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ABSTRACT Energy consumption is the key to restrict the development of electric vehicles (EV), which is
heavily affected by complex driving behaviors. In this paper, we propose a classified driving behavior based
energy consumption prediction model, as well as recommended mechanisms for energy-efficient driving.
Firstly, utilizing six EVs, we collect real data related to driving behaviors and energy consumption of vehicle
in one year. After clustering behaviors of drivers, we present an energy consumption predication model,
which accurately forecast the energy consumption caused by different driving behaviors. Motivated by the
model, energy-saving strategies are proposed to recommend suitable driving behaviors. The simulation
results further indicate that the accuracy of the proposed model is up to 98%. Specifically, the proposed
model is less dependence on data volume, which guarantees the precision of more than 96% when the data
volume is very small.

INDEX TERMS EVs, real data, driving behaviors, energy consumption.

I. INTRODUCTION
Saving energy is one of the major goals that electric vehi-
cles (EVs) pursue, which has attracted extensive body of
research. When Habib et al. [1] summarize the current sit-
uation of EVs, the charging problem is described in detail.
To promote the development of electric vehicle industry,
the government and manufacturers keep on launching attrac-
tive energy saving schemes [2]. Combined with the forecast
shortage of energy, it is of great urgency to propose a reliable
model that can accurately predict the energy consumption
of EVs.

In the literature, Ahn et al. [3] find that highway routes are
not always the best choices. However, the decisions of a driver
are affected by multiple factors when picking routes [4].
In [5], residential density is proved to have impact on vehicle
energy consumption by influencing vehicle mileage and fuel
economy. However, only two households at different den-
sities are applied as samples in this research. In 2015 [6],
the impact of various environmental factors on the power
of electric vehicle batteries is investigated. Based on GPS
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observation data of 68 EVs, a vehicle energy consumption
model is established [7]. Merely considering the climate of
Aichi Prefecture, the paper reveals the relationship between
ambient temperature and energy consumption. Yang et al. [8]
only focus on the direct effects of battery degradation. They
detect that the degradation of batteries leads to a rise in the
energy consumption of EVs. Weather and seasons are hot
spots for researchers. Chen et al. [9] point out that EVs use
the least energy in the summer. Donkers et al. [10] suggest
drivers pick their routes mainly based on the weather. With
the rapid development of driverless technology, the trajectory
planning of electric vehicles has been widely studied [11].
Qu et al. [12] propose a new vehicle following model based
on reinforcement learning, which effectively reduces vehicle
energy consumption. In above analyses, more attentions are
paid to external factors, while the influence of driving behav-
iors is relatively ignored.

To address the issue, by establishing a hybrid drivetrain
model, Zorrofi et al. [13] obtain fuel economy estimates
of three driving modes and advise to regulate the driv-
ing behaviors of bus drivers. In 2010, the difference in
energy consumption caused by moderate driving and aggres-
sive driving is proved to be about 30% [14]. Berry [15]
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recommend aggressive drivers pay attention to reducing
acceleration, so that they can achieve maximum energy sav-
ings. The differences in vehicle energy consumption under
different driving modes are fully demonstrated in the study
of Raykin et al. [16]. In [17], factors such as temperature,
choice of road and driving behaviors are considered. But
only one vehicle is used in this work, which makes the data
have high correlation. Alvarez et al. [18] take data collected
by smartphones as characteristic data of driving behaviors.
Using a neural network algorithm, they build an estimation
model for the battery consumption of EVs. The accuracy of
this model is about 95%. Based on instantaneous velocity and
acceleration, Zhang and Yao [19] develop an analysis model
of vehicle energy consumption, whose accuracy is affected
by vehicle speed. When studying the factors that influence
the emission of EVs, Rangaraju et al. [20] emphasize the
importance of taking driving behaviors into consideration.
By using a machine learning algorithm, Lee andWu [21] pro-
pose a mileage estimation model. Since energy feedback can
change driving behaviors of drivers [22]. Introducing energy
feedback is proved to have active impact on reducing energy
consumption. Felipe et al. [23] estimate the energy consump-
tion of EVs on urban routes. The accuracy of estimation is
about 90%. In 2018, by comparing some prominent existing
models, the advantages of building vehicle energy consump-
tion models based on driving behaviors are described [24].
The aforementioned models prove that regulating driving
behaviors has great potential in energy saving. However,
the research on energy consumption models based on driving
behaviors is relatively limited. Overall, most of the existing
models have the following limitations.

• Most models divide driving behaviors into two or three
categories. The classification of driving behaviors can
be more detailed.

• For some existing models, the classification criteria of
driving behaviors are kind of fuzzy.

• Most models do not point out how the amount of data
affects the model performance.

• The accuracy of some existing models depends on the
data volume. In terms of these models, the model accu-
racy is impeded by insufficient types and amount of data.

• The energy recover from regenerative braking is also an
important index of EVs. However, there are only a few
studies consider both energy consumption and energy
recovery.

