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ABSTRACT Affective human-robot interaction is still an active area of research in part due to the great
advances in artificial intelligence. Now, the design of autonomous devices that work in real therapeutic
environments has become a plausible reality. Affective human-robot interaction requires a robot to analyze
the emotional state of the human interlocutor and interpret emotional responses that can be used, not merely
in the interaction but, for example, to provoke desired therapeutic responses. It is, therefore, necessary to
broaden experimental techniques intomore realistic paradigms, where the capacity of emotion estimation can
be completely explored. This exploratory paper proposes a realistic experimental paradigm inwhich the robot
employs a dramatic story to evoke emotions in the users, and tests previously self-designed methodologies to
be able to make estimates of the users’ emotional state in real-time. Regardless of the multiple impediments
and restrictions, and all the aspects that could still be improved, this paper can outline the feasibility of the
proposed methodology in realistic scenarios.

INDEX TERMS Affective state, blood volume pressure, EEG, emotion estimation, face emotion recognition,
galvanic skin response, human-robot interaction, real-time.

I. INTRODUCTION
Affective HRI (Human-Robot Interaction) is one of the most
challenging tasks the research community is facing, but
recent technological advances allow for the development of
new attempts. The main objective of affective HRI is to build
intelligent systems that can adapt to the changing mood of
users, in order to enhance communication in real-time [1].
To cope with the lack of emotional connection between
humans and machines, emotion detection must meet some
requirements such as being automatic, reliable and adaptable.

Several social groups could benefit from the development
of affective HRI. This is the case for lonely elders, children
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with an autism spectrum disorder or people with limited capa-
bilities of communication. For many of them, communicating
emotions is a problem that could be solved by the help of
affective computing. For instance, using wearable sensors
for measuring their physiological responses with the addition
of an analysis of their behavioral responses, such as facial
expressions or body gestures, could improve the attention
given to the users by having a closer insight of their feelings,
and therefore, improve their quality of life and happiness.
For the case of autism spectrum disorder or children with
difficulties to express their emotions, affective HRI can be
used to allow them to express emotions through story-telling
strategies by remotely controlling a robot. As an example, the
use of puppets to help children learn how to express emotions
has been widely studied [2]–[4]. In that way, children could
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improve their expressiveness and therefore allow them to
integrate better in society. Regarding elders, a robot that
could understand their feelings could be an appropriate tool
to mitigate their loneliness. Therefore, it would be desirable
to develop a deep understanding of how robots can effectively
influence users’ emotions, both evoking and detecting them,
in order to be able to adapt to interactions dynamically and
effectively.

Emotion recognition is an interdisciplinary field that
requires knowledge from different domains such as psychol-
ogy, neuroscience, signal processing electronics, and artifi-
cial intelligence among others. It can be addressed with the
use of different types of signals. On one hand, physiological
signals such as electroencephalography (EEG), galvanic skin
response (GSR), or heart-rate variations by measuring blood
volume pressure (BVP) or by electrocardiogram, can be used.
These are internal signals which reflect the balance between
sympathetic and parasympathetic systems, as is the case for
BVP and GSR, while EEG manifests changes in the cortical
areas of the brain. On the other hand, there are externally
observable cues such as facial expressions, body gestures,
or speech. While the internal signals are considered to be
more objective due to the intrinsic properties of several func-
tional areas of the central nervous system, the external ones
remain as subjective measures of the expressed emotions,
which can be intentionally modulated or manifested as very
subtle changes, such as for facial expressions [5]. Taking
all of this into account, recent approaches tend to exploit
multiple sources in parallel [6].

Emotional models are needed to give users a homoge-
neous reference system for self-assessment of emotions, both
involved in the learning process and affective HRI. Histori-
cally, two main models have been developed which remain
controversial: the discrete emotional model, which assumes
that emotions are qualitatively differentiated neurophysio-
logical responses [7] that produce independent emotional
experiences; and the dimensional model, which assumes con-
tinuous quantified relationships among emotions [8]. For the
present paper, the dimensional model has been chosen, but
the assessment space is discrete, to simplify the number of
labels for the users to choose from [9], [10].

Research in emotion recognition involves a series of tasks
to be developed. It requires the definition of the set of sig-
nals to be chosen as sources of information. The correlation
between signals must be studied to better understand the
expression of emotions and, therefore, requires the develop-
ment of an adequate selection of stimuli and, more generally,
the causal model underlying the experimental design that
allows the generation of emotions. Finally, as detection is
one of the main objectives, feature extraction methods must
be developed and tested according to a set of algorithms for
statistical inference.

