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ABSTRACT The existing research demonstrates that the link prediction algorithm which based on com-
munity similarity has better prediction performance than that of other node similarity-based methods, and it
is more suitable for predicting the probability of the missing links between node-pairs with far distance.
However, the disadvantage of these community similarity-based methods is the resolution of prediction
accuracy is very low, which resulting in the existence probability of the missing links between node-pairs
within a community or between a specific pair of communities is the same. In addition, the link prediction
algorithms which based on multi-resolution community division can calculate the existence probability of
missing links under different resolutions, but the relevance between communities had not taken into account,
which makes it difficult to predict the existence probability of target links if the number of interconnections
between communities is small. Combining the advantages of these two algorithms, we propose a more
realistic link prediction model which based on a novel quasi-local community relevance index under
multi-resolution community division. The performance of our algorithms is demonstrated by comparing with
other well-known methods on two kinds of networks in different scales. The experiment results indicate that
our approaches are very competitive.

INDEX TERMS Link prediction, complex networks, community relevance, multi-resolution community
division.

I. INTRODUCTION
Now with the increasing applications of big data and large-
scale network communication in our life, the influence of
internet on people’s life is greater than before. Users are
eager to get effective recommendations in their life, so more
attention has been put on the improvement of link prediction
algorithms which as the supporting technology [1]–[3] in
recommendation systems. Designing a fast and accurate pre-
diction algorithm is extremely necessary. Nowadays, some
link prediction algorithms have been proposed. Those meth-
ods were classified into five categories such as similarity-
based methods, maximum likelihood-based methods, graph
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representation-based methods, graph neural network-based
methods and community-based algorithms.

The similarity-based methods are the most commonly
used methods for link prediction. In despite of its simplicity,
the study on similarity-based algorithms is the mainstream
issue. In fact, the definition of node similarity is a non-
trivial challenge. Similarity index can be very simple or
very complicated and it may work well for some networks
while fails for some others. Similarity-based algorithms are
inspired by node similarity and structural similarity. The idea
of node similarity is quite straightforward: two nodes are
similar if they share many common features [4]. However,
the attributes of nodes are generally hidden. Therefor we
focus on another group of similarity indices which named
structural similarity indices. The structural similarity indices
based solely on the network structure. They can be divided
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into two categories: local similarity indices [5]–[8] and global
similarity indices [9]–[11]. The link prediction algorithm
based on local similarity with low time complexity, but its
prediction accuracy is not good enough. On the contrary,
the link prediction algorithm based on global similarity is of
high prediction accuracy, but its time complexity is high too.

Maximum likelihood-based methods often try to describe
the network structure with some likelihood model. This
kind of algorithms is able to describe the hierarchical
organization structure and community structure of the net-
works [12]–[14]. However, the runtime of this kind of algo-
rithms increase exponentially along with the number of
vertices increases.

Graph representation-based methods pay more attention
to the characteristics of the network. Most of the traditional
machine learning methods try to classify the non-existence
edges according to the labels of the observed edges by
extracting the structural features of the network [15], [16].
In order to improve the computational efficiency of the graph
algorithm, some scholars have proposed the graph embedding
techniques that represent a graph as a low dimensional vector,
and they are successfully applied in the link prediction prob-
lem [17]–[21]. However, this kind of graph embedding meth-
ods also has its own drawbacks, because the accumulation of
error functions in the model will result in the phenomenon
of gradient explosion and gradient disappearance, moreover,
the performance of this kind of methods is sensitive to the
initial node selection.

Because that the graph neural network model can preserve
the structural characteristics of the network very well, some
link prediction algorithms based on graph neural network
model have been proposed recently [22]–[24]. However,
although this kind of methods considers some neighborhood
information of the network, the topological structure of the
graph is not fully utilized. In addition, the networks with too
few connections cannot be predicted.

Most of the link prediction algorithms mentioned before
try to predict the probability of missing links from the micro
perspective of the network. There is also a kind of algorithms
try to predict the link probability from the middle perspec-
tive of the network, that is the community structure-based
link prediction algorithms [25]–[27]. This kind of algo-
rithms assumes that links in the same community nodes
are more similar and have higher existing probability than
links between different community nodes, moreover, they
are improved by taking into account the association between
communities. However, the performance of this kind of meth-
ods is limited by the resolution of community division, and
such algorithms are failed when the community structure of
the network is not good enough.

In this paper, the main objects of our study are undi-
rected unweighted networks. In view of the defects of
the predictive algorithms based on community structure,
we attempt to propose a more realistic link prediction model
based on a novel quasi-local community relevance index
under multi-resolution community division. In addition,

a quantitative analysis is made to explain the performance
ranking of the proposed algorithms.

