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ABSTRACT Human activity recognition (HAR) has been a very popular field in both real practice and
theoretical research. Over the years, a number of many-vs-one Long Short-Term Memory (LSTM) models
have been proposed for the sensor-based HAR problem. However, how to utilize sequence outputs of them
to improve the HAR performance has not been studied seriously. To solve this problem, we present a novel
loss function named harmonic loss, which is utilized to improve the overall classification performance
of HAR based on baseline LSTM networks. First, label replication method is presented to duplicate true
labels at each sequence step in many-vs-one LSTM networks, thus each sequence step can generate a local
error and a local output. Then, considering the importance of different local errors and inspired by the
Ebbinghaus memory curve, the harmonic loss is proposed to give unequal weights to different local errors
based on harmonic series equation. Additionally, to improve the overall classification performance of HAR,
integrated methods are utilized to exploit the sequence outputs of LSTMmodels based on harmonic loss and
ensemble learning strategy. Finally, based on the LSTM model construction and hyper-parameter setting,
extensive experiments are conducted. A series of experimental results demonstrate that our harmonic loss
significantly achieves higher macro-F1 and accuracy than strong baselines on two public HAR benchmarks.
Compared with previous state-of-art methods, our proposed methods can achieve competitive classification
performance.

INDEX TERMS Human activity recognition, label replication, harmonic loss, LSTM.

I. INTRODUCTION
In recent years, human activity recognition (HAR) has been
attracting more and more attention from both industrial and
academic field [1]–[5]. HAR can assist us to make effi-
cient decisions for future human actions through sensory
data and has been applied in various applications, such as
health monitoring, human-computer interactions, industrial
settings, and smart homes [6]–[8], etc. There are many types
of human activities (walking, sitting, eating and running, etc)
in real life, and researchers have proposed lots of methods to
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recognize these human activities, however, these methods can
not achieve desirable overall classification results. Hence, it is
important and necessary to develop advanced methods to get
good recognition results of various human activities.

HAR aims to identify the physical activity performed by a
person, which is built on the assumption that human activities
can be transferred to specific wireless sensor signals. A lot
of methods have been proposed to address HAR problems,
and we divided them into two main categories: traditional
machine learning methods and deep learning methods. Tra-
ditional machine learning methods range from support vector
machine (SVM) [9], [10], decision tree (DT) [11], random
forest (RF) [12], Gaussian Mixture [13], K-nearest neighbor
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(KNN) [14], to Naïve Bayes [15]. Though these methods can
achieve good accuracy results on public HAR benchmarks,
they receive poor results on macro-F1. Recently, with the
rapid development of artificial intelligence (AI) technology
[16], massive deep learning methods including forward neu-
ral networks (FNNs) [17], [18], recurrent neural networks
(RNNs) [19]–[22], autoencoder (AE) [23], and convolutional
neural networks (CNNs) [18], [24]–[27] have been proposed
to recognize different types of human activities. In addition
to supervised deep learning methods, in literature [28]–[31],
researchers have gradually used deep unsupervised learn-
ing methods to solve classification problems and achieved
state-of-the-art performance like deep clustering and struc-
tured autoencoders. These deep learning methods also have
achieved state-of-the-art accuracy results, however, the over-
all classification performance are poor, e.g., macro-F1.

Furthermore, HAR aims to provide fruitful information
for user’s activities by leveraging time-series sensory data
collected from surrounding environments [32], which can be
considered as a streaming data mining problem. Collected
sensory data for HAR is chronological, which is also known
as stream data. Recurrent neural networks (RNNs), partic-
ularly those based on the LSTM network and its various
variants, e.g., Gated Recurrent Unit (GRU) [33], can capture
long-range dependencies efficiently and mine fruitful infor-
mation from stream data strongly [34], [35]. Many compli-
cated LSTMmodels have been proposed and they can achieve
high accuracy of HAR. Nevertheless, the macro-F1 results
of LSTM models are poor on many public HAR bench-
marks too, because researchers mainly focused on devel-
oping advanced many-vs-one LSTM models for improving
accuracy as the following steps. First, many-vs-one LSTM
models are constructed by using many LSTM cells. Then
many sequential inputs are passed into many-vs-one LSTM
models, only generating the final sequence output and error
in the training phase, which cannot make use of all sequential
outputs and sequential errors. To the best of our knowledge,
how to exploit sequential outputs of many-vs-one LSTM
models for enhancing the performance of HAR has not been
studied seriously by previous works.