Regarding the selection of sources, EEG signals are con-
sidered a useful source, as they measure the brain responses,
reflected on the cerebral cortex, during emotion processing
[11], [12], both in perception and expression, and is sensible

to valence in the dimensional emotional model. GSR and
BVP signals, on the other hand, reflect the balance between
sympathetic and parasympathetic systems of the autonomic
nervous system. While GSR is mainly driven by the sympa-
thetic subsystem, BVP reflects the balance of both subsys-
tems. Both are sensitive to arousal [13] in the dimensional
emotional model. Finally, changes in facial expressions can
easily be measured using cameras and sometimes reflect
spontaneous changes in users’ emotions.

Regulation of emotions occurs as a result of close inter-
actions between various subsystems of the central nervous
system under behavioral demands to dynamically adapt to
changes in the environment in order to produce complex
behaviors. The interaction involves the autonomic system,
which alters the balance of the sympathetic and parasym-
pathetic systems which can be measured by BVP and GSR
signals. It also affects the prefrontal cortex and temporal lobes
which can be measured by EEG. Finally, facial expressions
are directly modulated by the amygdala’s innervations while
also guided by high-level behavioral intentions [14], [15].
As a result of those synergic interactions across the central
nervous system, respiratory and electrodermal activity in con-
junction with electroencephalographic and facial expression
measurements may thus provide the necessary information on
emotion processing [16]–[21], Fig. 1.

FIGURE 1. Brain areas. Graphical depiction of the inter-relations between
brain areas involved in emotion processing. (partially modified [22]).

In recent years, deep learning has attracted interest in this
field, as it has proven to have great results in the fields
of computer vision and natural language processing, mainly
due to the ability to learn high-level hierarchical representa-
tions [23]. As for the case at hand, several research studies
have tried to attack the problem by the use of multi-modal
sources which require the fusion of the information at hand.
This fusion strategy can be done at two different levels.
The first and easiest involves training a single model for
every single source and finally perform a score-level fusion.
The second and the hardest requires feature-level fusion in
order to allow the models to take advantage of the intrinsic
correlations among different sources but this is typically more
difficult as their representations are not always directly com-
patible. So the problem becomes to find a proper representa-
tion of the set of sources to exploit the information presented.
Moreover, such models must treat properly both temporal
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FIGURE 2. General electrophysiological and camera acquisition system for human-behavior recordings and processing in
real-time. Middle-Left: long-term view of EEG raw data acquired with the OpenBCI system. Middle-to-bottom-Left: BVP, GSR
and TMP signals acquired with the Empatica E4 device. Middle-Right: WebCam signal acquired using a self-customized
driver. Bottom-Right: short-term view of EEG signals for the selected temporal window and frequency/spectrogram plot.

and spatial representations in addition to the integration of
different types of data streams [24].

Previous studies have been carried out in dramatic environ-
ments, such as comedy or theater performances, measuring
the empathic responses of a group of volunteers, but the
employed HRI systems still lack the capability of dynam-
ically measure and adapt to users’ emotional responses.
The present paper involves a realistic scenario where a
robot dynamically drives users’ emotional responses by a
story-telling affective HRI. The robot sequentially presents
a series of stimuli, which are connected by a dramatic thread.
A dramatic story was created in order to allow the robot to
induce emotional changes on users, trying to compensate for
the lack of a simple implementation of a convincing android
facial expression. It is a matter of an existential story about
the nature of the human being, as a guide for the robotic
existence, to induce the users to reflect emotionally. The
robot’s story strategy covers fundamental existence dilemmas
such as love, nature-human relation, and war, among others.
The aim of this approach involves three main questions:

• Whether the effect of such an experimental emotional
driving paradigm can be measured over users’ phys-
iological responses, in a population-based exploratory
data analysis.

• At what extent each users’ emotional estimation can be
performed, based on the evoked properties of physiolog-
ical signals or facial expressions.

• Assess whether the affective HRI has produced an emo-
tional engagement, based on the subjective experience
of the users.

II. MATERIALS AND METHODS
The present paper aims to answer a set of questions. First,
to analyze the effect of affective HRI on the users’ physiolog-
ical responses by collecting data from physiological signals.
Second, to explore the plausibility of such an approximation
for the case of a real-time emotion estimation methodology in
terms of accuracy reports. Finally, to evaluate the subjective
experience of users regarding their emotional engagement
towards the affective HRI.

A. ACQUISITION SOFTWARE: GePHYCAM
To record and collect the data, a self-produced software,
GePHYCAM [25], is developed. This application looks
forward to being accessible to the whole scientific commu-
nity, providing a resourceful tool for human-behavior exper-
imental paradigms, covering the following functionalities
(see Fig. 2 and Fig. 3):
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FIGURE 3. Experimental design picture. Top-Left: EEG raw data acquired with the OpenBCI system. Top-Right: GSR and BVP
signals acquired with the Empatica E4 device.