The contributions of this work are:
1) Combined the link prediction model which based on

community relevance with the link prediction model which
based on multi-resolution community division to overcome
the low-resolution prediction of the traditional link prediction
model, and the new model is more realistic.

2) A novel quasi-local community relevance metric is pro-
posed to improve the prediction accuracy of the link predic-
tion algorithms.

3) The proposed algorithms can be used not only to distin-
guish the probability of the missing links between node-pairs
within a community or between a specific pair of communi-
ties, but also to predict the probability of the missing links
between node-pairs with far distance.

The rest of the paper is organized as follows:
Section 2 introduces the related work. Section 3 describes

the problem formulation. Section 4 introduces the novel link
prediction approach and explains the new community rele-
vance indices. The experiments and analyses are provided in
Section 5. Finally, Section 6 concludes the paper with some
discussions and promising future work.

II. RELATED WORK
It is difficult to avoid the errors or redundant edges in net-
works when we reconstruct the complex systems in the real
world. Some missing links in a static network need us to find
out [28], in the meantime, some potential connections which
will appear in the future also need us to predict in a dynamic
network [29], [30]. This is the purpose of the network link
prediction [31], [32].

Since Newman proposed the similarity index Common
Neighbors (CN) for missing links prediction in 2001 [5], lots
of well-known indices based on structural similarity appear.
such as Preferential Attachment (PA) [5], Adamic–Adar
(AA) [7] and Resource Allocation (RA) [8]. All of them
are local similarity indices with low time complexity. Duo
to their low prediction accuracy, Leicht proposed another
similarity index which named Leicht–Holme–Newman Index
(LHN2) [10] in 2006. This is a global similarity index which
has an obvious improvement in prediction accuracy. But its
time complexity is high too. Later, some global similarity
indices are proposed, such as Katz Index [9] and Local
Path Index (LP) [8], [11]. In 2008, Stochastic Block Model
(SBM) [13], [14] is proposed by Airoldi. It is a maximum
likelihood-based method and is able to describe the commu-
nity structure of networks, but the whole process of SBM
is very time consuming and it is impossible to sum over all
partitions even in a small network. Then, some scholars have
proposed the graph embedding techniques that represent a
graph as a low dimensional vector, and they are successfully
applied in the link prediction. For example, Node2vec meth-
ods which proposed by Grover in 2016 implicitly preserve
higher order proximity between nodes by generating multiple
random walks which connect nodes at various distances due

113982 VOLUME 8, 2020



J. Ding et al.: Multi-Resolution Prediction Model Based on CR for Missing Links Prediction

to its stochastic nature [18]. SDNE algorithmwhich proposed
by Wang in 2016 utilize the ability of deep auto-encoder
which is modeling non-linear structure in the data to gen-
erate an embedding model that can capture non-linearity in
graphs [20]. Because that the graph neural network model
can preserve the structural characteristics of the network
very well, some link prediction algorithms based on graph
neural network model have been proposed recently. Zhang et.
proposed an algorithm (SEAL) in 2018 [23]. By extracting
a local subgraph around each target link, they aim to learn a
functionmapping the subgraph patterns to link existence, thus
automatically learning a ‘‘heuristic’’ that suits the current net-
work. Pan et. proposed a novel adversarial graph embedding
framework (ARVGA) for graph data in 2019 [24]. They have
mostly considered the data distribution of the latent codes
from the graphs, which often results in inferior embedding
in real-world graph data.

Since Yan proved that the community structure of the
network is significant for link prediction in their paper
which published in PLE in 2012 [25], a new kind of link
prediction algorithms based on network community struc-
ture has appeared. For example, an algorithm based on the
multi-resolution community structure information of the net-
work was proposed by Ding in 2014 [26]. This method fully
considers the multi-resolution community structure informa-
tion in setting the prediction parameters, but it is not suitable
for predicting the existence probability of target links if the
number of interconnections between communities is small
because it doesn’t consider the relevance of the communities.
Then, a link prediction method based on the community
relevance is proposed in 2016 [27]. Compared with other
community structure-based prediction methods, this method
is highly efficient because it only considers the local informa-
tion of the network in computing the community relevance
matrix. However, the advantages of prediction accuracy are
not obvious. In addition, the performance of this method is
limited by the low resolutions, because in the proposed meth-
ods node-pairs within a community or between a specific pair
of communities will achieve the same score. Later, Shashank
proposed a community-based link prediction method by con-
sidering the utility and effect of information diffusion in
network in 2020 [33]. It is proved that community structure
information combined with information dissemination can
improve the prediction performance. However, this algorithm
only considers the influence probabilities among the users
when dividing the community structure, it doesn’t consider
the relevance among communities too.
Motivation: The traditional community structure-based

