 0.00970) and set 4 (alpha = 0.5 and lambda = 0.00151)
produced the best classification results.

Using optimised F1 threshold values 0.3527, 0.4532,
0.3969 and 0.6684 the results in the validation set were
obtained as shown in Table 2 for 5 SNPs (1×10−5), 32 SNPs
(1×10−4), 248 SNPs (1×10−5) and 2,465 SNPs (1×10−2)
respectively.

TABLE 2. Performance metrics for validation set.

The performance metrics for the test set are shown in
Table 3. These metric values were obtained using optimised
F1 thresholds 0.2893, 0.4533, 0.2368 and 0.4665 for 1×10−5,
1× 10−4, 1× 10−3 and 1× 10−2, respectively.

TABLE 3. Performance metrics for test set.

FIGURE 2. ROC curves for the test set using GLM models trained with
different P-value thresholds.

The ROC curve comparison depicted in Fig. 2 is used as a
graphical performance measure to summarise the predictive
performance of the GLM models. The cut-off values for the
false and true positive rates using the test set are shown
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in each of the ROC curves for the different implemented
classifiers. In this first evaluation, there is a clear deterioration
in performance as the number of SNPs decreases (P-value
threshold increases).

Note that SNPs with conservative P-value thresholds
are an indication of how significant associations are. This
demonstrates the limitations of the most significant SNPs in
classifying case-control samples. The highest performance
was obtained with 2,465 SNPs and the lowest with 5 SNPs.

B. MLPNN CLASSIFICATION
Using the statistical filtering results in Table 1, an MLPNN
is trained and used for classification analysis using the same
performance metrics. For each MLPNN model, the network
architecture and associated regularization parameters were
tuned. This was achieved using random search and a
maximum of 200 models. Model training is stopped when
the logloss value fails to improve by at least 1% (stopping
tolerance) for two scoring events (stopping rounds). The
adaptive learning rate ADADELTA [36] was used for
stochastic gradient descent optimisation, with parameters rho
and epsilon set to 0.99 and 1× 10−8 respectively, to balance
the global and local search efficiencies.

To prevent overfitting, stability and improved generalisa-
tion, Lasso (L1) and Ridge (L2) regularisation, and input
dropout ratio are all tuned. L1 only allows strong weights
to survive, L2 prevents them from getting too big and input
dropout ratio regulates the number of neurons randomly
dropped in the input layer - hidden dropout ratios do the
same in hidden layers. Based on empirical analysis, these
configurations produced the best results.

The performancemetrics for the validation set are provided
in Table 4. The results show the four SNP configurations
in Table 1, using optimized F1 threshold values 0.2674,
0.4463, 0.3551 and 0.8084, respectively.

TABLE 4. Performance metrics for validation set.

Table 5 shows the performance metrics for the test data
using optimised F1 thresholds 0.2675, 0.2157, 0.4312 and
0.6303 for 1 × 10−5, 1 × 10−4, 1 × 10−3 and 1 × 10−2,
respectively. The results are generally lower than those
achieved with the validation set but, in some cases, not by
much.

The ROC curves in Fig. 3 illustrate the cut-off values for
the false and true positive rates using the test set. There is
a clear deterioration in performance as the number of SNPs
decreases (P-value threshold increases). In this instance,
the results highlight the limited predictive capacity of highly

TABLE 5. Performance metrics for test set.

FIGURE 3. ROC curves for test set using the MLPNN trained with different
P-value thresholds.

ranked SNPs when discriminating between case and control
samples.

C. EPISTATIC INTERACTIONS USING STACKED
AUTOENCODERS
In this evaluation, a SAE configuration is utilised to learn
the deep features that exist in a subset of 2,465 SNPs
(P-value < 1× 10−2), to capture information about impor-
tant SNPs and the cumulative epistatic interactions between
them. A layer wise approach is adopted by stacking four sin-
gle layer AEs with 2,000-1,000-500-50 hidden units, where
the original 2,465 SNPs are compressed into progressively
smaller hidden layers. The final SAE hidden layer is used to
initialise the weights of an MLPNN. The data set is again
randomly split into training (60%), validation (20%) and
testing (20%), while hyperparameter tuning is performed
through random search.

To measure the performance, each MLPNN classifier
was initialized using different compressed unit configu-
rations obtained from the SAE. Performance metrics for
the validation and test sets are provided in Table 6 and
Table 7 respectively. Using 2,000 hidden units, an optimised
F1 threshold value of 0.4977 is assigned to extract the
validation set metrics as indicated in Table 6.

