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ABSTRACT Dendrimers are hyper-branched macromolecules having various applications in diverse fields
like supra-molecular chemistry, drug delivery and nanotechnology etc. The certain graph invariants such as
dominating number and power dominating number can be used to characterize large number of physical
properties like physio-chemical properties, thermodynamic properties, chemical and biological activities,
etc. A subset of a simple undirected graph is called dominating set if every vertex of the given graph is either
in that set or is adjacent to some vertex in that set. The minimum number of elements in that kind of set is
called domination number. A subset of the vertex set of a graph G is said to be power dominating set (PDS)
of G, if every vertex and every edge in G is observed by P. The minimum cardinality of P of a graph G is
called power domination number. In this paper, the domination number and power domination number of
some nanostars dendrimers have been determined.

INDEX TERMS Domination number, power domination number, dendrimers.

I. INTRODUCTION
A dendrimer is a molecule that is manufactured artificially
and it has well defined chemical structure. The structure of
dendrimers are composed by three major architectural com-
ponents: one component is core which is the basic component
in construction of dendrimer, then branches which added
in each step recursively to create a tree like structure and
finally, the end groups. The nanostar dendrimer behaves as
macroparticles which appear to be photon funnels and is like
artificial antennas.

LetG be simple and undirected graph with vertex set V and
edge set E . A dominating set is a subset of the vertex set of G
such that every vertex in V (G)−D is adjacent to at least one
member ofD. The smallest number of elements inD is called
the dominating number of G and is denoted by γ = γ (G).
The dominating number is an extensively studied graph

invariants in graph theory. The domination number are
obtained for grids [7], for regular graphs [6], for cartesian
product of directed cycles, the cartesian products of two
directed paths, the cartesian product of the cycle of length
n [9], [11], [19].

The associate editor coordinating the review of this manuscript and

approving it for publication was Donghyun Kim .

For any vertex v of G, the open neighbor hood is the
set of all elements which are connected to v. The closed
neighborhood of v is the union of set of all elements con-
nected to v and the element v. Mathematically, we define:
N (v) = {u ∈ V (G) : vu ∈ E(G)} and N [v] = {v} ∪ N (v)
respectively. For a set P ⊆ V , let N (P) = ∪V∈PN (V ) − P is
the open neighborhood and N [P] = N (P) ∪ P be the close
neighborhoods of P.
A subsetP of the vertex set is said to be a power dominating

set (abbreviated as PDS) if every vertex and every edge in G
is observed by P. The set observed by P is denoted byM (P).
A PDS of G with the minimum cardinality is called power
domination number and is denoted by γP(G). It is obvious
to note that every dominating set is a PDS. The PDS is
constructed as follows:

(1) First write those vertices intoM (P) which are in closed
neighborhood of P.
(2) Add all vertices w in M (P) which are adjacent to v

which is already inM (P) such that all the other vertices which
are adjacent to v are already in M (P). When there is no such
vertex w exists, then the set mentioned by P is constructed.
The Phase Measurement Unit (PMU ) is used to measure

the voltage of node and current phase of the edges connected
to the node in electric power network. These problems are
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solved by installing the minimum number of PMUs such that
the whole system is monitored.

In the study of mathematical chemistry, a molecular graph
or chemical graph is a representation of the structural formula
of a chemical compound in terms of graph theory. A chemical
graph is a labeled graph whose vertices correspond to the
atoms of the compound and edges correspond to chemical
bonds. Many chemical structures such as Sierpinski net-
works [13], silicate networks [10] were modeled as graphs
and studied. Upper bounds on the power domination are given
for different graphs in [2], [4], [20] and the power domination
number of various graphs are studied in [2], [3], [5], [8], [16].

In this article, we study the domination and power dom-
ination for complex chemical networks like some infinite
families of Nanostar Dendrimers. We derive the exact values
of domination and power domination for these classes of
complex chemical networks.

II. PRELIMINARY RESULT
A well known power domination subgraph relation is intro-
duced by Sudeep Stephen in [15], which is stated as
Theorem 2.1 (Power Domination-Subgraph Relation):

Let K1, . . . ,Kr are subgraphs of G such that Ki ∩ Kj = φ

and fulfill the two conditions stated below:
1. V (Ki) = V1(Ki) ∪ V2(KI ) where V1(Ki) = {x ∈

V (Ki)|x ∼ yforsome y ∈ V (G) − V (Ki)} and V2(Ki) = {x ∈
V (Ki)|x � yforall y ∈ V (G)− V (Ki)}.
2. V2(Ki) 6= φ and for each x ∈ V1(Ki), there are at least

two vertices in V2(Ki) which are connected to x.
If V1(Ki) is observed and if li are minimum number of

vertices which are required to observe vertex set of each Ki,
then γ (G) ≥ 6k

i=1li.