algorithms which take into account the relevance between
different communities are suitable for predicting the exis-
tence probability of target links if the number of interconnec-
tions between communities is small. However, the prediction
resolution of this community similarity-based methods is
very low, which result in the existence probability of the
missing links between node-pairs within a community or
between a specific pair of communities is the same. In order

to retain the predictability of the methods for the target
links with far distance and overcome the disadvantage of
low-resolution of the traditional community relevance-based
methods, we combine the multi-resolution community divi-
sion model and the traditional community relevance-based
methods to propose a more realistic link prediction model
which based on a novel quasi-local community relevance
index under multi-resolution community division.

It takes into account the multi-resolution community struc-
ture of the network and uses the relationship between dif-
ferent communities to predict the missing connections. Our
method is not only applicable to predict the existence prob-
ability of target links if the number of interconnections
between communities is small, but also applicable to accurate
predict the existence probability of the missing links between
node-pairs within a community or between a specific pair of
communities.

III. PROBLEM FORMULATION
Considering a network G = G(V ,E), where V is the set of
nodes and E is the set of undirected links. For simplicity,
we suppose that the network is unweighted, and multiple
links and self-connections are not allowed. Assuming that |V |
denotes the number of nodes, |E| denotes the number of links,
A = (aij)N×N denotes the adjacency matrix of the network.

A= (aij)N×N =

{
1, There is a link betwee n nodes i and j
0, There is no link between nodes i and j

(1)

The task of the link prediction algorithm is to predict the
existence probability of nonexistent link between node x and
node y, x, y ∈ V . The existence probability Pxy can be
represented by score Sxy. Given that the existence probability
of missing links is proportional to the community relevance.
So, we can construct a prediction model by using this propor-
tional relationship.

Pxy = Sxy (2)

Sxyx∈ci,y∈cj ∝ CRλ(ci, cj) (3)

where, CRλ(ci, cj), (i, j = 1, 2, . . . ,m) is a symmetric matrix
which represents the similarity between different communi-
ties. The value of the parameter λ determines the resolution
of the community division.

We adopt AUC, a standard metric, to quantify the perfor-
mance of different link prediction methods [34]. It is related
to the sensitivity (true positive rate) and specificity (true
negative rate) of a classifier [35]. The meaning of the formula
below is that among n independent comparisons, the proba-
bility that a randomly chosen missing link is given a higher
score than a randomly chosen nonexistent link. Here, n′ is
the number of the occurrences that the missing link having
a higher score and n

′′

is the number of the occurrences that
the missing link and nonexistent link having the same score.
Thus, the value of degree exceeds 1/2 indicates how much
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better the algorithm performs than pure chance.

AUC =
n′ + 0.5n

′′

n
(4)

In addition, we also use precision to quantify the performance
of different link predictionmethods [32]. Given the ranking of
the non-observed links, the precision is defined as the ratio of
relevant items selected to the number of items selected. The
precision is defined as follows:

P =
Lr
L

(5)

where L is the number of links as the predicted ones, Lr is the
number of links which are predicted right.

IV. ALGORITHM
After the problem formulation, then we explain our algo-
rithms in this section. There are three steps in this method.
Firstly, extract the multi-resolution community structure of
the network. Secondly, calculate the relevance of each pair of
communities under different resolutions and get the charac-
teristics of community structure. Finally, a simple prediction
model is applied to estimate the probability of the missing
links.

A. MULTI-RESOLUTION COMMUNITY DIVISION
As one of the most important characteristics of community
structure, community relevance is used in link prediction
problem [27]. However, the performance of this method
is limited by the low resolutions, because in the method
node-pairs within a community or between a specific pair of
communities will achieve the same score. In order to solve
the problem of low-resolution of this traditional community
relevance-based methods, we combine the multi-resolution
community division model and calculate the relevance of
communities under different resolutions to predict the proba-
bility of missing links.

The first step of our algorithm is extracting the community
structure of the network by using the community division
method. Here, we use the method based on the optimization
of modularity density to detect communities of the network
at different resolutions.

The modularity density Dλ is defined as follows [30]:

Dλ=
m∑
i=1

2λL(Vi,Vi)−2(1−λ)L(Vi,Vi)
|Vi|

, 0≤λ≤1 (6)

where L(Vi,Vi) is the number of the links inside the commu-
nity ci, L(Vi,Vi) is the number of the links between the nodes
in the community ci and the nodes out of the community
ci, |Vi| is the number of the nodes in the community ci,
the value of the parameter λ determines the resolution of the
community division.