To improve the above limitations, the collected data are
used to build a classified driving behavior based prediction
model of energy consumption. By clustering the processed
data, we first extract the characteristic data of driving behav-
iors. Specifically, pedal force, pedal frequency and speed
are combined to describe different driving behaviors. Then,
using the improved cyclic neural network, the labeled data are
trained with the corresponding energy consumption. Based
on accurate clustering of drivers, we draw the relation curves
between driving behaviors and energy consumption. Next,

the simulation is conducted to verify the performance of
the proposed model. Results indicate that the accuracy of
prediction can reach 98%. Besides, the model can also predict
the energy recover from regenerative braking with a high pre-
cision. In the end, we put forward recommended mechanisms
for each kind of driving behaviors. Contributions of this paper
are summarized as follows.

• Classification of drivers. Using data collected from six
EVs and one hundred drivers, we extract the characteris-
tic data associated with driving behaviors. The K-means
clustering algorithm is used to divide the drivers into
four typical groups.

• Prediction model of energy consumption. A classified
driving behavior based prediction model of energy con-
sumption is proposed, whose accuracy is up to 98%.
In addition, the proposed model is independent on data
volume, which guarantees the precision of more than
96% when data are insufficient.

• Prediction of the energy recover from regenerative brak-
ing. The proposed model can also predict the energy
recovery from regenerative braking with high precision.

• Recommended mechanisms. Motivated by the simula-
tion results, we further offer energy-saving suggestions
for each type of drivers. Drivers can achieve lower
energy consumption by adjusting their driving behaviors
according to the recommended mechanisms.

The following parts are organized as follows. Section II
introduces the data base. Then, the data is analyzed in
Section III. In the following section, we mainly discuss the
classification of drivers. The energy consumption prediction
model is proposed in section V. Furthermore, we conduct the
simulation and give the recommended mechanisms in section
VI. In the end, we conclude the paper.

II. DATA BASE
The overall quality of the energy consumption prediction
model depends on the quantity and quality of data base.
To this end, for a year, data are collected by six EVs of the
same type, so that we can make use of the collected data to
establish an accurate prediction model. This section intro-
duces our vehicle data, including experimental background,
data collection, types and extraction.

A. EXPERIMENTAL BACKGROUND
The EVs used in this experiment are battery electric buses,
whose detailed information is shown in table 1. Especially,
all EVs are equipped with computers, sensors and wireless
connections. The EVs are all on the market, which obtain
ISO9001, ISO/TS16949 quality system standard certifica-
tion, China compulsory product CCC certification, European
Union certification, and get the vehicle export qualification
to Europe and the United States. The data collected by such
EVs are both reliable and accurate. The time resolution is set
by the EV manufacturer to 10 seconds.
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FIGURE 1. Data of three drivers.

TABLE 1. Vehicle information.

When a vehicle is electrified, the real-time data are auto-
matically uploaded through wireless networks. All data from
August 2018 to August 2019 are recorded by the EV man-
agement system. The system has such functions as real-time
communication, data storage and vehicles monitoring. This
data base makes it possible to model relationship between
driving behaviors and energy consumption precisely.

The driving behaviors of a driver are affected by
some external factors such as temperature, road condi-
tions [25]–[27] and traffic congestion levels [28]. In order
to minimize such effects and cover various driving behav-
iors, we make the following four provisions before the data
collection.

Regulation 1. The duration of the experiment is one year.
As one hundred drivers participate in the experiment,

the collected data of each driver are insufficient if the exper-
iment lasts too short. In addition, it can be assumed that
drivers experience different weather and traffic conditions the
same number of times during one year. A long experimental
time contributes to reducing the influence of temperature and
traffic congestion levels on driving behaviors and ensures the
richness of collected driving behaviors.

Regulation 2. The drivers are divided into 17 batches of
five to six drivers each. Drivers in the same batch drive at the
same time. Different batches of drivers drive at the same time
periods on different dates.

Due to the limited number of experimental EVs, the drivers
carry out the experiment in batches. Regulation 2 is made to
ensure the consistency of the experiment time since the traffic
congestion level is proved to influence driving behaviors [28].
For the same batch of drivers, obviously they experience

nearly the same temperature and traffic congestion levels.
Additionally, the traffic conditions are similar for the same
time period of different days. Therefore, the traffic congestion
levels experienced by different batches of drivers can be
considered similar.

Regulation 3. The road is stipulated. All the drivers are
required to drive on the prescribed road.

Although Hamdar et al. [25] point out that both weather
and road conditions have impact on driving behaviors, they
emphasize that the impact of road conditions is significantly
greater. In addition, road grade information is proved to affect
vehicle energy consumption [26]. Qi et al. [27] do excellent
work on the relationship between road grade information and
vehicle energy consumption. Considering the conclusions of
above literatures, the energy consumption is affected by road
conditions if the drivers choose their routes at will. By pre-
scribing certain sections of road for experiment, the effect of
road conditions is eliminated. More importantly, it ensures
that the difference in energy consumption is caused merely
by the difference in driving behaviors.

Regulation 4. Themode of the EVs is fixed to pure electric
mode. The participated drivers are not allowed to change the
vehicle mode.

When a vehicle is in different modes, the accessory load
may be different. Different accessory loads result in different
vehicle energy consumption [7]. Therefore, we fix the vehicle
mode to ensure that the accessory load of each vehicle is
basically identical. Thus, the difference in vehicle energy
consumption is almost solely due to the difference in driving
behaviors.