1) Real-time acquisition and visualization of EEG, BVP,
GSR, TMP and WEBCAM signals.

2) Trigger synchronization by a TCP/IP interface which
allows start/stop recordings remotely.

3) Data recording on EDF (European Data Format) files for
electrophysiological signals and MP4 file format for the
audio-visual signals.

4) Online behavior labeling interface in which labels are
synchronized and stored on EDF files.

B. DATABASE
A total of 16 volunteers (5 male, 11 female) aged between
19 and 40, participated in the present study. Participants were
required to rate each scene of the dramatic story using the
Self-Assessment Manikin (SAM) on two discrete 3-point
scales, {NEGATIVE, NEUTRAL, POSITIVE} for valence
and {RELAXED, NEUTRAL, INTENSE} for arousal. Dur-
ing each of the key scenes of the experiment, a set of
iphysiological (EEG, BVP, GSR) and facial expression mea-
surements were performed with the use of the Empatica
E4 wristband, an OpenBCI system, and a standard webcam.
For the OpenBCI cap, four prefrontal and four temporal
electrodes, {F3, T7, P7, F7, F4, T8, P8, F8}, were used as
they proved to be the best areas for emotion estimation [9],
[10], [26], [27]. The Empatica E4 wristband was placed on
the non-dominant hand to avoid artifacts when users perform
self-assessment ratings.

Twelve different scenes, connected by a dramatic
thread, were created from audio-visual resources such as

documentaries and films, which were edited to accomplish
a series of requirements. Each scene must be longer than
one minute, to allow proper heart rate measurements, and
each scene must drive a constant emotion. The duration
(in seconds) of the scenes and the content are further
explained in Table 1. After each scene users must perform
self-assessment based on the two discrete valence and arousal
dimensions and, also, are required to express their current
emotions. The experiment is approximately 60 minutes long
as it depends on the time spent by each user to explain their
emotional responses after each scene.

TABLE 1. Story scenes specification. Time column is duration in seconds.
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FIGURE 4. Experimental design diagram.

The experiment is conducted entirely by a Pepper robot,
developed by SoftBank Robotics, after a prior prepa-
ration of the volunteer with the acquisition hardware
(see Fig. 4):
1) Pepper introduces itself to the volunteer and after a short

talk, asks the volunteer to rest with their eyes closed, for
one minute.
a) An explanatory message is shown in the chest tablet.

The volunteer has to activate that interaction by press-
ing on the screen of the tablet. During this interaction,
physiological signals are acquired, EEG, BVP, and
GSR, using the OpenBCI and the Empatica E4 wrist-
band.

b) For the next interaction, the robot asks volunteers if
they know about Plato’s allegory of the cave. A mes-
sage is shown on the interactive screen to allow them
to specify ‘‘yes’’ or ‘‘no’’. Regardless of the response
of each volunteer, Pepper explains Plato’s allegory
and after that, it asks them if they have had any experi-
ence where they have felt misunderstood, relating to
the protagonist of the myth. An interactive screen is
shown to allow the volunteer to activate the record-
ing and tell Pepper of a similar experience of their
own. The volunteer must click on the screen when
finished.

c) After that two consecutive interactive screens are
shown, each of them allows the volunteer to perform
the quantitative self-assessment using the SAM man-
nequins. This whole process is performed in order to
allow the volunteers to learn the interactive process
with the robot.

2) From that point until the end of the story, the robot acts
by iteratively telling the story. First, develop the drama.
Second, show a scene in the tablet while physiological
signals are acquired. Third, the volunteer explains the
evoked emotions while the robot records the volunteers
with his front camera. Fourth, self-assessment on the
valence-arousal discrete dimensions.

3) Finally, Pepper asks volunteers to tell their thoughts,
both positive and negative, about life.

III. DATA ANALYSIS
Each of the following sections addresses the methodology
applied when processing the aforementioned physiological
signals and facial expressions.

A. PHYSIOLOGICAL SIGNALS PREPROCESSING
1) BVP PEAK DETECTION PREPROCESSING
The E4 wristband uses a photoplethysmogram sensor which
allows BVP signal measurements. Processing steps involve
a series of stages to obtain noise-free inter-beat intervals to
properly code the signal properties. First, the moving average
is computed over the raw data, where regions of interest
are selected as the amplitude of the signal is larger than
the moving average. R-peaks are marked at the maximum
of each region of interest, which allows the computation of
the interbeat intervals (time interval between two successive
R-peaks of heartbeats) time series. Finally, detection and
rejection of outliers are performed.