The pseudo code of the community division algorithm
(MR-CD) is as follows:

Input: Network G = G(V ,E), λ.
Output: the community division of different resolutions
C = {{c1, c2, . . . , cm1}λ1 , {c1, c2, . . . , cm2}λ2 , . . . ,

{c1, c2, . . . , cmk }λk }

For λ = 0.1 : 0.1 : 1
Step 1: Initialize the communities. // N = |V |
C0 = {v1, v2, . . . , vN } // divide the communities by each

node.
For i = 1 : N
For each j ∈ 0(i) // 0(i) means the neighbors of the

node i.
If 1Dλ(j→ ci) ≥ 0
j ∈ ci// the gain of modularity density is positive,

then node j is placed in the community ci
End

End
End

Step 2: Rebuild the network
vi ← ci// The nodes of the new network are the

communities found from the first step.
Self-links = L(vi, vi) // The number of the links

between nodes in the same community
Between-links = L(vi, vi) // The number of the

links between nodes in the corresponding two communi-
ties.
Continue step 1

End

B. COMMUNITY RELEVANCE INDEX
After getting the community division results of the different
resolutions, we then need to calculate the similarity between
two different communities and get the symmetric community
relevance matrix CRλ(ci, cj), (i, j = 1, 2, . . . ,m). In this
paper, we extend local community relevance (CR) index
to quasi-local community relevance index which contained
more information of the network, both local and global infor-
mation, to improve the performance of the traditional CR
algorithm [27]. And propose three new indices which named
CR-Katz, CR-LHN2 and CR-LP.

The detailed definitions are as follows:
Definition 1 (CR-Katz): Follows the basic ideal that two

communities more relevant if they have more paths with
different length between them. This index is based on the
ensemble of paths, which directly sums over the collection
of paths and is exponentially damped by length to give the
shorter paths more weights.

CR(ci, cj)Katz =
n∑
l=1

β l ·

∣∣∣paths(ci, cj)<l>∣∣∣ (7)∣∣∣paths(ci, cj)<1>∣∣∣ = ∣∣(0(ci) ∪ V (ci)) ∩ V (cj)∣∣ (8)∣∣∣paths(ci, cj)<2>∣∣∣ = ∣∣(0(ci) ∪ V (ci)) ∩ (0(cj) ∪ V (cj))∣∣ (9)
CR(ci, cj)Katz =

∑
x∈ci,y∈cj

βAxy + β2A2xy + . . .+ β
nAnxy

(10)
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where, paths(ci, cj)<l> is the set of all paths of length l
connecting the community ci and the community cj, and β
is a free parameter controlling the path weights. A = [axy] is
the adjacency matrix of the communities. Note that, for the
previous community similarity-based algorithms, if commu-
nity x and community y are connected in the network, then
axy = 1, otherwise axy = 0. This setting ignores the influence
of connection density within and between communities on
the predicted results. Our proposed method is different from
the previous community similarity algorithm. Here A is a
matrix which the diagonal elements are not 0 but equal to the
number of links in the same community. For example, A11
is the number of links in the community c1, and A12 is the
number of links between the communities c1 and c2.
β must be lower than the reciprocal of the largest eigen-

value of matrix A to ensure the convergence of Eq. 9. So,
β < 1/

λmax
, and λmax is the maximum eigenvalue of A [32].

The value of parameter n indicates the range of network
structure information used by the index.
Definition 2 (CR-LHN2): This index is a variant of the

CR-Katz index. Based on the concept that two communities
are similar if their immediate neighbors are themselves simi-
lar, one obtains a self-consistent matrix formulation.

CR(ci, cj)LHN2
= ψ

∑
x∈ci,y∈cj

I + βAxy + β2A2xy . . .+ β
nAnxy

(11)

where ψ and β are free parameters controlling the balance
between the two components of the similarity. ThematrixA is
the same as definition 1 and the value of parameter n indicates
the range of network structure information used by the index.
Definition 3 (CR-LP): To provide a good tradeoff of accu-

racy and computational complexity, we here introduce an
index that takes consideration of local paths.

CR(ci, cj)LP =
∑

x∈ci,y∈cj

A2xy + . . .+ βA
3
xy (12)

where, β is a free parameter like the ones above.

C. PREDICTION MODEL
As know that there is of great relationship between the
strength of community relevance and the existence probabil-
ity of missing links. So, we can construct a prediction model
by using this relationship.