In a word, the above regulations ensure that the data of each
driver can be fully collected. The experiment is consistent in
time and space. In addition, microscopic factors such as the
accessory load of each EV are guaranteed to be identical by
specifying the vehicle mode. Figure 1 shows the data of three
drivers in an identical batch. It is clear that they drive in the
same road and time, which ensures that drivers experience the
similar real-world situations. In addition, it can be seen that
the time resolution is indeed 10s.
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B. DATA COLLECTION
Overall, the collected data are not only large in quantity,
but also abundant in types. The main five types are shown
in figure 2. The detailed information about Location can be
collected by GPS systems. Location data are used to judge
whether the drivers drive in accordance with the experimen-
tal regulations. Battery data reflect the general condition of
batteries. In addition, they are the bases that remind us to
recharge the EVs. We are informed of whether the vehicles
are working normally by alarm data. When a vehicle appears
abnormal, the corresponding alarm data change immediately.
In this way, we can know problems in time to guarantee the
security of our experimental. For component data, they are
mainly applied to observe the usage of components. At the
beginning, the component data of six EVs are basically con-
sistent, so that the number of variables is controlled to the
least. As mentioned earlier in the article, there are many kinds
of sensors in the EVs. According to the experimental require-
ments, we can easily obtain relevant sensor data. In fact,
besides the types of data shown in figure 2, the systems inside
record more details connected with mode selection, commu-
nication, help system, version information and mechanical
energy.

FIGURE 2. Data types.

C. DATA RELATED TO DRIVING BEHAVIORS
When the pedal usages change, it is obvious that the driving
behaviors change. Such as light acceleration or heavy brak-
ing. Specifically, the pedal usages include the pedal frequency
and pedal pressure of both acceleration and brake pedal. The
pedal force reflects the aggressiveness of driving behaviors
and the pedal frequency is affected by driving proficiency.

Meanwhile, changes in driving behaviors also lead to
changes in the vehicle speed and acceleration. However,
the real-time acceleration cannot be precisely collected by
the EVs. To avoid the increase of error rates caused by

TABLE 2. Data related to driving behaviors.

recalculation of data, we only choose the primary data that
can be directly obtained. Therefore, the five categories of
data shown in table 2 are chosen to describe different driving
behaviors.

We illustrate the pedal usages of one driver in figure 3 and
figure 4.

FIGURE 3. Pedal force.

FIGURE 4. Pedal frequency.

D. MEASUREMENT METRICS OF ENERGY CONSUMPTION
The energy consumption of electric vehicles is measured by
the change of battery power. In this paper, we consider factors
such as the output energy Eout (kwh), the energy recover from
regenerative braking Erecovery(kwh) and the mileage d(km) to
define the energy consumption of EVs. The above parameters
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FIGURE 5. Flow diagram of our work.

of three drivers are shown in figure 1. It can be seen that Eout ,
Erecovery and d of the three drivers are quite different. The
reason is that the recorded mileage and energy consumption
are not zero when the driver is changed. Therefore, the actual
distance and energy consumption in a time period are the
difference between the current value and the initial value.

The types of the energy consumption discussed in this
paper include the total energy consumption Etotal(kwh),
the energy consumption at a specified time Etime(kwh) and
the 100km energy consumption E100km(kwh/100km). The
specific definitions are as follows.

Etotal = Eout − Erecovery (1)

Etime = (EOend − EOstart )− (ERend − ERstart ) (2)

dtime = dend − dstart (3)

E100km =
Etime ∗ 100

dtime
(4)

where EOend (kwh) and EOstart (kwh) represent the output
energy at the moment of termination and start respectively.
ERend (kwh) and ERstart (kwh) represent the recovery energy at
the moment of termination and start respectively. dend and
dstart represent the total mileage at the moment of termination
and start respectively.

In addition, the separate output energy and the recovery
energy are also important indicators to measure the level
of energy saving. In consequence, we also define the out-
put energy at a specified time EOtime (kwh), the 100km out-
put energy EO100km(kwh/100km), the recovery energy at a
specified time ERtime (kwh) and the 100km recovery energy
ER100km (kwh/100km) in the following ways.

EOtime = EOend − EOstart (5)

EO100km =
EOtime ∗ 100

dtime
(6)

ERtime = ERend − ERstart (7)

ER100km =
ERtime ∗ 100

dtime
(8)

The 100km energy consumption is the difference between
the 100km output energy. EO100km and the 100km recovery
energy ER100km .

E100km = EO100km − ER100km (9)

III. DATA PROCESSING
Figure 5 represents the flowdiagram of ourwork. This section
discusses how we process the collected data. The collected
data are of great variety. In order to ensure the accuracy and
efficiency of our model, we first clean the collected data.
According to data analysis, we mainly clean the following
three types of data.
• Missing data. Missing data are mostly caused by sensor
or communication failure. When data are unsuccessfully
collected, the corresponding row is null. Such data are
extremely different from normal data. If not cleaned,
missing data will cause great negative strikes to the
simulation results.