Successive layers of the SAE are used to initialise
and fine-tune the remaining MLPNN models with 1,000,
500 and 50 hidden units respectively and F1 threshold values
0.6188, 0.4978 and 0.2701 for each of the remaining models
respectively.

Table 7 shows the performance metrics obtained using
the test set. Optimised F1 threshold values 0.5363, 0.3356,
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TABLE 6. Performance metrics for validation set.

TABLE 7. Performance metrics for test set.

0.3899 and 0.4615 were used to obtain these metrics with
models trained on 2,000, 1,000, 500 and 50 compressed input
units respectively.

FIGURE 4. ROC curves for the test set using trained models with the
different compressed units considered for the SAE.

The cut-off values for false and true positive rates in
the test set are depicted in Fig. 4. The ROC curves show
a gradual deterioration in classifier performance as the
initial 2,465 features (SNPs) are progressively compressed
to 50 hidden units in the SAE. Despite the observable
deterioration, the results remain high with 50 compressed
hidden units. This is in stark contrast to the P-value approach
adopted in the previous experiments with GLM and MLPNN
without SAE weight initialisation.

D. SAERMA: STACKED AUTOENCODER RULE MINING
ALGORITHM
In the final experiment QC, association analysis, rule mining,
SAE and MLPNN classification are combined to form
the SAERMA algorithm. Classification analysis in this
experiment was conducted using a second feature selection
step based on ARM. Rule mining allows us to find the most

frequent SNPs (from the 2,465 SNPs considered) among
individuals in cases and controls and then extract rules from
them. The top 10 rules identified using the Apriori algorithm
in cases and controls are listed in Table 8 and Table 9.
As shown in Supplemental Material, Figure S1 a) and b) in
File 1, these rules can be plotted to provide insights through
rule inspection.

TABLE 8. Top 10 rules identified in cases.

TABLE 9. Top 10 rules identified in controls.

Items from the rules (SNPs) are utilised as input features
in our SAE for deep feature extraction (which includes the
relationships between SNPs) and to initialise the weights
of an MLPNN before fine-tuning for classification analysis.
By adjusting support and confidence parameters in the rule
generation process, the number of rules can be increased
or decreased. This, in turn, impacts the performance of the
SAE-MLPNN models generated for feature extraction and
classification tasks. The results in this section are, therefore,
derived from the SNPs contained within the most significant
rules extracted with support σ = 0.6 and confidence δ
= 0.8 as discussed in this paper. These are the lowest
interest measure values which allow rule generation without
overloading the system used in this study.

Several classification tasks are conducted using the top
300, 200, 100 and 50 rules from the ARM analysis, which
corresponds to 204, 161, 124, and 92 SNPs respectively.
To accomplish this, the SNPs from each set of rules
are compressed using SAEs as conducted in the previous
experiment (See section III C). However, this time by utilising
three AEs instead of four (since the number of input features
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was considerably lower), with a variable number of hidden
units. The number of AEs and hidden neurons are arbitrarily
selected to gradually reduce the number of initial features.
The final layers of the SAEs are then utilised to initialise
the weights of the MLPNNs before being fine-tuned for
classification tasks.

FIGURE 5. AUC values for the different classification analyses conducted
for the top 300, 200, 100 and 50 rules.

In Fig. 5 the AUC values for the different classifiers
are depicted. The different colours in the plot correspond
to the different AEs (compression layers) considered in
the stack, where the first, second and third layers are
represented in blue, orange and green respectively. These
results demonstrate that the classifier is not randomly
assigning labels to the samples (AUC > 50%).

TABLE 10. Best results from SAERMA using the test set.

Table 10 contains the best classifier performance values
for the test set using the SAE and SNPs from the top
300, 200, 100 and 50 rules. In this instance 204 SNPs
are compressed using the following layer configuration:
150-100-50. Nevertheless, using twoAEs (150-100) achieved
the best results. Similarly, 161 SNPs are compressed using
a 125-75-50 layer configuration, 124 SNPs are compressed
using a 90-50-25 layer configuration, and 92 SNPs com-
pressed using a 75-50-25 configuration.

Sensitivity, specificity and AUC values presented in
Table 10 are depicted in Fig. 6. This represents the best results
obtained with SAERMA.