Sxy = Predictx∈ci,y∈cj (
k∑
λ=1

αλ · CRλ(ci, cj)) (13)

Where,
k∑
λ=1

αλ = 1 (14)

Here, αλ is a parameter that represents the importance
of CRλ(ci, cj) to Sxy under different λ. It is known that the
higher the resolution of the community division, the greater
the influence of this community relevance on the prediction
results [26]. Therefore, with the increase of λ, the resolution

of community partition becomes higher, and the correspond-
ing weight α is larger.

The pseudo code of the link prediction algorithm
(MLCD-LP) is as follows:

Input: the community division of different resolutions
C = {{c1, c2, . . . , cm1}λ1 , {c1, c2, . . . , cm2}λ2 , . . . ,

{c1, c2, . . . , cmk }λk }
Output: An array of existence probability [i, j, Svivj ] of the
missing links in the network G

Step 1: Calculate the community relevance matrices
For each {c1, c2, . . . , cmi}λi , i = 1 : k

LSCR(x, y)λi = CR(cx , cy); // The relevance
between different communities is equal to the value of
community relevance indices.

LSCR(x, x)λi = 1; // The self-relevance of each
community is 1.
end

Step 2: Predict the existence probability of the missing
links
If x ∈ cx , y ∈ cy

Sxy =
k∑
i=1
αλi · LSCR(x, y)λi ,

k∑
i=1
αλi = 1; // The exis-

tence probability of the missing links is proportional to
the relevance of the communities in which the nodes are
located.
End

V. EXPERIMENTS
In this section, we evaluate our proposed algorithm in terms
of validity, parameter analysis and time complexity. In addi-
tion, we also compared with other similarity-based methods,
maximum likelihood-based methods, graph representation-
based methods, graph neural network-based methods and
community-based algorithms to verify the predictive accu-
racy of our algorithm by experiment on benchmark net-
works and real-world networks. The compared algorithms
are Katz, LHN2, LP, Stochastic Block Model (SBM), Struc-
tural Perturbation Method (SPM) [36], node2vec, SEAL,
ARVGA, Yan’s algorithm, CLP-ID and the algorithms which
based on community relevance. The benchmark networks
we used in this section is Lancichinetti-Fortunato-Radicchl
(LFR) benchmark dataset [37], [38], which is 100, 1000 and
10000 in size, respectively. The real networks for testing are
electrical power-grid network of the western US (power),
Ssc network, protein-protein interaction network (protein),
co-authorship network of scientists (netscience), Amazon
e-commerce network (amazon) and PGP network [39], which
listed in TABLE 1. Where N is the number of nodes, E is
the number of edges, Q is the modularity of the network,
< k > is the average degree of the nodes, C is the clustering
coefficient, d is the average path length of the network [39],
and λmax is the maximum eigenvalue of the matrix A. d = inf
indicate the network is a disconnected network.
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TABLE 1. Parameters of the networks.

A. PARAMETERS ANALYSIS
In the fourth chapter, the requirement of the index CR-Katz
is the parameter β < 1/

λmax
to ensure the convergence of

Eq. 10, here, λmax is the maximum eigenvalue of thematrixA.
However, it is very time consuming to get the characteristic
value of the matrix in large network, so we hope to fix the
value of the parameter β. As show in table 1, we set the value
of β as β = 0.001 in the following experiments.

Our methods considered the path information of the net-
work, the smaller the average path of the network is, the better
the network connectivity is. Because that the farther path
away from the prediction link, the less influence on similarity
index. So in this paper we value the parameter n = dde, where
d represents the average path length of the network, it means
that we set β = 0 when n is greater than the average path
length of the network. We can find that most of the average
path length of the connected networks range from 2 to 3 [27],
so when the network is unconnected, which means d = inf,
we set n = 4.

For each network we use the 10-fold cross validation
method to create the training sets and testing sets. And then
we attempt to predict missing links based on the remaining
connections.

B. COMPARED WITH OTHER STATE-OF-ART METHODS
In this part, our proposed methods are mainly compared with
Katz, LHN2, LP, SBM, SPM, Node2vec, SEAL and ARVGA
algorithms. Firstly, the definitions of indices Katz, LHN2 and
LP are given here.
Katz Index: This index is based on the ensemble of all

paths, which directly sums over the collection of paths and
is exponentially damped by length.

SKatzxy = βAxy + β
2A2xy + β

3A3xy + . . . (15)

where β is a free parameter, and A is the adjacency matrix of
the network.
LHN2 Index: This index is a variant of the Katz index.