• Irrelevant data. Some data (e.g., ambient temperatures,
road conditions, etc.) do not change when a driver
changes driving behaviors. That is to say, such types
of data are not affected by driving behaviors, which
is called irrelevant data. The irrelevant data cannot
describe different driving behaviors. Removing the irrel-
evant features contributes to improve the efficiency of
algorithm.

• Unchanged data. Possible heavy traffic congestion or
some personal reasons can cause a vehicle remains sta-
tionary for a period time. In this case, the data related
to driving behaviors and energy consumption are almost
unchanged and close to zero. The data collected during
this period have no contribution to the analysis of driving
behaviors and energy consumption, so it can be cleaned.

For the cleaned data, they are firstly pieced according to the
time series. Next, the pieced data are repaired by mean inter-
polation to avoid waste of correct data. Then, the interpolated
data are normalized to reduce the loss function value of the
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training model and improve the training speed. Furthermore,
data mining is carried out to discover suitable types of data
associated with driving behaviors. According to the accuracy
of sensors and the representativeness of data, we define five
types of characteristic data to describe driving behaviors in
following ways.

Firstly, we divide the specified time T into n equal parts.
Then, in turn, We note the traction pedal force PaTx , (x =
0, 1, 2, . . . , n), brake pedal force PbTx , (x = 0, 1, 2, . . . , n),
traction pedal frequency FaTx , (x = 0, 1, 2, . . . , n), brake
pedal frequency FbTx , (x = 0, 1, 2, . . . , n), and speed
VTx , (x = 0, 1, 2, . . . , n) at time point Tx . Finally, we average
the data and get the following five types of data.
• Mean traction pedal force Pa

Pa =
1
T

n∑
x=1

PaTx (10)

• Mean brake pedal force Pb

Pb =
1
T

n∑
x=1

PbTx (11)

• Mean traction pedal frequency Fa

Fa =
1
T

n∑
x=1

FaTx (12)

• Mean brake pedal frequency Fb

Fb =
1
T

n∑
x=1

FbTx (13)

• Mean vehicle speed V

V =
1
T

n∑
x=1

VTx (14)

Sensors inside the EVs allow us to obtain the above data
in an accurate and efficient way. Besides, the above data
vary apparently with different driving behaviors, which well
reflect the driving habits of different drivers. Among them,
the first four types are intuitive descriptions of driving behav-
iors, while the fifth type expresses the macro driving habits of
a driver. Based on the data, we can make clear classification
of drivers.

IV. DRIVER CLASSIFICATION
In chapter 3, five types of characteristic data are defined to
describe driving behaviors. In this section, by taking advan-
tage of k-means clustering, participated drivers are parti-
tioned into 4 typical categories. K-means clustering is one
of the most commonly used clustering algorithms [29], [30].
In k-means clustering, each observation belongs to the cate-
gory with the nearest mean. The characteristic data of the four
types are shown in figure 6 to figure 9.

Type 1 has the lowest frequencies and high forces on
both traction pedal and brake pedal. The traction and brake

FIGURE 6. Mean pedal force of four types.

FIGURE 7. Mean pedal frequency of four types.

FIGURE 8. Mean speed of four types.

FIGURE 9. Speed of four types.

pedal force of type 1 are close. The two pedal forces of
type 2 are nearly the same as that of type 4. Their intensity
of pedaling is low, especially braking. Besides, the pedal
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frequencies of type 2 are relatively low, but they use the brake
more frequently than type 1. Type 3 has the maximum pedal
forces and braking frequency, whose acceleration force is
extremely high. Their acceleration frequency is the second
highest. Additionally, the two pedal frequencies of type 3 are
the closest. Overall, type 4 has the lowest pedal forces and the
highest pedal frequencies. Although their pedal strengths are
basically identical with that of type 2, their pedal frequencies
are obviously higher than type 2.

It is apparent that the pedal force reflects the aggressive-
ness and caution of a driver. Moderate drivers tend to pedal
more slightly, especially on traction pedal. Therefore, accord-
ing to the pedal force, drivers are divided into efficient drivers
and moderate drivers. Pedal frequency is the embodiment of
a driver’s proficiency. Novice drivers are less familiar with
road conditions and their predictive ability is poor. As a result,
they pedal more frequently than skilled drivers, especially the
brake pedal. Accordingly, we distribute drivers into novice
drivers and skilled drivers. To summarize, combining pedal
frequency and pedal force, the four categories of drivers are
named as follows.
• Efficient skilled driver (type 1). Such drivers are experi-
enced drivers with great forecasting ability. When speed
needs to be changed, they tend to press the pedals
hard in advance, rather than frequently accelerating and
braking.

• Moderate skilled driver (type 2). Such drivers drive skill-
fully as well as carefully. They are not accustomed to
stepping on the pedals continually or with high intensity.
Instead, they prefer pedal ahead of time slightly to alter
speed.

• Efficient novice driver (type 3). Although the driving
proficiency of such drivers is not that high, they achieve
high pedal efficiency by increasing the force on the
pedals. It should be noticed that efficient novice drivers
always pedal frequently.