IV. DISCUSSIONS
GWAS can identify common variants with modest to large
effects on phenotypes. However, in GWAS studies, SNPs

FIGURE 6. Best results AUC, SE and SP from SAERMA.

are independently tested for association with phenotypes,
without considering the epistatic relationships that exist
between genetic variants. Hence, a novel methodology was
considered in this study, in which QC and association anal-
ysis, performed in GWAS, are combined with ARM and DL
stacked autoencoders to detect epistatic interactions between
SNPs. A multilayer feedforward artificial neural network
classifier is initialised using SNPs and epistatic information
learned by the DL SAE (guided and interpreted by ARM),
to classify case-control samples from the eMERGE MyCode
dataset. The complete network models the epistatic effects of
SNP perturbations while ARMprovidesmodel interpretation.

In the first experiment, following QC and association
analysis, the capacity of the filtered SNPs to discriminate
between case and control samples using a GLM was
evaluated. Results indicate that GLM can accurately identify
case and control individuals using 2,465 features (SNPs) with
an AUC of 94% (SE = 85%, SP = 90%, Gini = 87%,
Logloss = 0.3288 and MSE = 0.0976) when using the test
set, as shown in Table 3. Although AUC values remained
high when 248 and 32 SNPs were used as input features (see
Table 3), specificities deteriorate when the number of SNPs
is reduced. The major limitation with GLMmodels, however,
is that it is not possible to model interactions between SNPs.

In order to address this, the second evaluated exper-
iment modelled MLPNNs. MLPNNs are non-parametric
models capable of capturing complex non-linear relationships
between dependent and independent variables through hid-
den nodes. Using an MLPNN classifier with the rectifier
activation function with dropout regularisation and genetic
variants with P-value< 1×10−2 (2,465 SNPs) it was possible
to obtain SE = 95%, SP = 98%, Gini = 99%, LogLoss
= 0.1061, AUC = 99% and MSE = 0.0291. In contrast,
using 5 SNPs (P-value < 1 × 10−5) resulted in a significant
performance drop (SE = 99%, SP = 0.6%, Gini = 21%,
LogLoss = 0.6750, AUC = 60% and MSE = 0.2410).,
indicating that the model was unable to correctly recognise
actual negative cases (i.e. non-obese individuals).

Acceptable results were obtained using MLPNNs with
2,465 and 248 SNPs, with high AUCs and relatively balanced
SE and SP values as shown in Table 5. However, compared
with the GLM experiment, specificities deteriorate when the
number of input features reached 32 or less. These results
reveal that MLPNNs achieve overall better results than GLM,
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probably due to the nonlinear nature of the interactions
occurring between SNPs.

While the MLPNN can learn and capture epistatic
information, a high number of features are required to achieve
good performance. It is not clear to what extend those SNPs
interact and what proportion of the data actually represents
noise. Investigating this further, autoencoders were used to
determine if a low-dimensional representation of our input
data (2,465 SNPs) could be achieved, while retaining all
relevant information. This helps to remove any redundant
features with a particular focus on epistasis.

Therefore, in the third experiment, a set of 2,465 SNPs
(P-value < 1 × 10−2) and four single layer AEs were
implemented to compress SNPs through 2,000-1,000-500-50
hidden units. The best result with the test set was obtained
using 2,000 hidden units (SE = 95%, SP = 93%, Gini =
95%, Logloss= 0.1956, AUC= 97% and MSE= 0.054057)
and a rectifier activation function with dropout regularisation.
Conversely, the worst result was achieved when the features
were compressed to 50 hidden units (SE = 78%, SP = 80%,
Gini = 70%, Logloss = 0.476864, AUC = 85% and MSE
= 0.156315), which are still encouraging. See Table 7 for
details.

Although a gradual deterioration in performance is
observed, the classifier performance is still high even with
50 units, over 85% AUC with SE = 78% and SP = 80%
with no evidence of overfitting. This supports our previous
argument and shows that there is significant noise within the
initial 2,465 SNPs. This, thus, demonstrates the potential of
the proposed deep learning methodology to abstract large,
complex and unstructured data into latent representations
capable of capturing the epistatic effect between SNPs in
GWAS.