Based on the concept that two nodes are similar if their
immediate neighbors are themselves similar.

SLHN2
xy = ψ(I + φAxy + φ2A2xy + . . .) (16)

where ψ and φ are free parameters controlling the balance of
the similarity.

LP Index: To provide a good tradeoff of accuracy and
computational complexity.

SLPxy = A2xy + . . .+ εA
3
xy (17)

where ε is a free parameter, and this measure degenerates to
CN when ε = 0.

Then, the prediction results on the benchmark networks
which the number of nodes is 100, 1000 and 10000 are shown
in FIGURE 1. Here the parameter µ is 0.10, 0.20, 0.30,
0.40 and 0.50 respectively.

The figure 1 shows that the prediction accuracy of our
algorithms decreases with the increase of the parameterµ. It’s
because that the parameter µ determines the quality of com-
munity structure of the network. However, the performance
of our proposed algorithms is based on the results of com-
munity division. The community division will be inaccurate
if the community structure of the network is not good. So,
the performance of our algorithm will change for the worse
with the weakening of the network community structure.
Moreover, from the sub-figure (a) and (c), we find that
our proposed methods perform better than other compari-
son algorithms except the graph neural network-based algo-
rithms. It is because that the algorithms SEAL and ARVGA
also considered the neighborhood structure of the networks
in the process of training duo to their special structures.
However, they also have their disadvantages, that is the per-
formance is not good for the networks which are sparse.
This can be proved from the results in the Appendix A of
the supplementary material, for networks of the same size,
the smaller the average degree of the nodes is, the worse the
prediction performance of the algorithms SEAL and ARVGA
is. On the contrary, the performance of our algorithms is
good in the same case. It is because that our algorithms try
to predict the link probability from the middle perspective
of the network, and is taken into account the association
between communities, so it is more suitable for predicting
the existence probability of target links if the number of
interconnections between communities is small. In addition,
we can find that the variance of our proposed algorithms
is smaller than that of the comparison algorithms from the
results in the Appendix A.

From the sub-figure (b), (d) and (f), we find that the
Precision of our proposed methods is larger than other com-
parison algorithms. Here, the Precision is calculated by using
the formula (5), where the denominator L is the top 5% of
the probability ranking of the non-observed links. Even the
denominator is only 5% of the total predicted edges, it is still
a very large value compared with the numerator Lr , so, the
value of precision is very small.

Then, we attempt to verify the performance of these
algorithms in the real-world networks. FIGURE 2 shows the
histogram of mean and variance of prediction accuracy in
different networks. X-axis represents the different algo-
rithms. Y-axis represents the AUC & Variance and Precision
& Variance, respectively. This section only shows the predic-
tion accuracy on the Amazon and Power networks, and the
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FIGURE 1. The performance comparison of different algorithms on benchmark networks. The lines with different colors indicate
different algorithms. The red dashed line represents the CR-Katz algorithm; The green dashed line represents the CR-LHN2 algorithm;
The blue dashed line represents the CR-LP algorithm; The red solid line indicates the Katz algorithm; The green solid line represents
the LHN2 algorithm; The blue solid line represents the LP algorithm; The rose red dashed line represents the SBM algorithm; The black
dashed line indicates the SPM algorithm; The cyan dashed line indicates the Node2vec algorithm; The black solid line indicates the
SEAL algorithm; The cyan solid line indicates the ARVGA algorithm. (a), (b) show the results of benchmark networks. Here, N = 100,
< k >= 2,kmax = 4. (c), (d) N = 1000,< k >= 4,kmax = 10. (e), (f) N = 10000,< k >= 50,kmax = 125. Where N represents the
number of nodes, < k > represents the average degree of the nodes, kmax represents the maximum degree and µ is the mixing
parameter. In each subfigure the X axis represents the parameter µ, and Y axis represents AUC and Precision, respectively.

results of other networks can be found in the Appendix B of
the supplementary material.

From the FIGURE 2 we can see that the vari-
ance of our proposed algorithms is smaller than that
of the other comparison algorithms. In addition, the

prediction performance of our proposed algorithms is
better than that of other comparison algorithms except
the algorithms which based on graph neural network.
This is the same as previously speculated in benchmark
networks.
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FIGURE 2. The performance comparison of different algorithms on real-world networks. (a), (b) Show the results of Amazon
e-commerce network. Here, N = 2879 and E = 7772. (c), (d)Show the results of electrical power-grid of the western US. Here,
N = 4941 and E = 13188. In each subfigure the X axis represents different algorithms, and Y axis represents AUC & Variance and
Precision & Variance. The compared algorithms are CR-Katz, CR-LHN2, CR-LP, Katz, LHN2, LP, SBM, SPM, node2vec, SEAL and ARVGA
respectively.