• Moderate novice driver (type 4). Owing to unfamiliar
with road conditions, moderate novice drivers pedal
continually. In addition, such drivers lack experience,
which leads them to drive cautiously. In other words,
they dare not to push hard on the pedals, especially the
acceleration pedal.

The speeds of the four types are shown in figure 8 and 9.
As can be seen in figure 8, the average speed of efficient
skilled drivers is the highest, while moderate skilled drivers
are more habituated to driving at a slower speed. Though
the pedal forces of efficient and moderate novice drivers are
rather disparate, the distinction on the average speed is not
visible. The average speed of novice drivers is between that
of efficient and moderate skilled drivers.

Figure 9 indicates that the speed of novice drivers changes
more frequently, which is caused by continual pedaling.
Besides, accustomed to pedaling with great force, efficient
drivers have a wider range of speeds.

In a word, different kinds of drivers have obvious differ-
ences in pedal usage as well as driving speed. To analyze the

energy consumption caused by different driving behaviors,
the pedal force, pedal frequency and driving speed are all
required to be considered.

In addition, we draw the total energy consumption curves
of four types. In figure 10, the diversity of total energy
consumption caused by different driving behaviors is proved
to be about 11kwh/h. Comparing the four curves, the curve
of moderate skilled drivers shows a stable rising trend over
time with smallest changes. However, the curve of moderate
novice drivers rises steeply. They consume the most energy.
The energy consumption of efficient drivers are similar.
Skilled ones consume slightly less energy than novices.

FIGURE 10. Total energy consumption of four types.

V. THE PROPOSED ENERGY CONSUMPTION
PREDICTION MODEL
From above analysis, energy consumption is closely related
to driving behaviors. In this section, we explore the internal
relationship between driving behaviors and energy consump-
tion by establishing a prediction model. Our goal is to build
a model that can automatically forecast the energy consump-
tion of any user when the characteristic data of driving behav-
iors are entered.

Neural networks are well-suited to training large amount
of data sets with a high degree of accuracy [31]. Mean-
while, they reduce the processing time drastically compared
to other algorithms. Hence, part of the algorithm of our model
adopts LSTM (Long Short Term Memory) neural network
algorithm [32], which is shown in figure 11. LSTM is a
special kind of Recurrent Neural network (RNN) with more
complicated internal structure. It not only has the function of
long-termmemory, but also solves the vanishing gradient and
exploding problems in RNN.

For this study, the biggest advantage of LSTM algorithm
is that the impact of past data on the prediction is consid-
ered. Compared with other NN family algorithms, LSTM
algorithm is more adaptable to different situations, which is
conducive to improving the universality of the model.

LSTM network consists of three gates, namely input gate,
forget gate and output gate. The three gates are used to
adjust the transmitted information. The purpose of the LSTM
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FIGURE 11. LSTM model.

network algorithm is to selectively remember or forget infor-
mation as well as add new useful information.

The algorithm of our model is shown in figure 12. When
data cleaning and data mining are finished, data interpolation
is firstly carried out to estimate missing data and constructing
new data according to time series. The reason why data
interpolation is used here is to avoid the waste of correct data.
Then we normalize the data. The goal of data normalization
is to change the values to a common scale without distorting
the differences of data. The normalized result is denoted as
X = {Pa,Pb,Fa,Fb,V }. In the next step, X is imported into
LSTM network for model training.

FIGURE 12. Model algorithm.

When predicting energy consumption, X first passes
through the input gate to discover which data from input
should be used to predict energy consumption. Then the for-
get gate updates the characteristic data of driving behaviors
that need to be retrained in the time series. The output gate
gives the final prediction results of energy consumption ht =
{EP,EOP100km ,ERP100km ,EP100km}. Ep is the predicted energy
consumption at a specified time. EOP100km and ERP100km rep-
resent the forecast 100km output energy and 100km recovery
energy respectively. EP100km is the predicted 100km energy
consumption.

VI. SIMULATION AND DISCUSSION
Depending on the proposed energy consumption predic-
tion model, we conduct simulation based on collected
data in this section. According to the simulation results,

the recommended energy saving mechanisms for each type of
drivers are given. The effect of data volume on the proposed
model is discussed. Additionally, we compare the proposed
model with existingwell-performedmodels in terms ofmodel
performance and data.

A. SIMULATION
The proposed model adopts the TensorFlow architecture for
modeling and simulation based on the Python language.

In consideration of data quantity and simulation accuracy,
we choose 70% data for model training and 30% data for
model testing. The training data volume is 1000, the time T is
5 minutes. In this way, the influence of bad values is reduced
as well as the efficiency and the speed of model training are
ensured.

After constant optimization and adjustment, the simulation
parameters of our model and their meanings are shown in
table 3.

TABLE 3. Simulation parameters and explanations.

The driving speeds of different types are obviously differ-
ent as shown in figure 8 and figure 9. Therefore, the driving
mileage in a specified time of different types are significantly
different. That is to say, the energy consumption in a specified
time is not only related to driving behaviors, but also affected
by driving miles. As a result, the energy consumption in five
minutes is not appropriate to compare. The 100km energy
consumption is the ratio of total energy consumption to driv-
ing mileage. In this way, the 100km energy consumption
solves the impact of driving mileage, which is more compar-
ative. Thus, the vehicle energy consumption discussed in the
simulation refers to 100km energy consumption.