Sensitivities and specificities are generally more balanced
– for example, compare the results in Table 5, for 32 SNPs
(P-value < 1× 10−4), where SE = 95% and SP = 29% with
those in Table 7, for 2,000-1,000-500-50, where SE = 79%
and SP = 80%. In addition to SE, SP and AUC values, SAEs
also improved Gini, Logloss andMSE values when compared
with models using a similar number of input features. More
importantly, the results obtained using SAEs with 50 hidden
nodes are close to those achieved with 248 SNPs using the
GLM and MLPNN. A summary of these results is shown in
Table 11.

TABLE 11. Result comparison for GLM, MLPNN and SAE using 248, 248
and 50 features respectively in test set.

The SAE experiment provides a novel approach for feature
extraction and classification tasks, using latent information

extracted from high-dimensional genomic data. This allows
us to screen individuals with higher predisposition to obesity.
However, compressing the features using SAEs alone makes
it difficult to identify which of the 2,465 SNPs contributes to
the compressed hidden units. This is a well-known problem
in neural networks where model interpretation is difficult to
achieve. In order to address this issue, the final experiment
combines the strength of SAE and ARM via the Apriori
algorithm, to provide an interpretation of the DL networks
utilised in this study.

ARM is more transparent than other machine learning
algorithms as it provides knowledge based explanative
rules, serving therefore as a white-box model. Hence, this
approach allows us to investigate relevant epistatic patterns
and determine the direction of associations between SNPs,
while SAE and MLPNN classification provides an objective
performance measure to validate the models ARM produces.
These are tightly correlated in that altering the interest
measures (support and confidence) in ARM impacts on the
performance metrics of the SAE and MLPNN models.

In the rule generation process, redundant rules are removed
to alleviate the high number of rules being generated in the
rule mining which aids computational efficiency. Although
lift values for all the top 10 rules in cases and controls
were slightly higher than 1, the dependency of the rules was
supported by very high values of χ2. The inference made
by an association rule does not necessarily imply causality.
Counterwise, it suggests a strong relationship between SNPs
in the antecedent and consequent of the rule. Hence, ARM
results need to be carefully interpreted.

The rules generated help to reveal new insights in obesity
as a complex disease. While the genes in rules 1, 2, 3, and 4 in
cases have not been associated with obesity, the genes in rules
5 to 10 reveal something different. In fact, the ATXN2 gene
present in rules 5, 7, and 9 has been involved in severe early
onset obesity in children [37]. In rule 7, the ATXN2 gene
also interacts with the MAPKAPK5 gene, which has shown
gender-dependent differences in anxiety-related processes
and locomotor activity in mice [38]. A weak but positive
association between anxiety and obesity in humans has been
reported, although further studies were recommended in [39].
Furthermore, the GRIK1 gene in rule 6, has been reported as
a novel obesity candidate gene that may contribute to highly
penetrant forms of familial obesity [40]. Finally, the gene
AFF3 in rule 10, has shown associations with triglycerides
in Asian populations [41].

One of the possible reasons why obesity related variants
within the genes FTO or MC4R were not identified in
any stages of the proposed methodology may be due to
the effect of removing a very large number of variants
by using stringent thresholds in the per-marker QC step.
It is known that statistical power to detect a SNP of a
given effect via GWAS increases with both sample size and
the density of genetic variants across the genome. In this
study, the sample size is relatively small (1,997 individuals
after QC) and the density of markers was also reduced
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considerably (240,950 SNPs after QC). In the top 10 rules
identified in cases, the genetic variants identified within
or close to the SGOL2, AOX1, ZNF354B, ZFP2, ATXN2,
MAPKAPK5, GRIK1 and AFF3 genes form interactions.
Four of these genes have implications with obesity related
traits (ATXN2, MAPKAPK5, GRIK1 and AFF3) whereas
SGOL2, AOX1, ZNF354B, ZFP2 have not previously been
associated with obesity. In Table 12, the SNPs within the top
10 rules in cases have been summarised. The table includes
five columns with information about the SNP ID, risk allele,
overlapped or closest gene, whether it has been previously
associated with obesity related traits or not, and the name of
the related trait in cases of previous association.

TABLE 12. Summary of genetic variants identified using ARM in cases of
obesity.

After rule mining was applied to the filtered SNPs
(2,465 SNPs), several classifiers were pre-trained with the
compressed units extracted from the top 300, 200, 100 and
50 rules. For each set of rules, their SNPs (forming the rules)
were used as input features for several SAEs. Then, the
MLPNN classifiers were initialised and fine-tuned with the
final hidden layer of the SAE. The best results are presented
in Table 10.