To tackle the above-mentioned limitations of many-vs-
one LSTM models, this work mainly focuses on exploiting
sequential outputs and errors for achieving better overall clas-
sification performance. Firstly, the label replication method
is presented to copy true labels at every sequenced step of
LSTM models, thus, every sequenced step can generate a
local output and local error. Then, getting inspiration from
the Ebbinghaus memory curve of humans [36], a novel loss
function named harmonic loss (HL) is proposed based on the
harmonic series equation. The proposed harmonic loss takes
all local errors into consideration by giving unequal weights
to each local error rather than only computes the last local
error in the training phase. In addition, integrated methods are
proposed to utilize sequence outputs of many-vs-one LSTM
models based on our harmonic loss and ensemble learning
strategy. It can further enhance the overall classification of

HAR. The experimental results demonstrate that the proposed
harmonic loss can achieve higher macro-F1 than strong base-
lines significantly and more stable. Compared with previous
advanced methods, our proposed methods achieve compet-
itive overall classification performance. The main contribu-
tions of this work are summarized as follows:

1) Label replication method is utilized for many-vs-one
LSTM models, which enables many-vs-one LSTM
models to generate local errors and local outputs at each
sequenced step.

2) Getting inspiration from the Ebbinghausmemory curve
of humans, we present an improved loss titled harmonic
loss, which computes all local errors of LSTM models
by giving different weights to each local error based
on the harmonic series equation. Compared with tra-
ditional losses for LSTM models only compute final
sequence error for the gradient descent, our harmonic
loss not only computes all sequence errors for the gra-
dient descent but also considers the weights of different
sequence errors. Thus, our harmonic loss achieves bet-
ter overall classification than strong baselines.

3) Based on both ensemble learning strategy and the har-
monic loss, integrated methods are introduced to make
use of sequence outputs of many-vs-one LSTM mod-
els. The results demonstrate that integrated methods
surpass previous state-of-art methods.

The rest of this work is organized as follows. Section II
introduces the preliminary works of HAR, LSTM models,
and loss functions. The framework of sensor-based human
activity recognition using LSTM, label replication method,
our harmonic loss, integrated methods, and evaluation mea-
sures are described in Section III. Section IV presents public
HAR benchmarks and baselines. Section V provides a series
of experimental results and analysis. Conclusion and future
work are provided in Section VI.

II. RELATED WORK
HAR aims to understand and predict people’s activities and
behaviors, which can enable the intelligent computing sys-
tems to assist users proactively based on their requirement
through the sensory data [32]. A lot of benchmark datasets
have been introduced to meet the need of HAR, which pro-
mots the emergence and development of HAR domain. HAR
datasets comprise of self data collection and public datasets.
Self data collection refers to researchers collected data by
themselves and performed relevant research, which requires
much efforts and is also tedious to preprocess the collected
data [37], [38]. Public datasets refer to researchers performed
work on public HAR datasets, such as Opportunity dataset
[17], public domain UCI dataset [10], [39], and WISDM
dataset [40].

Recurrent neural networks (RNNs) are feed-forward neural
networks augmented by the inclusion of edges that span
adjacent sequence steps and can process sequential data effi-
ciently in supervised or unsupervised learning tasks. LSTM
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FIGURE 1. Representative many-vs-one LSTM model for HAR. Green rectangles represent input sequence. Blue rectangles
represent LSTM blocks (layers). The orange rectangle represents labels.

is one of the most popular RNN architectures, which can
alleviate vanishing gradient problem of RNNs. The construc-
tion of the LSTM memory cell is still close to the original
RNN memory cell, in addition to the forget gates. The forget
gates can make the cell remember its most previous values
by setting large values. To understand LSTM models easily,
Fig. 1 presents the classical LSTM network model, which
is used for comparison in the following sections. Massive
variants of RNNs have been developed for various learning
tasks [41], [42] including HAR [19]–[22], [43]–[47]. Liter-
ature [22] presents a deep Res-LSTM model for HAR and
achieves good results of HAR. In [43], researchers applied a
deep recurrent neural network (DRNN) model and the results
showed the DRNN got good performance. Researchers in
literature [24], [47] proposed hybrid deep models for HAR
through combining the RNNmodel with the CNNmodel, and
the effectiveness of the hybrid deep models was verified on
public HAR datasets.