We firstly analyze the 100km output energy and 100km
recovery energy corresponding to different driving behaviors.
Figure 13 and 14 respectively show them.

The lower the 100km output energy, the more energy-
saving the corresponding type is. In figure 13, efficient skilled
drivers appear to be themost energy-efficient, whilemoderate
novice drivers consume far more energy than other drivers.
The curve range of moderate skilled drivers is close to that
of efficient novice drivers. The 100km output energy of mod-
erate skilled drivers is slightly higher than that of efficient
novice drivers.

In figure 14, the type with highest 100km recovery energy
is considered to be the optimal one. Accordingly, the efficient
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FIGURE 13. 100km output energy of four types.

FIGURE 14. 100km recovery energy of four types.

skilled drivers become the worst ones while the 100km recov-
ery energy of moderate novice drivers is the second highest.
Moderate skilled drivers have the highest braking recovery
ability. It is worth noting that the optimal type in figure 13 is
inconsistent with that in figure 14.

Combining figure 13 and figure 14, the 100km output
energy and 100km recovery energy of efficient skilled drivers
are both significantly lower than that of other types. Although
the 100km output energy of moderate novice drivers is much
higher than that of the other types, their 100km recovery
energy is close to that of the moderate skilled drivers and the
efficient novice drivers.

The proposed model is able to predict the 100km output
energy and 100km braking recovery energy of four types. The
results are shown in FIG. 15-18.

As can be seen from the figures, the trends of 100km output
energy and 100km recovery energy are almost consistent.
This suggests that driving behaviors have similar effects on
both 100km output energy and 100km recovery energy. The
prediction results are accurate, with the maximum absolute
error not exceeding 2kwh/100km. The forecast curves are
consistent with the actual curves. That is to say, the proposed

FIGURE 15. Type 1: Efficient skilled drivers.

FIGURE 16. Type 2: Moderate skilled drivers.

FIGURE 17. Type 3: Efficient novice drivers.

model can not only predict the value of energy consumption,
but also the trend of energy consumption.

The energy consumption curves of efficient drivers is
relatively stable, whose fluctuation range is only about
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FIGURE 18. Type 4: Moderate novice drivers.

2kwh/100km. While the energy consumption curves of mod-
erate drivers fluctuate greatly, which are up to 10kwh/100km.
For drivers with different degrees of driving proficiency,
as long as their pedal force is similar, their fluctuation range
of energy consumption is close. According to the above anal-
ysis, it can be concluded that pedaling with greater force is
conducive to more stable energy consumption. Additionally,
the influence of pedal frequency on the stability of energy
consumption is much less than that of pedal force.

In the analysis of FIG. 13 and FIG. 14, we mention that the
relative optimal type reflected by the two figures is different.
The above prediction results further prove such inconsistency.
It suggests that none of the four types of drivers have the
most energy-efficient driving behaviors. Therefore, each type
of drivers can achieve lower energy consumption by altering
some of their driving habits. The simulation results contribute
to indicating how each type of drivers adjust their driving
behaviors to achieve further energy saving.

It is not comprehensive to analyze the 100km output energy
or 100km recovery energy separately. A comprehensive anal-
ysis should combine the two types of energy. 100km energy
consumption is defined as the difference between 100km
output energy and 100km recovery energy. Since the 100km
energy consumption takes into account the above two types of
energy, it comprehensively reflects the advantages and disad-
vantages of different driving behaviors. Therefore, we then
analyze and predict the 100km energy consumption corre-
sponding to different driving behaviors. The 100km energy
consumption of four types is shown in Fig. 19.

As shown in figure 19, the difference in energy con-
sumption caused by different driving behaviors is up to
20kwh/100km. In figure 19, efficient skilled drivers are rel-
atively energy-efficient ones. This is because their 100km
output energy is much lower than that of other three types.
However, owing to their terrible energy recovery ability,
the gap between the 100km energy consumption of efficient
skilled drivers and other types significantly narrows. As for
the moderate novice drivers, although their 100km braking

FIGURE 19. 100km energy consumption of four types.

FIGURE 20. Type 1: Efficient skilled drivers.

FIGURE 21. Type 2: Moderate skilled drivers.

recovery energy is high, it is not enough to make up for the
waste of 100km output energy. They consume nearly 20%
more energy than the other three types. The results also index
that the energy consumption of novice drivers is higher than
that of skilled drivers. Besides, efficient driving leads to lower
vehicle energy consumption.

The 100km energy consumption can also be predicted
by the proposed model. Comparing the forecast data with
the actual data, we obtain the simulation results shown in
figure 20 to figure 23.

As the influence of driving behaviors on the 100km output
energy and 100km recovery energy is basically consistent,
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FIGURE 22. Type 3: Efficient novice drivers.

FIGURE 23. Type 4: Moderate novice drivers.

the change trend of 100km energy consumption is also
consistent with the two types of energy. For any type of
drivers, the variation trends of the forecast results and the
actual energy consumption are identical. The absolute error
keeps less than 2kwh/100km. In addition, different types have
significant distinction in energy consumption. The results fur-
ther prove the strong correlation between driving behaviors
and energy consumption.