In the first set of 300 rules with 204 SNPs, the best result
in the test set was achieved when the input features were
compressed to 100 units, with an AUC of 77%, SE= 77%, SP
= 68%, Gini = 53%, Logloss = 0.5769 and MSE = 0.1968,
as shown in Table 10. Although a higher AUC was achieved
with a single AE and 150 hidden units (AUC = 78%, SE =
80%, SP= 63%, Gini= 56%, Logloss= 0.5770 and MSE=
0.1952), the sensitivity value was inferior. In these situations,
it is up to the expert/clinician to decide whether it is more
important to detect cases of obesity more accurately than

normal individuals. However, in this study, the capacity of our
proposed solution to detect cases and controls in a balanced
manner has been prioritised. This means that results with a
balanced SE and SP and high AUC were selected.

Using the top 200 rules (161 SNPs) and the above criteria,
the best result in the test set was accomplished when a single
AE and 125 hidden units were used as input for the MLPNN
classifier (see Table 10). The classifier achieved an AUC =
73% with SE = 74% and SP = 66% (Gini = 47%, Logloss
= 0.6099 and MSE = 0.2104).
Using the top 100 rules with 124 SNPs, it was possible to

achieve 71% AUC with 69% sensitivity and 66% specificity
(Gini = 42%, Logloss = 0.6231 and MSE = 0.2167) by
compressing 124 SNPs down to 90 units.

Finally, the models trained with the lowest number of
features (92 SNPs from the top 50 rules) achieved the
best classification results using a 75-50 layer configuration
(See Table 10). This model reached an AUC value of 73%
with sensitivity and specificity values of 77% and 63%
respectively (Gini = 45%, Logloss = 0.6178 and MSE =
0.2142).

Even though the best results were achieved in the largest
set of SNPs (300 rules), we observed that some of the models
were able to compress the features down to 50 hidden units
and get over 70%AUC, as can be seen in Fig. 5. Additionally,
the AUC, SE and SP values from the best models achieved
by SAERMA are depicted in Fig. 6. The results indicate that
there is not much variation between the performance values
(AUC, SE and SP) among classifiers despite the reduction in
the number of SNPs and hidden units within the AEs.

Therefore, the best overall result from the different
classifiers was AUC = 77%, attained by 100 compressed
units from the top 300 rules as can be observed in Table
10. The classifier was able to classify obese individuals (SE
= 77%) more effectively than normal samples (SP = 68%).
These results can be achieved with a maximum of 204 SNPs
although the SAE is able to reduce noise and achieve that
value (AUC = 77%) with 100 hidden neurons (this is a
50.99% reduction in the feature space). However, it is not
possible to accurately determine which of those 204 SNPs
correspond to the 100 compressed hidden neurons.

For a more granular mapping of the interactions between
SNPs, we can refer to the top 50 rules result (92 SNPs), where
the input was compressed to 50 hidden units (see Table 10).
Even though dimensionality reduction in this case affects the
performance of the classifier with respect to the best result
(using 204 SNPs), the SE value remains the same (77%),
while SP is reduced by 0.05% and AUC by 0.04 %. Thus,
it is true to say that the 50 hidden nodes representing epistatic
interactions can be interpreted using the 92 SNPs selected by
ARM. Although this does not represent a full interpretation
of the results obtained using SAEs, the approach presented
in this paper provides a close approximation of the epistatic
interactions that likely occur in the MyCode data.

The best overall performance was achieved by the SAE
using 204 SNPs. Hence, utilising SNPnexus [42] it was
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possible to query the 204 SNPs and report the overlapped
or closest genes according to the GRCh37 assembly. A table
containing genomic annotations for the 204 SNPs reported
in this study has been included in the supplemental material
(Table S1 in File 2). It is expected that these findings will
help future researchers to better understand how epistasis in
obesity occurs using genome-wide data, providing candidate
SNPs to investigate obesity further.