In general, according to the results which obtained from
FIGURE 1, FIGURE 2, Appendix A and Appendix B,
it is found that the prediction accuracy values of our pro-
posed algorithms CR-Katz, CR-LHN2 and CR-LP are very
close. In addition, the prediction performance of our pro-
posed algorithms, including the AUC, Precision and the
variance, is better than that of other comparison algorithms
except the algorithms which based on graph neural network.
For sparse network, our proposed algorithms have more
advantages.

Then, we compare the performance of our algorithms with
other link prediction methods which based on community
structure of the network.

C. COMPARED WITH OTHER COMMUNITY
STRUCTURE-BASED ALGORITHMS
In this part, our proposed algorithms are mainly com-
pared with CP, CR-JC, CAR, Yan’s algorithm and CID-IP

algorithms. Firstly, the definitions of indices CR-JC and CAR
are given here.

CR-JC Index: It measures the probability that both ci and cj
share a common neighbors.

CR(ci, cj)CR−JC =

∣∣(0(ci) ∪ V (ci)) ∩ (0(cj) ∪ V (cj))∣∣∣∣(0(ci) ∪ V (ci)) ∪ (0(cj) ∪ V (cj))∣∣ (18)

where 0(ci) denotes the set of neighbors of community ci,
and V (ci) indicates the set of nodes in community ci.

CAR Index: It suggests that two nodes are more likely to
link together if their common-first-neighbors are members of
a strongly inner-linked cohort.

SCARxy = SCNxy ·
∑

z∈0(x)∩0(y)

|γ (z)|
2

(19)

where 0(x) denotes the set of neighbors of node x, γ (z)
refers to the sub-set of neighbors of z that are also common
neighbors of x and y.
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FIGURE 3. The performance comparison of different algorithms on benchmark networks. The lines with different colors indicate
different algorithms. The red dashed line represents the CR-Katz algorithm; The green dashed line represents the CR-LHN2 algorithm;
The blue dashed line represents the CR-LP algorithm; The red solid line indicates the CP algorithm; The green solid line represents the
CRJC algorithm; The blue solid line represents the CAR algorithm; The rose red dashed line represents the YAN’S algorithm; The black
dashed line indicates the CID-IP algorithm; (a), (b) show the results of benchmark networks. Here, N = 100,< k >= 2,kmax = 4. (c),
(d) N = 1000,< k >= 4,kmax = 10. (e), (f) N = 10000,< k >= 50,kmax = 125. Where N represents the number of nodes, < k >
represents the average degree of the nodes, kmax represents the maximum degree and µ is the mixing parameter. In each
subfigure the X axis represents the parameter µ, and Y axis represents AUC and Precision, respectively.

Then, the prediction results on the benchmark networks
and the real-world networks are shown in FINGURE 3
and FIGURE 4, respectively. The experimental settings are
similar to those above.

It can be seen from FIGURE 3 that when the number of
nodes is 100, the prediction results of algorithms CR-Katz,
CR-LHN2 and CR-LP are very close, so the AUC and Preci-
sion curves almost coincide. In addition, our algorithms have
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FIGURE 4. The performance comparison of different algorithms on real-world networks. (a), (b) Show the results of Amazon
e-commerce network. Here, N = 2879 and E = 7772. (c), (d)Show the results of electrical power-grid of the western US. Here, N = 4941
and E = 13188. In each subfigure the X axis represents different algorithms, and Y axis represents AUC & Variance and Precision &
Variance. The compared algorithms are CR-Katz, CR-LHN2, CR-LP, CP, CRJC, CAR, Yan’s algorithm and CID-IP algorithms, respectively.

advantages in prediction accuracy and variance by compared
with other algorithms. This conclusion can be proved by the
results in Appendix C of the supplementary material.

Then, we attempt to verify the performance of these algo-
rithms in the real-world networks. FIGURE 4 shows the
histogram of mean and variance of prediction accuracy in dif-
ferent networks. X-axis represents the different algorithms.
Y-axis represents the AUC & Variance and Precision &
Variance, respectively. This section only shows the prediction
accuracy on the Amazon and Power networks, and the results
of other networks can be found in the Appendix D of the
supplementary material.