Combing with the above analysis of figure 13, 14 and 19,
we find that the energy consumption of type 1, type 2 and
type 3 are all between 60(kwh/100km) and 70 (kwh/100km).
Among them, the average energy consumption of type 1 is the
lowest, while that of type 3 is relatively higher. The energy
consumption of type 1 and type 3 are both steady, while that
of type 2 fluctuates greatly. Type 4 is extremely different from
other types, whose energy consumption is much higher than
that of the other three types. Moreover, the energy consump-
tion of type 4 changes frequently as well as greatly.

Furthermore, we analyze the differences in energy con-
sumption caused by different driving behaviors. Whether
comparing type 1 and type 2, or type 3 and type 4, the results
both indicate that greater force is conducive to reducing vehi-
cle energy consumption. Additionally, greater pedal force
results in more stable changes in energy consumption, which
is already discussed before.

By comparing type 1 and type 4, it can be concluded that
brake frequency has an evident effect on energy consumption.
The energy consumption of type 4 is much higher than that of

type 2, revealing that the increase of acceleration frequency
leads to an apparent increase of energy consumption. That’s
to say, energy consumption drops dramatically by reducing
the frequency of any pedal. However, it is worth noting
that the decrease of acceleration frequency makes energy
consumption more volatile. While the energy consumption is
more stable when a driver uses brake less. Yet, among these
four types, efficient drivers use both pedals well. This makes
it difficult to conclude how the force of the two pedals alone
affects energy consumption.

When it comes to type 2 and type 3, we notice that type
2 has better pedaling habits while type 3 uses pedals more
efficiently. According to the results, type 2 consumes less
energy than type 3. Such results indicate that the influence
of frequency is more evident than that of efficiency.

FIGURE 24. Real-time error.

Figure 24 shows the deviation of the proposed model. The
maximum real-time error of energy consumption prediction
is less than 5%, proving that the real-time prediction accuracy
of the proposed model is high. In other words, our model is
feasible and practical in predicting energy consumption of
drivers with different driving habits. The results have a high
reference value for all drivers.

FIGURE 25. Average error.

Figure 25 reveals that the average error of the proposed
model is less than 2%, which means that the model precision
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is more than 98%. In figure 25, we notice that the prediction
error of moderate drivers is relatively high. This is because
the instantaneous change in energy consumption caused by
low-intensity pedaling is relatively small. A small change in
energy consumption makes it more difficult to predict pre-
cisely. Meanwhile, lower frequency of pedaling increases the
error of energy consumption prediction too. Lower frequency
means less times of varying, which is not conducive to the
prediction of energy consumption.

Moreover, this paper discusses the impact of data vol-
ume on the accuracy of model, the results are displayed in
figure 26.With the increase in data quantity, the error presents
a decreasing tendency. However, regardless of the amount of
data, the average error remains stable within 3.5%. That is to
say, this model can still maintain great performance when the
data volume is thin.

FIGURE 26. Effect of data volume on error.

Combined with the above analysis and FIG. 16, the accu-
racy of this model keeps higher than 96% when there are
only 100 pieces of data. It takes only 100 time intervals to
collect 100 pieces of data. The less the interval, the shorter the
time required. For the EVs used in this experiment, the time
resolution of data acquisition is set to 10 seconds by the EV
manufacture. Therefore, it only takes 1000 seconds to collect
100 pieces of data. In consequence, the proposed model has a
high real-time performance, which can accurately predict the
energy consumption within a short time. What is more, with
the increasing of data volume, the prediction error further
decreases. According to the predicted results, drivers can
adjust their driving behaviors in real time to reduce the energy
consumption. After driving for a long time, the prediction
accuracy is further improved. At this point, drivers can have
a clearer understanding of their driving habits.

Furthermore, we compare the proposed model with some
existing models in terms of model performance and data.
We mainly choose models with excellent prediction abil-
ity. The models are all put forward in recent years. The
comparison results are shown in figure 27. Among them,
model 1 [18] is based on real data, while model 2 [33] and

model 3 [34] are mainly based on theory. In model 1 [18],
it is not indicated whether the data volume affects the model
performance. However, through reviewing the corresponding
paper, we doubt that the data volume might affect the pre-
diction accuracy. In figure 27, the well-behaved parts of each
model are highlighted in bold blue.

FIGURE 27. Model comparison.

As can be seen, the accuracy of the existingwell-performed
models is almost 95%. Thus, the proposed model further
improves the prediction accuracy by more than 3%. In addi-
tion, more prediction models are based on the theoretical
level than modeling with actual data. The research on the
relationship between driving behaviors and energy consump-
tion is relatively rare. In this paper, accurate and reliable data
are collected during one year. The collected data can not
only be used to establish prediction models of EV energy
consumption, but also provide a verification basis for some
theoretical models. Besides, the proposed model is a predic-
tion model of EV energy consumption based on classified
driving behaviors, which to some extent fills the gap of
current research. Moreover, although the proposed model is
based on real data, the model precision is less affected by
the amount of data. The timeliness and universality of the
proposed model are appreciable.