In this work, the connectivity pattern among stacking
LSTM layers follows the LSTM models devised by [22],
[48]. We use label replication method to replicate true labels
at every sequenced step for LSTM models, hence, each
sequence step can generate a local sequence error. The label
replication method is similar to Lee et al. [49] proposed
the optimization objective function for convolutional neu-
ral network (CNN) and has been widely used in various
learning tasks. Literature [50]–[52] use the label replication
method for medical data analysis and achieve competitive
performance through comparison to advanced methods. Dai
& Le proposed label replication method for character-level
document classification in semi-supervised sequence learn-
ing tasks. Literatures [53], [54] also use similar methods in
natural language processing and achieve good performance.

In literature [55], researchers propose an improved loss
named convex loss for many-vs-one LSTM models based
on the label replication method and achieve good results.
Focal loss [56] is a very popular loss and has been applied
to different tasks successfully. Literature [57] develops a
complement objective training method (COT) to improve
the accuracy of classification by introducing a complement

entropy loss (CEL) based on entropy cross loss in the training,
the results show that the proposed COT can improve the clas-
sification results. Given the improved losses for many-vs-one
LSTM models based on the label replication method, which
cannot consider the relative importance of different sequence
errors. To tackle this end, we proposed an improved loss
function considering the relative importance of all sequence
errors based on the label replication method.

III. METHODOLOGY
In this section, the representative framework of HAR using
LSTM models and label replication method are introduced.
Then, our harmonic loss is proposed based on the harmonic
series equation to optimize the loss function of LSTM mod-
els. Finally, the integrated method are presented to further
improve the overall classification performance.

A. LSTM RECURRENT NEURAL NETWORK MODEL FOR
HAR
The framework of sensor-based activity recognition using
LSTM models as shown in Fig. 2. First, mobile devices are
used to collect signal data from various sensors. Then, the
collected sensory data are used to train the devised many-
vs-one LSTM recurrent neural network models. Finally, the
trained LSTM model is used to recognize various types of
human activities such as running and walking. In this work,
we mainly focus on optimizing the loss function, thus, utiliz-
ing many-vs-one LSTM models to recognize different types
of human activities on public HAR datasets rather than collect
sensor-based activity recognition signal data.

B. LABEL REPLICATION METHOD
Given the collected sensory data are sequential, hence, repre-
sentative LSTMmodel is usually used tomatch and recognize
the actions performed by a user, as shown in Fig. 1. It passes
all inputs in sequential order, which only generates one output
and one error at the final sequence step. Thus, the final error
calculated at the final sequence step is the average of the batch
loss calculated on each example separately can be represented
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FIGURE 2. Framework of sensor-based activity recognition using LSTM.

as follows:

Loss(p,q) =
1
|M |

l=M∑
l=1

−ql logpl (1)

p and q represent predicted labels and true labels, and M
denotes batch size.

One common shortcoming is that classical LSTM models
(Fig. 1) must learn to deliver fruitful information across
sequence steps, in order to obtain the expected outputs. How-
ever, this architecture ignores the effects of local errors of
intermediate sequence steps except for last sequence step.
To this end, we replicate the static labels at each sequence
step as shown in Fig. 3(a). Thus, LSTM models can generate
local errors at every sequence step as shown in Fig. 3(b).
Researchers have proposed the improved loss function based
on label replication method, named convex loss [55], which
considers all local sequence errors equally in the training. The
convex loss is a convex combination of the final sequence loss
and the average of the all sequence losses can be written as
follows:

Lconvex = α ∗
1
T

T∑
t=1

losst + (1− α)lossT (2)

where T is the total number of sequence steps. α ∈ [0, 1] is a
hyper-parameter, which determines the relative importance of
intermediate predicted outputs. Although, the relative impor-
tance of intermediate outputs is unequal in the training phase,
Eq. 2 gives the same weights to intermediate predicted out-
puts. To tackle the above problem, getting inspiration from
the Ebbinghaus memory curve, we propose an improved loss
function named harmonic loss based on the harmonic series
equation and it would be described in the following section.