2) GSR SIGNAL PREPROCESSING
The E4 wristband captures the conductance, in microsiemens
(µS), of the skin by measuring the potential difference
between two electrodes while a tiny amount of current is
applied between them. Due to the low sampling rate, 4Hz,
of the E4 wristband, only tonic components were analyzed.
The tonic component, called the skin conductance level,
was obtained using a Savitzky-Golay filter [28] (window
length=31, order=2).

3) EEG PREPROCESSING
EEG signals are arranged in a three-dimensional matrix con-
taining n trials, c channels, and s samples at a sampling
rate of 250 Hz. First, given that each signal has its own
scaling factor values, signals are standardized using a z-score
method. Second, a filter bank, based on sixth-order But-
terworth filters, is applied for all n, c, and s, within a set
of 5 non-overlapping bandwidths: 1-4 Hz, 4-8 Hz, 8-16 Hz,
16-30 Hz, and 30-50 Hz. An EEG oriented artifact
removal technique (EAWICA) was used in this methodology.
It was analyzed and validated with EEG brain patterns by
Val-Calvo et al. [27] under real-time conditions.

B. FEATURE EXTRACTION
To answer the first two questions which address this
paper, two different analyses were performed. First,
population-based exploratory data analysis is carried out
to analyze the statistical correlation between experienced
emotions and the properties of the set of features computed
for the EEG, BVP and GSR signals. Second, subject depen-
dent classification is performed to check the feasibility of
the emotion recognition methodologies, proposed for the
experimental paradigm in question.

For population-based exploratory data analysis, the set of
features was computed taking into account the full-time series
corresponding to each scene for each signal type, and then
z-scored relative to the baseline measurements. On the other
hand, subject dependent classification consists in splitting the
signals corresponding to each scene in sliding windows to
compute a set of features. Thus, three independent classifi-
cation processes were done to test the feasibility of affective
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FIGURE 5. Facial expression estimation. First stage, face detection by convolutional deep learning model and preprocessing of detected face. Second
stage, features extraction and classification by an ensemble of convolutional deep learning models.

state estimation. Therefore, the valence emotional dimension
can be estimated by the use of EEG signals and the arousal
by the use of GSR and BVP signals.

The following set of EEG features were computed based
on the oscillatory properties of brain signals:
• Differential Entropy: Computed as a metric for measur-
ing the predictability of a signal, whose values have a
probability density function similar to a Gaussian distri-
bution, N(µ, σ 2), as is the case for EEG signals. It can
be defined for a signal X as h(X ) = 1

2 log
(
2πeσ 2

)
.

• Amplitude Envelope [29]: Computed through the
Hilbert transformwith the Neuro Digital Signal Process-
ing Toolbox [30] python library developed at Voytek’s
Lab.

• Petrosian Fractal Dimension [31]: Defined as PFD =
log (N ) / (log (N )+ log (N/ (N + 0.4Nδ))), where N is
the series length, and Nδ is the number of sign changes
in the signal derivative.

• Higuchi Fractal Dimension [32]: Higuchi’s algorithm
can be used to quantify the complexity and self-
similarity of a signal.

• Fisher Information [33]: Fisher information is a way of
measuring the amount of information that an observable
random variable X carries about an unknown parameter
θ of a distribution that models X.

The last three EEG features mentioned have been computed
with the PyEEG python library [34].

The set of GSR features computed based on the properties
of skin conductance level time series were:
• Average of the series of amplitude values (offset).
• Average slope of the series of amplitude values.
• Standard deviation of the series of amplitude values.

The set of BVP features computed based on the properties of
interbeat intervals (IBI) time series were:

• Average heart rate, computed as the inverse of inter-beat
intervals.

• Standard Deviation of a IBI interval series.
• Root Mean Square of the successive differences of IBI.
• Standard deviation of IBI differences.
• Number of IBI differences greater than 20 milliseconds
(NN20).

• Ratio between NN20 and the total number of IBI inter-
vals.

• Number of NN interval differences greater than 50 mil-
liseconds (NN50).

• Ratio between NN50 and the total number of IBI inter-
vals.

• Triangular index: The ratio between the total number of
IBI and the maximum of the IBI histogram distribution.

• Low Frequency: The power density estimation for the
frequency band in the range [0.04, 0.15] Hz.

• High Frequency: The power density estimation for the
frequency band in the range [0.15, 0.40] Hz.

• Sample Entropy: Used for assessing the complexity of
the IBI interval series.

i Heart rate variability measurements and features were com-
puted with the pyHRV python library [35].