B. RECOMMENDED MECHANISMS
Based on the simulation results, we analyze how pedal force
and pedal frequency affect energy consumption. Further-
more, we compare the impact degree of pedal frequency and
intensity. For pedal frequency, the effects of the two pedals
alone are verified. However, through the classified data, it is
tough to find out how the acceleration force and braking force
affect energy consumption separately.

To solve such a problem, we create type 5 based on the
real data. Type 5 is mainly used to compare with type 3 and
type 4. In figure 28, their pedal frequencies are close. The
main difference between type 3 and type 5 is the acceleration
force, while that between type 4 and type 5 is the braking
force.

Next, we utilize the proposed model to predict the energy
consumption of type 5. The result is shown in figure 29.
Compared to type 3, the energy consumption of type 5
decreases slightly. But they achieve much great energy

VOLUME 8, 2020 133947



Y. Huang et al.: Save or Waste: Real Data Based Energy-Efficient Driving

FIGURE 28. Pedal force.

FIGURE 29. Pedal frequency.

FIGURE 30. 100km energy consumption of type 5.

savings compared with type 4. Besides, the energy con-
sumption of type 5 becomes more stable. This suggests that
improving traction pedal strength is much more available for
saving energy.

To summarize, the pedal frequency and pedal force both
have significant impact on energy consumption of EVs,
demonstrating that the characteristic data we select are rea-
sonable to describe driving behaviors. According to the
simulation results, pedaling with high intensity and low
frequency is considered to be the optimal energy saving
scheme. Between the two, frequency has a greater influence
on energy consumption than intensity. The energy saving

levels of different pedals also differ. The reduction in energy
consumption caused by increasing the acceleration pedal
force is ten times greater than the reduction by increasing
the braking force. Cutting down the frequency of any pedal
can significantly lower energy consumption. Specifically,
reducing the braking frequency by 24 times per hour can cut
down the energy consumption by about 17 (kwh/100km) as
well as make energy consumption more stable. Reducing the
acceleration frequency by 18 times per hour can cut down the
energy consumption by 15 (kwh/100km). But the energy con-
sumption fluctuates more. Finally, we give the corresponding
recommended mechanisms for each type of drivers.

• Efficient skilled drivers. Owing the lowest pedal fre-
quency, efficient skilled drivers have the lowest and sta-
ble energy consumption among the four types. However,
their recovery energy is also the lowest. This is because
their acceleration pedal strength is not optimal, with
at least 6 percent more room for improvement. That
is to say, by increasing the depth of the acceleration
pedal, such drivers can further achieve lower energy
consumption.

• Moderate skilled drivers. If a user belongs to this cate-
gory. It means that he is proficient and cautious when
driving. However, careful driving leads to the increase
in energy consumption. It is what they are required to
noticemost. As experienced drivers, increasing the pedal
strength does not pose a safety problem. In consequence,
improving the force of the traction pedal is the most
efficient approach for them. Moreover, they can further
save energy by reducing the braking frequency.

• Efficient novice drivers. We can say that such users are
‘brave’, because they are not skilled enough but dare
to pedal with great force. It is their ’braveness’ that
makes their energy consumption not that high. There-
fore, as long as they improve their driving proficiency
through continual practices, their energy consumption
will gradually decrease. Concretely, they ought to prac-
tice how to slow down in advance instead of stepping on
the brake pedal frequently. This is the most helpful way
to them for energy saving.

• Moderate novice drivers. As a matter of fact, most
novice drivers are cautious. Unfortunately, such drivers
consume too much energy. We can also say that they
benefit most from this study. Moderate novice drivers
are required to practice more to improve their profi-
ciency. Firstly, we recommend them practice chang-
ing speed ahead of time to reduce pedal usage. Then,
their driving habits should also be adjusted. Specially,
we suggest them increase pedal strength, especially on
the acceleration pedal.

VII. CONCLUSION
In this paper, we made use of the real data collected by six
electric vehicles to explore the relationship between driving
behaviors and energy consumption. We firstly cleaned the
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data to cluster the drivers. Depending on the driving behav-
iors, four typical types were classified, including the efficient
skilled driver, moderate skilled driver, efficient novice driver
and moderate novice driver. Then, we proposed a predication
model of energy consumption, which accurately revealed
the relationship between driving behaviors and energy con-
sumption. Furthermore, we conducted comprehensive simu-
lation to verify the performance of the proposed model. The
results indicated that the accuracy of the model is up to 98%.
In particular, the proposed model was less dependent on data
volume than most existing prediction models of energy con-
sumption. The model maintained more than 96% accuracy
when the amount of data was small. Finally, according to
the predication results of the model, we presented suitable
recommended energy saving mechanisms for each type of
drivers.

Behaviors of one driver were analyzed as a whole in this
paper. Relaying on the results we could give suggestions for
each kind of drivers. In the future, we will focus on each kind
of driving behaviors to analyze the energy consumption and
give more detailed recommendations. Additionally, we will
take into account microscopic factors such as noise and con-
duct modeling at the microscopic level.
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