C. HARMONIC LOSS
To understand our harmonic loss thoroughly, we present
the concept of Ebbinghaus memory curve and the harmonic
series equation, and followed by detailed construction of
harmonic loss.

Memory is a particular process of remembering, maintain-
ing and recognizing for external information. Forgetting is an
unavoidable activation of the brain of humans in the process
of memory. According to the Ebbinghaus memory curve, the
forgetting rule of the human brain has a fixed rule and is
imbalanced. The forgetting speed is fast at first but gradually
slow later. Analogously, the learning process of many LSTM
cells only captures a few key information representations
through many sequences and filter out useless information in
sequence steps, and the final sequence output receives more
key information representations than other sequences. Hence,
the relative importance of local errors of different sequence
steps is unequal based on the label replication method as
shown in Fig. 3(b). Considering similarities between the
Ebbinghaus memory curve and the learning process of LSTM
cells, we intend to select a function like the Ebbinghaus
memory curve to set corresponding weights to different local
errors. Based on this idea, we associate the curve of harmonic
series equation is similar to the Ebbinghaus memory curve.
Hence, the harmonic series equation is selected, which can
be represented as following eq. 3 in fundamental math.

f (n) =
1
2
+

2
3
+

3
4
+ . . .+

1
n− 1

+
1
n

(3)

Based on the above idea, we propose an improved loss
named harmonic loss (HL), which is the sum of all weighted
local losses. Moreover, our harmonic loss can be computed
as the following equation:

Lharmonic =
T∑
t=1

1
T − t + 1

losst (4)

where 1/(T − t + 1) is the weight coefficient represents
different local losses of sequence steps, as shown in Fig. 3 (b).
In our harmonic loss, reverse constant coefficients of the har-
monic series equation are utilized to set weights for different
local losses, that is, the maximum weight is given to final
sequence loss and the minimum weight is given to the first
sequence loss. Moreover, the harmonic loss scales the propor-
tion of hard classified instances in total losses by summing of
all weighted local losses with voting strategy, while previous
worksmainly proposed static weight hyper-parameters of dif-
ferent predicted values to increase the loss of hard classified
instances in total losses. Therefore, the proposed harmonic
loss can avoid earlier sequence losses and easily classified
instances dominate the gradient in the training.

On the basis of the above analysis, our harmonic loss is
more able to predict hard classified examples (labels with
few examples) accurately than other previous works and
can improve the overall classification performance of HAR.
At the prediction phase, the LSTMmodel with harmonic loss
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FIGURE 3. (a) LSTM with label replication method, replicating true labels at each sequence step.(b) LSTM model with harmonic loss generates different
local losses at each sequence step.(c) Many-vs-one LSTM model generates different sequence outputs at each sequence step with label replication
method.

can generate one output at the final sequence step, and also
can generate multiple outputs.

D. INTEGRATED METHODS
As previously introduced, representative LSTM models for
HAR, as you can see from Fig. 1. It only generates an output
at the final sequence step for prediction, yet losing sight of
the effects of other sequence outputs for overall classification
performance. In the experiments, we find that the predicted
results of last several sequence outputs are well in addition
to the final sequence prediction result. Inspired by ensemble
learning strategy and our harmonic loss, four different inte-
grated methods are proposed to take use of sequence outputs
of LSTM models correspondingly. To achieve surpassing
classification performance, each sequence step can generate
an output for prediction at the prediction phase as shown in
Fig. 3(c).

First integrated method named equal adding (ED) method
and can be computed as follows:

OED = OT + OT−1 + OT−2 + · · · + OT−n+1 (5)

where T is the number of sequence steps, and n = 1, 2, 3,
. . . , T denotes number of sequence outputs are selected for
adding, mainly depending on overall classification perfor-
mance. In the equal adding (ED) method, each sequence out-
put has equal voting rights for final prediction results, which
is a shortcoming. Because selected sequence outputs has
unequal contributions for prediction in many-vs-one LSTM
models.