C. FACIAL EXPRESSION RECOGNITION
Facial expression estimation is achieved by a combination
of steps in two stages (see Fig. 5). In the first stage, facial
detection is performed to simplify emotion estimation infer-
ence. This is achieved with the use of a convolutional deep
learning model [36] that can work with real-time constraints.
The detected face is then preprocessed: the image is cropped
to extract the region of interest, converted from RGB to
grayscale, resized to a resolution of 48 × 48 pixels, and
finally normalized into a [0,1] range. In the second stage,

134056 VOLUME 8, 2020



M. Val-Calvo et al.: Affective Robot Story-Telling HRI: Exploratory Real-Time Emotion Estimation Analysis

the preprocessed image is fed into a low level feature extrac-
tion layer and a deep convolutional ensemble of neural net-
works to obtain the emotion classification [37], [38]. This
ensemble model was trained on the FER-2013 database [39]
achieving a 72.47% accuracy on the test set.

The FER-2013 database consists of 3 subsets containing
48 × 48 pixels images: 28709 images dedicated to training,
3589 images for validation and 3589 images for testing. All
images include the following labeling: 0 angry, 1 disgust,
2 afraid, 3 happy, 4 sad, 5 surprised and 6 for neutral.

In the approach presented, a model is trained with a
database of images of static facial expressions, however, it is
evaluated on dynamic facial expressions, while volunteers
explain their emotions.

Since the database in this paper cannot be made public,
and in order to allow the research community to compare the
results, the outcome of our approach on the public RAVDESS
database [40] has also been evaluated.

The Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) is a validated multi-modal
database of emotional speech and song. The database is
gender-balanced consisting of 24 professional actors, vocaliz-
ing lexically-matched statements in a neutral North American
accent. The speech includes calm, happy, sad, angry, fearful,
surprise, and disgust expressions; and the song contains calm,
happy, sad, angry, and fearful emotions. Each expression
is produced at two levels of emotional intensity, with an
additional neutral expression.

D. CLASSIFICATION
After computing a set of meaningful features, the fea-
ture space must be carefully transformed in order to allow
machine learning algorithms to exploit statistical infer-
ences. In that way, smoothing the feature space deals with
both, the amount of variability that emerges due to sub-
tle changes in emotional states across trials, and with the
lack of stability over time of the computed features. There-
fore, a Savitzky-Golay filtering method [28] is used. Also,
Quantile-Transform method (histogram equalization to uni-
form distribution) followed by the Min/Max scaling method
is performed to deal with outliers, which can severely damage
the performance of the classifiers, and state the range of
values according to the input requirements of classifiers.

Then, the classification process is performed using a set
of 8 standard classifiers: K-nearest neighbors, Support Vector
Machine with linear and radial basis function kernels, Deci-
sion Trees, Random Forests, Ada-Boost, Gaussian Naive-
Bayes, and Quadratic Discriminant Analysis. Results have
been obtained using default hyper-parameter values in the
Scikit-learn python library [41]. Also, it has been used to
ensure that samples in the validation set are reasonably
independent of the samples in the training set [42], [43].
In that context, the Leave-One-Out strategy was used to
asses the correct performance of the methodology and the
macro-average F1-score metric was used.

IV. RESULTS
In the following sections, offline analysis results are pre-
sented. First, population-based exploratory data analysis is
performed. The current experimental paradigm is validated
regarding the subjective self-assessment of volunteers. Also,
causal and correlation effects are presented, which both help
to answer the first question formulated in this paper. Sec-
ond, subject dependent classification is analyzed for each
source of signals to prove the feasibility and reliability of
the accuracy results. Finally, the subjective assessment of the
experiment, carried out by volunteers, is analyzed.

A. EXPLORATORY POPULATION-BASED DATA ANALYSIS
The first attempt at this exploratory analysis is to validate
the experimental design. The dramatic story was necessary to
boost emotions dynamically, so the effect on the subjective
self-evaluation (scene labeling) of the volunteers must be
pointed out. Fig. 6 shows the distribution of the frequencies
of each discrete set of emotions in the scenes labeling for the
emotional dimensions of valence and arousal. It can be noted
that the dramatic story is balanced in terms of the properties
of positive and negative stimuli, as neutral self-assessments
were not often used by the volunteers. It is therefore clear
that the dramatic story and the chosen scenes evoked very dif-
ferent emotional states in relation to the valence dimension.
On the other hand, in the excitement dimension, the balance
was produced by intense and neutral emotions since almost
no stimulus was qualified as relaxing.

FIGURE 6. Distribution of the frequency of scenes labeled with each
emotion in the whole story by all participants. Left: box-plots for
frequency of labels for the arousal dimension. Right: box-plots for
frequency of labels for the valence dimension.