In FIGURE 3 and FIGURE 4, we find that our algorithms
have obvious advantages in prediction accuracy by compar-
ing with the CRJC which only consider the local information
for calculating the community relevance index. Moreover,
in Amazon network, it is shown that the AUC of our proposed

algorithms is better than that of other algorithms, but the
Precision of our proposed method is not as good as that of
CID-IP algorithm. In Power network, both the AUC and the
Precision of our proposed algorithms are better than that of
other methods. In addition, the variance of our proposed algo-
rithms is smaller than that of the other comparison algorithms.
This conclusion can be proved by the results in Appendix D
of the supplementary material.

From FIGURE 1 to FIGURE 4, it is shown that the three
community relevance indices we defined in this paper also
have different performance. Each of them has good or bad
performance. Then, we analyze this phenomenon.

D. COMPARED OF THREE DIFFERENT COMMUNITY
INDICES
Compared these three community relevance indices,
CR-Katz performs the best, followed by CR-LHN2 and
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TABLE 2. Count the numbers of effective solutions in the community relevance matrixes by using different community relevance indices for the
benchmark networks when the observations is 90%, here 100_2_4 means N = 100, < k >= 2, kmax = 4 100_10_25 means N = 100, < k >= 10,
kmax = 25, 1000_4_10 means N = 1000, < k >= 4, kmax = 10, 1000_20_50 means N = 1000, < k >= 20, kmax = 50, 10000_50_125 means N = 10000,
< k >= 50, kmax = 125, 10000_200_500 means N = 10000, < k >= 200, kmax = 500, µ values from 0.1 to 0.5.

TABLE 3. Count the numbers of effective solutions in the community
relevance matrixes which we calculated according to the different
community relevance indices for the real networks when the
observations is 90%.

CR-LP. According to the principle of our proposed prediction
methods, we know that except over fitting, only the number
of effective solutions of the community relevance matrix is
abundant could ensure the prediction results accurate. Here
the effective solutions mean the elements in the community
relevance matrix whose value is not zero. For quantitative
analysis, we count the numbers of effective solutions of
the community relevance matrixes which obtained from the
community division when λ = 0.5. In TABLE 2 and
TABLE 3, we found that the predictive performance of the
three indicators is different because the numbers of effective
solutions in the community relevance matrixes are not the
same.

In TABLE 2, the number of effective solutions of the com-
munity relevance matrixes obtained by different community
relevance indices are the same when the number of the nodes

is 100, the corresponding prediction accuracy curves of the
three proposed algorithms almost coincide in figure 1 and
figure 3. With the increase of the number of nodes, the num-
ber of effective solutions is different. Among them, CR-Katz
index corresponds to more effective solutions. So, CR-Katz
performs the best, followed by CR-LHN2 and CR-LP. From
TABLE 3, we find that it is similar when we experiment on
real-world networks.

E. COMPUTATIONAL COMPLEXITY
The runtime of CR-Katz, CR-LHN2 and CR-LP are mainly
spent in the first and second processes. For a network with
N nodes, the time complexity of community division is
O(cN 2), where, c is the number of λ. In the process of calcu-
lating the community relevance matrix, the time complexity
is O(1) ∼ O(N 3). So, in the best case, the time complexity
of our algorithm is O(cN 2), and in the worst case, the time
complexity of our algorithm is O(cN 2

+ N 3).
Then, we summarize the time complexity of the algorithms

and show them in Table 4.

VI. CONCLUSION
In this paper, we combine the multi-resolution community
division model and the traditional community relevance-
based methods to propose a more realistic link prediction
model which based on a novel quasi-local community rele-
vance index under multi-resolution community division. This
realistic link prediction model can be used not only to pre-
dict the different probability of the missing links between
node-pairs within a community or between a specific pair of
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TABLE 4. The time complexity of the algorithms.

communities, but also to predict the probability of themissing
links between node-pairs with far distance.

The results show that the performance of our algorithm
will change for the worse with the weakening of the network
community structure. It is because that the performance of
the proposed algorithms is based on the results of community
division. The community division will be inaccurate if the
community structure of the network is not good. This inac-
curate leads to the deterioration of the prediction accuracy.
Therefore, the performance of our algorithm is sensitive to
the network community structure. Moreover, in the networks
with the same scale, the sparser the network is, the better
the prediction performance of the proposed algorithms is.
It is because that our algorithms try to predict the link prob-
ability from the middle perspective of the network, and is
taken into account the association between communities. So,
it is more suitable for predicting the existence probability
of target links if the number of interconnections between
communities is small. In addition, the prediction performance
of our proposed algorithms, including the AUC, Precision
and the variance, is better than that of other comparison
algorithms. According to the statistics of effective solutions
of the community relevance matrix, it is shown that CR-Katz
performs the best, followed by CR-LHN2 and CR-LP.
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