Given the shortcoming of ED, second integrated method
named harmonic adding (HD) method. Considering similar-
ity between our harmonic loss and the Ebbinghaus mem-
ory curve, harmonic series equation is used to set different
weights for different sequence outputs. HD can be repre-
sented by using eq. 6.

OHD =
1
2
OT +

1
3
OT−1 +

1
4
OT−2 + · · · +

1
n+ 1

OT−n+1

(6)

In eq. 6, we set the maximum weight to the final sequence
output and give smaller weights to intermediate sequence
output with the reverse harmonic series equation. The num-
ber of sequence outputs is also determined by classification
results. For the HD, different outputs have unequal voting
rights to decide on the final prediction result, which conduce
to improve the overall classification results of HAR based on
LSTM models.

Third method is the voting method, where a process is
selected from sequence outputs of LSTM models to make
the final prediction by a simple majority voting. The voting
method makes the decision based on predicted labels rather
than the predicted probability distribution. Firstly, several
sequence outputs are selected depending on the experiment
results. Then combining these sequence outputs through the
voting process, offering the chance of correcting potential
errors by providing a diverse output space. Furthermore, the
voting method has the same shortcoming as the ED method
for HAR using many-vs-one LSTM models.

Last integrated method called model ensemble (ME),
which adds final sequence outputs of two simple LSTMmod-
els (a basic LSTM model and a basic GRU model) together,
and then makes the final prediction. ME is one of the most
widely used integrated methods for improving classification
performance in data Mining competition. Two simple LSTM
models utilize harmonic loss as loss function in the training.

E. EVALUATION MEASURES
Accuracy (ACC) is a common evaluation measure to assess
the performance of different methods, which is used to qual-
ify the probability for classifying each instance correctly. Eq.
(7) present the formula of accuracy:

ACC =

∑C
i=1 TPii
total

=

∑C
i=1 TPii∑C
i=1 BIi

=

∑C
i=1 TPii∑C
i=1 NIi

(7)

where TPii is the number of correctly classified instances for
the inferred label i, NIi refers to the total number of instances
that are classified as label i, and total indicates the total
number of test samples.
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However, accuracy cannot reflect the overall classification
performance of a method well. For example, a method may
achieve high accuracy on an HAR task, nevertheless, classifi-
cation results of some human actions are very poor, which is a
common phenomenon on imbalanced HAR datasets. Hence,
to assess the overall classification performance of all methods
comprehensively, F1 score is also utilized to assess the overall
classification performance of all methods. F1 is the harmonic
mean of precision and recall, which is an important evaluation
measure in the research domain of data mining. F1 can be
calculated with Eq. 8:

F1 =
2 ∗ precision ∗ recall
precision+ recall

. (8)

According to reference [19], macro-F1 and weighted-F1
are able to evaluate the overall classification results better
than accuracy. Furthermore, macro-F1 is more important than
weighted-F1, which is better to assess overall classification
performance of amethod thoroughly, especial for label imbal-
ance problem. Fm and Fw can be represented as the following
equations:

Fm =
2
|c|

∑
c

precc ∗ recallc
precc + recallc

(9)

Fw = 2
∑
c

Nc
Ntotall

precc ∗ recallc
precc + recallc

. (10)

where, c denotes the classes of human activities, Nc is the
number of instances in class c, and Ntotal is the total number
of instances. Therefore, accuracy, macro-F1 and weighted-F1
are used as evaluation measures in this work.

IV. EXPERIMENTS
In this section, two public HAR datasets are firstly described,
then the construction of LSTMmodels, baselines, and param-
eter settings of integrated methods are presented.

A. DATASETS
To evaluate the effectiveness of our proposed methods thor-
oughly, we conduct all experiments on two common HAR
benchmarks: the public domain UCI dataset (balanced) and
the Opportunity dataset (imbalanced). Both benchmarks con-
tain most human activities to reflect real life, and enable to
abstract features and labels for modeling.