The architecture of the dramatic script imprints a finger-
print of evoked emotions and specifies intrinsic relation-
ships between them. Fig. 7 shows the correlation of the
volunteers’ self-evaluations on the scenes. Cross-interactions
between the emotional dimensions indicate that POSITIVE
and RELAXED are highly correlated while POSITIVE and
INTENSE are highly anti-correlated. Also, POSITIVE and
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FIGURE 7. Correlation matrix (corrgram) of emotions ratings over scenes
for each pair of emotions. The valence and arousal dimensions are taken
into account. Correlation values labeled with (*) are statistically
significant Pvalue < 0.05.

NEUTRAL-VALENCE are highly correlated. Twomain con-
clusions can be drawn from these results. First, themajority of
volunteers agree to rate some scenes as NEGATIVEwhile the
ratings of POSITIVE and NEUTRAL-VALENCE indicate
that some scenes are not as clearly defined as those rated
primarily as NEGATIVE. On the other hand, it seems that
for most volunteers the POSITIVE emotions can also be
felt as RELAX regarding the arousal dimension. In contrast,
NEGATIVE and INTENSE are highly correlated, suggesting
that videos rated mainly as NEGATIVE cause a dramati-
cally stronger impact than those rated mainly as POSITIVE.
Finally, for NEUTRAL-VALENCE andRELAX, there seems
to be a high interrelationship, leading to the conclusion that
scenes rated mainly as NEUTRAL-VALENCE have a close
relation with those rated as POSITIVE. Taking that into
account, a pragmatical decision has been taken for the clas-
sification analysis, the NEUTRAL-VALENCE and RELAX
labels have been considered to be equal.

Another perspective on the evolution of the emotions
evoked can be seen in Fig. 8, where the majority of votes
for each scene are shown. From this point of view, it can be
extrapolated that the valence dimension is mostly balanced
into the extremes, while in the arousal dimension, and rela-
tive to the valence dimension, the RELAX and NEUTRAL
majority ratings seem to correlate highly with the scenes
mainly rated as POSITIVE, and only the scenes mainly rated
as INTENSE are clearly defined, as they have a signifi-
cant coherence among the volunteers. Therefore, highlighting
more evidence that the aforementioned pragmatic decision of
merging both NEUTRAL-VALENCE and RELAX.

So far, subjective ratings have been analyzed, however,
an important aspect is the objective effect of the designed

emotional drive, over the physiological responses, which
allow us to understand and prove that subjective feelings
reflect unbalanced sympathetic and parasympathetic subsys-
tems. In the present case and considering the way the features
have been computed, some statistically significant correla-
tions have been found in the BVP and EEG features, which
are shown graphically in Fig. 9 and Fig. 10. Concerning the
dimension of excitation and for the case of BVP measure-
ments, the standard deviation of IBI differences characteristic
is highly correlated with the INTENSE excitation emotion.
On the other hand, no GSR features showed statistically
significant correlations. As for the valence dimension, for
the case of EEG measurements, Fisher’s information on the
T7 temporary electrode for the gamma band is highly corre-
lated with the NEGATIVE valence emotion, while the same
Fisher’s information but on the P8 parietal electrode for the
beta band, is highly correlated with the NEUTRAL valence
emotion.

B. CLASSIFICATION OF EMOTIONS USING A
SUBJECT-DEPENDENT PARADIGM
As the future aim is to build automatic systems for emotion
recognition on affective HRI scenarios, valence and arousal
emotion estimation was performed regarding physiological
signals. For facial expression recognition, although the model
is able to estimate seven discrete emotions, the estimation
process has been simplified in order to map from seven
discrete emotions {Neutral, Surprise, Happy, Sad, Angry,
Fear, Disgust}, detected by the aforementioned ensemble of
convolutional models, into three discrete valence emotions
{NEUTRAL, POSITIVE, NEGATIVE}. It seems that the
context plays a fundamental role in deciding the surprise
valence towards positive or negative. That is still an open
question, so we decided to categorize surprise as NEUTRAL,
see Table 2. This simplification allowed the homogenization
of the estimation outputs of the whole system and to val-
idate the results obtained regarding the self-assessment of
volunteers.

TABLE 2. Discrete emotion mapping.

For the present paper, the task was faced independently for
each emotional dimension, as the focus is on exploring the
plausibility of emotion estimation under this novel paradigm.
Regardless that GSR has not shown any statistically mean-
ingful correlations on the population-based EDA, arousal is
estimated using GSR and BVP signals.

As mentioned before, in order to properly validate the
performance of the models, a Leave-One-Out validations
strategy has been used. In fact, in order to exhaustively
test the performance, 20 classification iterations were car-
ried out. In each one, a set of two random scenes were
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FIGURE 8. Rating distribution over selected scenes for all participants. Top: rating over time for the arousal dimension.
Bottom: rating over time for the valence dimension.