V. CONCLUSION AND FUTURE WORK
Overall, the results in this study highlight the benefits of
using deep learning stacked autoencoders to detect epistatic
interactions between SNPs in genomic data and how these can
be used to model MLPNNs to classify obese and non-obese
observations from the eMERGE MyCode dataset. This
contributes to the computational biology and bioinformatics
field and provides new insights into the use of deep learning
algorithms when analysing GWAS that warrants further
investigation. However, the minute non-linear transforma-
tions of the input space that occur in the autoencoders,
makes it is very difficult to trace the amount of variance
they contribute from case-control data. This is a common
problem in neural network modelling that seriously hinders
genomic analysis. To aid with this issue, association rule
mining was used in combination with stacked autoencoders.
This allowed us to identify patterns in the form of rules which
represent interactions between a filtered subset of SNPs. The
benefits of incorporating rule mining to the proposed pipeline
were twofold. First, it allowed us to generate significant
rules and plot their interactions. Second, feeding the stacked
autoencoders with the most significant rules allowed us to
obtain dynamic classification performances by adjusting the
number of rules generated in the rule mining process, serving
thus as a validation and interpretation technique for epistatic
feature extraction in the neural network utilised in the study.
Adjusting support and confidence coefficients to increase
the number of rules also requires more computational
complexity. Therefore, in this study only rules generated with
support and confidence values of 0.6 and 0.8 respectively
were presented. This allowed us to empirically produce the
best results without reaching computational overload with the
resources available.

While work exists in biological analysis of variants that
alter functional regulatory elements (i.e. elements that control
gene expression and DNA) using deep learning methods [15]
and epistasis analysis based on frequent itemset mining using
the Apriori algorithm [13], to the best of our knowledge
this research is the first comprehensive study of its kind
that combines GWAS quality control and logistic regression
with association rule mining and deep learning stacked
autoencoders for epistatic-drive GWAS analysis and case-
control classification.

Several novel contributions have been provided using
the proposed methodology. However, there are still areas
for improvement. In future work, biological validation of
the rules identified by SAERMA needs to be provided.

A common approach to achieve this is via gene set enrichment
analysis which is based on the functional annotation of
gene sets. Any identified rules including more than one
gene involved in a particular pathway can be considered
potential true obesity epistasis. Moreover, spatial information
such as chromosome arm or gene neighbourhood may be
considered as additional features to tease out the epistatic
interactions between genes on the same chromosome. This
will add spatial context for the associations discovered by
SAERMA Overall, the results in this study highlight the
benefits of using deep learning stacked autoencoders to detect
epistatic interactions between SNPs in genomic data and
how these can be used to model MLPNNs to classify obese
and non-obese observations from the eMERGE MyCode
dataset. This contributes to the computational biology and
bioinformatics field and provides new insights into the
use of deep learning algorithms when analysing GWAS
that warrants further investigation. However, the minute
non-linear transformations of the input space that occur in
the autoencoders, makes it is very difficult to trace the
amount of variance they contribute from case-control data.
This is a common problem in neural network modelling
that seriously hinders genomic analysis. To aid with this
issue, association rule mining was used in combination with
stacked autoencoders. This allowed us to identify patterns
in the form of rules which represent interactions between
a filtered subset of SNPs. The benefits of incorporating
rule mining to the proposed pipeline were twofold. First,
it allowed us to generate significant rules and plot their
interactions. Second, feeding the stacked autoencoders with
the most significant rules allowed us to obtain dynamic
classification performances by adjusting the number of
rules generated in the rule mining process, serving thus
as a validation and interpretation technique for epistatic
feature extraction in the neural network utilised in the study.
Adjusting support and confidence coefficients to increase
the number of rules also requires more computational
complexity. Therefore, in this study only rules generated with
support and confidence values of 0.6 and 0.8 respectively
were presented. This allowed us to empirically produce the
best results without reaching computational overload with the
resources available.

While work exists in biological analysis of variants that
alter functional regulatory elements (i.e. elements that control
gene expression and DNA) using deep learning methods [15]
and epistasis analysis based on frequent itemset mining using
the Apriori algorithm [13], to the best of our knowledge
this research is the first comprehensive study of its kind
that combines GWAS quality control and logistic regression
with association rule mining and deep learning stacked
autoencoders for epistatic-drive GWAS analysis and case-
control classification.

Several novel contributions have been provided using
the proposed methodology. However, there are still areas
for improvement. In future work, biological validation of
the rules identified by SAERMA needs to be provided.
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Acommon approach to achieve this is via gene set enrichment
analysis which is based on the functional annotation of gene
sets. Any identified rules including more than one gene
involved in a particular pathway can be considered potential
true obesity epistasis. Moreover, spatial information such as
chromosome arm or gene neighbourhood may be considered
as additional features to tease out the epistatic interactions
between genes on the same chromosome. This will add spatial
context for the associations discovered by SAERMA.
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