1) PUBLIC DOMAIN UCI DATASET
The dataset was collected from a group of 30 volunteers
with ages ranging from 19 to 48 years. Each volunteer was
instructed to perform six daily living activities (standing, sit-
ting, laying down, walking, walking downstairs and upstairs)
while wearing a smartphone on the waist. The powerful ambi-
ent sensors accelerometer and gyroscope of the smartphone
were able to collect tri-axial linear acceleration and tri-axial
velocity signals at a sampling rate of 50Hz. Then collected
sensor signals were sampled in fixed-width sliding windows
of 2.56 second and each window contained 128 time steps.

The dataset is randomly partitioned into two independent sets:
70% of the data were selected for generating the training
data and the remaining 30% of the data were selected for
generating the testing data.

2) OPPORTUNITY DATASET
The Opportunity dataset is another benchmark dataset for
evaluating human activity recognition algorithms, which
comprises most daily living activities coming from the real
environment with collecting diverse sensor data [17]. In this
work, ‘‘OPPORTUNITY Activity Recognition Challenge’’
subset is used for HAR, which contains 3 subjects and 6 runs
per subject. The Run 4 and Run 5 for Subjects 2 and 3 are
selected as the testing data, and the others are selected as
the training set. This subset includes 17 different mid-level
gesture classes and a ‘‘NULL’’ class. Since collected sensor
data is transferred by the wireless network, which may cause
missing data, the linear interpolation method is used to fill
missing data. For the above two public datasets, we use the
same data preprocessing methods to preprocess the datasets
as previous works in [22].

B. BASELINES
To verify the effectiveness of the proposed methods, we con-
duct experiments on two common RNNmodels. The first one
is a simple LSTMRNNmodel, and another one is GRURNN
model, which is a variant of LSTM. Both LSTM and GRU
models are the most used recurrent neural network archi-
tectures for modeling sequential data. Each LSTM model
has 2 two layers and each layer has 32 neural units in this
work, which is the same with previous work [22].

The values of learning rate range from 0.001 to 0.0035,
batch size is set for 500, and all methods running itera-
tions ranging from 700 to 1200 in the training. Furthermore,
we set the best results in advance and the early stop trick is
used in the training for all methods. The proposed harmonic
loss is compared with the following baselines based on two
above-mentioned LSTM models.

Convex Loss: which is a convex combination of the final
loss and the average of all sequence losses [55].

Focal Loss: which scales loss of incorrectly predicted
instances with a factor disproportional to the predicted prob-
ability [56].

COT: it is a complement objective training method by
utilizing cross entropy loss and complement entropy loss
together [57].

Vanilla:which uses the original cross entropy loss function
without adding extra penalty parameters [58].

L2 Norm: which is a combination of the original cross
entropy loss and L2 norm [59].

L1 Norm: which is a combination of the original cross
entropy loss and L1 norm [60].

L1&L2 Norm: which uses the original cross entropy loss
with adding L1 norm and L2 norm [59].

Static Scaling: which scales the loss of small labels with
a constant. This method is simple but effective [61].

135622 VOLUME 8, 2020



Y. Hu et al.: HL Function for Sensor-Based HAR Based on LSTM RNNs

TABLE 1. Experimental results of different loss functions on two public datasets.

Additionally, experiment settings for four ensemble meth-
ods as follows:Equal Adding (ED) method only selects last
two sequence outputs for comparison based on experiment
results. For harmonic adding (HD) method, last two sequence
outputs and all sequence outputs are selected, named HD_2
and HD_all correspondingly. For voting method, last three
sequence outputs are selected. The above three integrated
methods only use basic LSTMmodels.Themodel ensemble is
an integration of two baseline LSTM models (simple LSTM
and GRU). Furthermore, the best running results of each
algorithm are reported for comparison.