FIGURE 9. Correlation between two features of the BVP signals with the arousal majority ratings over time. RMMSD is
Root Mean Square of successive differences in IBI. SDD is Standard Deviation of IBI differences.

selected as trials, each of them belonging to differentiated
labels (POSITIVE and NEGATIVE), and the final f1-score
value represents the mean and standard deviation of these
iterations.

Fig. 11 shows the overall tendency taking into account
different sets of features, from 1 to 13 for arousal dimension
and the following set of {1, 5, 10, 15, 20, 25, 30} number of
features, for valence dimension. Achieved accuracy results
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FIGURE 10. EEG most correlated or anti-correlated features across the scenes. Fisher’s information of both,
T7 temporary electrode for the gamma band (T7_gamma_FI) and P8 parietal electrode for the beta band (P8_beta_FI).

FIGURE 11. Arousal and Valence classification accuracy results.
Macro-average F1-score validation metric used. The performance was
evaluated with different subsets of features. Solid line is the mean value
and shadow area represent de standard error of mean.

are higher than 80% on average for both emotional dimen-
sions.

Fig. 12 shows the coherence of the facial expression recog-
nition model on the RAVDESS database, taking into account
that the real emotion expressed by the actors has beenmapped
to the set of three discrete emotions {NEUTRAL, POSITIVE,
NEGATIVE}. The model seems to fail mainly on angry and
surprise emotions but in general, is successful in the estima-
tion, regardless of the lack of temporal information.

On the contrary, facing a real-world scenario where emo-
tions are expressed sincerely and not merely acted, without

any emphasis on expressing them and therefore creating no
bias on the outcome of the recognition system, the model is
only capable of having meaningful results for some subjects,
as it can be noted in Fig. 13.

C. EXPERIMENT RATING QUESTIONNAIRE
In order to rate the affective HRI experience of users, a series
of questions have been done after the experiment. Fig. 14
shows box-plots for the distribution of ratings assigned by all
participants to the first 5 questions.
q1. When you started the experiment, were you in a good

mood to interact with the robot? or did the robot make
you nervous? Rate from 0 to 10, with 0 being fully
uncomfortable, 5 neutral and 10 fully comfortable.

q2. Did you like the story Pepper told you, or did it seem
like a series of unconnected videos with a meaningless
thread? Rate from 0 to 10 the story, being 0 fully uncon-
nected, 5 neutral and 10 fully connected.

q3. What level of emotional engagement, empathy, did you
generate in the interaction with the robot? Evaluate from
0 to 10 the perceived empathy, being 0 without any
empathy, 5 neutral and 10 full empathy.

q4. Do you consider yourself extroverted or introverted?
Evaluate from 0 to 10, being 0 fully introverted, 5 in
equal parts, 10 fully extroverted.

q5. Do you consider that the robot brings dramatic value
to the story, or a tablet with the same audio and videos
would cause the same level of involvement in the story?
Rating from 0 to 10, with 0 being the robot that con-
tributes nothing and 10 being the robot that makes me
fully involved.
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FIGURE 12. Facial expression recognition coherence on the acted out emotions of the RAVDESS database. Black cells show incorrect estimations.

FIGURE 13. Facial expression recognition coherence for the
self-expressed emotional reactions during the experiment. Black cells
show incorrect estimations.

q6. In the hypothetical case of having to express an emo-
tional experience, if you had to choose between a fully
unknown person or a robot, who would you choose?

Regarding the last question q6, 37.5% of users would
choose a robot. Finally, as a measure of emotional engage-
ment, the mean time spent by all volunteers after each scene
is shown in Fig. 15. It can be noted that most users tend to
spend more time as the affective HRI goes on.

V. DISCUSSION
To create a more realistic scenario, a dramatic story has
been chosen as the emotional drive for the robot to engage

FIGURE 14. Distribution of ratings assigned by all participants to
questions regarding the experiment experience (q1, q4, and q5 have
some outliers). As q6 is a binary question, it is not represented in these
box-plots.

emotionally with the volunteers. The dramatic story talks
about some of the most important human philosophical ques-
tions such as love, the relationship between humans and
nature, war and the future of humanity. Such a paradigm tries
to evoke the emotions of volunteers, to make them think about
them and express their deeper insights both verbally and emo-
tionally. Bias is one of the main questions for any experimen-
tal design and it is directly related to the experimental design.
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FIGURE 15. Mean and standard deviation of the time spent by all users
during the self-expressions of emotions after each scene during the
dramatic story. Solid line is the mean value and shadow area represent
de standard error of mean.