V. RESULTS ANALYSIS AND DISCUSSION
A. HYPER-PARAMETER RESULT ANALYSIS
Fig. 4 presents the accuracies of learning rate and batch size
based on the basic LSTM model with harmonic loss over the
public UCI dataset. Fig.4(a) shows the results of different
learning rates, the basic LSTM achieves the best accuracy
when the learning rate is set for 0.0035, but gaps among
different learning rate are small. Hence, we set the initial
learning rate for 0.001 and change the learning rate dynam-
ically when the network stops improving accuracy after five
epochs. In the experiments, we set the range of learning rates
from 0.001 to 0.005. Fig.4(b) gives the accuracy of batch size,
the basic LSTM achieve outperforms other batch sizes when

we set batch size for 500. It is very difficult and challenging
to set proper batch size, because it is associated with many
factors, such the sampling distribution of each batch size,
label distribution, loss function, and learning rate. In the
following experiments, we adopt the same batch size and the
learning rate for all loss functions.

B. PERFORMANCE COMPARISON OF LOSS FUNCTIONS
Table 1 presents experimental results of different loss func-
tions on both public HAR datasets over two LSTM mod-
els. Furthermore, to compare the overall classification per-
formance of different loss functions visually, Fig. 5 gives
compared results of all loss functions on three evaluation
measures.

From Table 1 and Fig. 5, it can be concluded that compared
with the vanilla, all other losses show different improve-
ments on three evaluation measures. Especially, the harmonic
loss achieves the best classification performance. Moreover,
our harmonic loss achieves similar improvements on accu-
racy and weighted-F1 on both datasets over both models
and increases by approximately 0.7% through comparison to
other advanced losses. Macro F1 is an important indicator for
assessing the overall classification performance of a method
as above mentioned. Macro-F1 of all methods is smaller than
accuracy and weighted-F1 on the Opportunity dataset as you
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FIGURE 4. Performance comparison of different hyperparameters.

can see from Table 1 and Fig. 5. Label imbalanced problem of
the Opportunity dataset can answer for the results of macro-
F1, and the largest class imbalance between two classes is
137-fold. Our harmonic loss achieves the best macro-F1 with
only 57.52% and 57.67% on the Opportunity dataset over
two LSTM models correspondingly, which increases about
2% than other compared methods, but it still has huge room
for improvement in the future. According to the results of
harmonic loss, it shows that our harmonic loss not only
takes all local errors into consideration but also avoids early
local errors dominate the maximum proportion of loss by the
harmonic series equation.

Given expeimental results of Table 1 and Fig. 5, Norm
technique is unable to achieve competitive performance,
because it cannot handle the over-fitting problem efficiently
by increasing the sparsity of weights of hidden layers. Focal
loss cannot achieve expected results, likely since the dataset is
not large, and hyper-parameters of focal loss is not optimum,
which are difficult to set. Earlier sequence losses occupy
the most proportion of the convex loss, which indicates that
convex loss cannot achieve the performance as we expect.
Additionally, our harmonic loss is distinct from convex loss,
which gives different importance to each sequence loss by
setting corresponding weights via harmonic series equation.
The LSTM gets better performance than the GRU on the
public domain UCI dataset in general, however, the GRU
gets better performance than the LSTM on the Opportunity

FIGURE 5. Result comparison of loss functions.

FIGURE 6. Box plots of five different methods.

dataset. It shows different LSTM models can not achieve
excellent results on all datasets, but the proposed harmonic
loss works well.

C. STABILITY ANALYSIS OF LOSS FUNCTIONS
Fig. 6 shows the plot box of our harmonic loss and four
advanced loss functions with macro-F1 on both datasets.
It can be inferred that all contrastive methods have analo-
gous fluctuation, which also indicates that it is difficult to
train LSTM models. Based on the experimental results, our
harmonic loss and convex loss has the smallest fluctuation
of macro-F1. However, focal loss has the biggest fluctuation
of weighted-F1. The mean macro-F1 of harmonic loss is
92.01% on the public UCI dataset, which is higher than other
baselines. Furthermore, it can be seen that all methods are
more unstable on the Opportunity dataset and the results are
poor because data distribution is skewed.

Static scaling sets the importance of different classes stati-
cally in the entire training. However, the relative importance
of different labels changes with every iteration dynamically
in the training, subsequently, static scaling cannot achieve
stable performance in the training procedure. Though focal
loss uses themodulating factor to change theweights between
correctly classified classes and incorrectly classified classes,
the tunable focusing parameter of the modulating factor is
set manually, which can result in instability. Harmonic loss
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FIGURE 7. Comparison of four integrated methods based on baseline
LSTM model.

and convex loss are capable of changing the importance of
different classes in different phases of training via sum pre-
dicted errors of sequence steps. However, the earlier sequence
losses of convex loss dominate the gradient, which makes
it ignore the importance of later sequence losses easily. But
our proposed harmonic loss manages to handle it by giving
unequal weights, which conduces to the stability and the
improvement of classification performance.

D. PERFORMANCE COMPARISON OF INTEGRATED
METHODS
Fig. 7 presents the macro-F1 of four output integrated meth-
ods on both datasets. HL denotes the LSTM model with
harmonic loss. HD_2 and HD_all denote harmonic adding
method, and the main difference between them is the number
of sequence outputs is unequal. Model ensemble method
achieves the best macro-F1 with 93.87% and 58.14% on
both public benchmarks, which demonstrates that introducing
ensemble learning strategy to exploit the advantages of basic
LSTM model is an effective method to get promising overall
classification performance. HD_all method gets the worst
performance among all methods on the public domain UCI
dataset, and voting method achieves the worse performance
than other methods on the Opportunity dataset. Harmonic
adding methods do not get expected performance, though the
performance of HD_2 and HL is similar.

E. PERFORMANCE COMPARISONS OF STATE-OF-ART
METHODS
Table 2 presents the HAR results of the proposed methods
in this work and previous state-of-art methods. In general,
the proposed methods outperform most previous state-of-
art methods about 1.2%. The proposed ensemble method
achieves the best accuracy with 93.79% on the public UCI
dataset and the best weighted-F1 with 90.36% on the Oppor-
tunity dataset, which is a simple ensemble of two baseline
LSTMmodels based on the harmonic loss. Our harmonic loss
based on the baseline LSTMmodel gets 92.98% accuracy on
the public UCI dataset, and also gets 89.57% weighted-F1 on
the Opportunity dataset respectively. It outperforms the base-
line LSTMmodel by approximately 1.5%on two public HAR
datasets without devising complex LSTMmodels. Moreover,
compared with advanced variants of LSTM models (Bidir-
LSTM and deep Res-LSTM), our harmonic loss enables the
baseline LSTM model to achieve competitive performance,

TABLE 2. Comparison of this work and existing methods.

which also demonstrates the effectiveness of the proposed
harmonic loss. One likely reason to explain that the proposed
harmonic loss increases the proportion of easily incorrect
classes dynamically in the training phase, which not only
takes all local sequence errors into accounts but also considers
the relative importance of different local errors. Hence, How
to exploit sequential outputs of many-vs-one LSTM models
for boosting the performance of HAR is a possible research
direction, because it has not been studied seriously.

In the future, we can apply RNN models with harmonic
loss to process other stream data such as electrocardio-
graph (ECG) signals, electroencephalogram (EEG) signals,
and clinical time series data, because harmonic loss can make
RNN models gain better classification performance. In the
future, we will apply complex RNN models and CNN-RNN
models to test the performance of the proposed harmonic loss.

VI. CONCLUSION AND FUTURE WORK
To achieve competitive overall classification performance of
HAR with simple LSTM models, label replication method,
harmonic loss, and integrated methods are studied in this
work. We apply the label replication method to replicate
true labels at each sequence step of LSTM models. Based
on the label replication method, an improved loss function
named harmonic loss is introduced, which not only takes all
local sequence errors into accounts but also considers the
relative importance of different local errors in the training.
Then integrated methods based on ensemble learning strat-
egy and harmonic loss are presented and analyzed. Finally,
after introducing the experiment environment setup, HAR
datasets, the construction of LSTM models, baselines, the
parameters of integrated methods are provided, and extensive
experiments are conducted. Experiment results demonstrate
that, compared with focal loss, convex loss, and static scaling,
our harmonic loss can not only achieve higher results of
three evaluation measures but also achieve greater stability.
Furthermore, our proposed methods also surpass previous
state-of-art methods.

In the future, the improved harmonic loss functions and
other novel loss functions will be proposed for both CNNs
and RNNs to improve the classification performance of dif-
ferent learning tasks.
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