For the experiment at hand, after each scene, volunteers were
completely free to express their emotional thoughts to each of
the questions the dramatic story proposes. Such a paradigm
makes emotion prediction more complex, as observed when
comparing the results on the RAVDESS database, which con-
sists of a set of actors expressing emotions, with the results
obtained from the self-developed recordings in a completely
realistic scenario. Several papers have carried out an affective
HRI approach following at some point the same paradigm
as in the RAVDESS database, that is, asking volunteers to
act a series of emotional reactions [44]–[48]. This causes

volunteers to overreact their facial expressions. This is also
the case for the FER-2013 database which has more than
twenty thousand facial expressions that are overreacted, caus-
ing bias in any result obtained using this type of data. There-
fore, this is an important issue that must be faced to properly
validate the results obtained, since, on the one hand, these
databases allow the development of research in the field, but
on the other, they are still quite far from reality.

Facial expression recognition is still a challenging task due
to several problems. Firstly, databases developed are usually
carried out with actors, who overreact facial expressions,
as is the case for FER-2013 and RAVDESS databases. More-
over, for a proper algorithm to be developed, the temporal
and spatial connection of facial expressions should be taken
into account. That means, training a model over static facial
expressions is not enough to achieve accurate results. Indeed,
to properly exploit the emotional information contained in
the self-expressed emotional reactions, models should take
into account the dynamics inherent to each expressed emo-
tion which are, also, interviewed with facial movements
related to the current speech. Finally, culture and personal
differences arise between subjects, and therefore, algorithms
should be fine-tuned for some volunteers to improve the
accuracy on them as it can be noticed in the comparison
between emotional reactions from two distinct volunteers
shown on Fig. 16, Fig. 17, Fig. 18 and Fig. 19. Fig. 16 and
Fig. 17 show the evolution of the predicted facial expressions
corresponding to the real frames in order to properly evaluate
the reliability of the model for an expressive subject. On the
contrary, Fig. 18 and Fig. 19 show the same evolution of pre-
dictions and facial expressions for a non-expressive subject.

FIGURE 16. Expressive subject self-expressions. POSITIVE facial expression evolution.
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FIGURE 17. Expressive subject self-expressions. NEGATIVE facial expression evolution.

FIGURE 18. Non-expressive subject self-expressions. POSITIVE facial expression evolution.

As it can be noted, the model can capture the differences for
each facial expressions and therefore the predicted label is
close to reality, while this is not the case for a non-expressive
subject which clearly shows a noticeable tendency towards a
neutral facial expression where differences are too subtle for
the model to be able to capture them.

Regarding the correlations between signals and emotions,
the GSR signal did not show statistical results. This could be
due to the activation of the sympathetic tone during the ‘‘self-
expression’’ sections, which could be altering the balance of
the autonomic system, and therefore, the correlation of this
signal during the ‘‘watching’’ sections is disturbed.
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FIGURE 19. Non-expressive subject self-expressions. NEGATIVE facial expression evolution.

Concerning the physiological signals, both EEG, for
valence prediction, and GSR with BVP, for the arousal pre-
diction, showed to be robust even taking into account that our
methodology has been developed without hyper-parameter
tuning or the use of any powerful deep-learningmodel. There-
fore, emotion estimation in such a paradigm is not only
possible but has a wide margin for optimization. Regarding
the validation methodology, the Leave-One-Out strategy was
used to asses the correct performance. For the case of a set of
samples computed from temporal signals, the temporal cor-
relation must be taken into account and therefore reasonable
independence must be maintained between training and test
sets.

Taking into account that a population of size 16 is clearly
not enough to extract any conclusion, it is noticeable that
more than a third of the population would prefer a robot as an
emotional companion instead of a human. In addition, Fig. 14
shows that most volunteers were in a positive mood which
allowed them to empathize with the robot, moreover, they
rated the story as engaging, and the robot was part of the
effectiveness of such engagement, leading to the conclusion
that robots are appropriate tools to develop affective HRI
therapies.

VI. CONCLUSION
This paper has introduced a novel experimental paradigm
that has proved to be pragmatically useful as a causal
emotion generation mechanism. The use of computation-
ally light emotional estimation methodologies plus wearable
and cheap sensors could allow the development of affective

HRI therapies in realistic scenarios. This method uses a three-
category emotional model, however, for emotion estimation,
regarding physiological signals, only two of them were used
for each dimensional model. In addition, the Leave-One-
Out validation scheme ensures the appropriateness of the
proposed methodology in terms of the accuracy of the results,
regardless of hyper-parameter tuning.While facial expression
recognition provides a useful insight into which emotions are
in process, for realistic scenarios, further research must be
done in order to develop databases that are closer to reality.
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