III. THE GRAPH OF FIRST KIND OF DENDRIMER D1[n]
We denote in this section the molecular graph D1[n] defined
in [3] by G(n), where n denotes the step of growth. Suppose
G(0) and H are the graphs obtained by the vertex gluing of a
hexagon C6 with K2 and P4, respectively. The graph G(0) is
called the core of the graph G(n) and H is the graph of added
branch. The structure of graph G(n) = D1[n] is constructed
by adding 2k , 1 ≤ k ≤ n copies of added branch H at
each step. Figure 1 depicts the graph ofG(2) with two growth
stages. Moreover, it can be observe that, V (G(n)) = 2n+4−9
and E(G(n)) = 18× 2n − 11.
Definition 3.1: The number of non-hexagon edges inci-

dent at its vertices is the degree of a hexagon.
Theorem 3.1: If G be the graph of first kind of dendrimer

D1[n]. Then γ (G) = 5.2n − 3, for n ≥ 1.
Proof: Let Hi and Kj be the graphs obtained by joining

the vertices ofGwhich are adjacent to the hexagons of degree
3 and degree 1 respectively. By the construction of graph G,
the subgraphs Hi and Kj are pairwise disjoint. Since we have
2n − 1 copies of Hi and 2n copies of Kj. Therefore, there
must exist at least one vertex from each copy of the graph
Hi and Kj which belong to the dominating set. Thus γ (G) ≥
62n−1
i=1 γ (Hi)+62n

j=1γ (Kj) = 5.2n − 3.

FIGURE 1. The structure of the graph of D1[n].

Since, the graph G has 2n hexagons of degree one. Let
y1, y2, . . . , y2n be the end vertices of each hexagon. Define
the dominating set as follows:
D = {xε G : deg(x) = 3} ∪ {yi : 1 ≤ i ≤ 2n}. Thus |D| =

2n+ 4.2n− 3 = 5.2n− 3. This implies that γ (G) ≤ 5.2n− 3.
Theorem 3.2: If G be the graph of first kind of dendrimer

D1[n]. Then γP(G) = 2n+1 − 1, for n ≥ 1.
Proof: Let us denote the hexagons in the graph D1[n]

byHi. From the construction of the graph,D1[n] has 2n+1−1
hexagons. Let X = {Hi : Hi is Hexagon in D1[n]}. Then
|X | = 2n+1 − 1. Since each hexagon Hi is observed by a
single vertex. Therefore, by Theorem [15], li = 1, we have
γp(G) ≥ 2n+1 − 1.
On the other hand, every vertex of degree 3 in each of the

hexagon observe all other vertices in that hexagon. Let Y be
a set which contains at least one vertex of degree 3 in each of
the hexagon. Then γ (G)p ≤ 2n+1 − 1.

IV. THE GRAPH OF THIRD KIND OF DENDRIMER D3[n]
In this section, the domination number and power domina-
tion number of the graph of third kind of dendrimer D3[n]
defined in [3] is discussed. In this type of dendrimers, the core
consists of three hexagons. The graph G(n) = D3[n] is
constructed by adding 3.2k (1 ≤ k ≤ n) copies of the
graph of added branch H at each step. The structure of
this type of dendrimers with two growth stages, D3[2] is
shown in Figure 2. From the construction of graph, we have
|V (D3[n])| = 42.2n − 20 and |E(D3[n])| = 48× 2n − 24.
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FIGURE 2. The structure of the graph D3[2].

Theorem 4.1: If G be the graph of D3[n]. Then γ (G) =
6(2n+1 − 1), for n ≥ 0.

Proof: Let us denote the hexagons in the graph D3[n] by
Hi. From the construction of the graph,D3[n] has 3(2n+1−1)
hexagons. Let X = {Hi : Hi is Hexagon in D3[n]}. Then
|X | = 3(2n+1 − 1). Therefore, there must exist at least two
vertices from each copy of the graph Hi which belong to the
dominating set. It yields that γ (G) ≥ 6

3(2n+1−1)
i=1 γ (Hi) =

6(2n+1 − 1).
Since the graphG has 3(2n+1−1) hexagons of degree two.

Define the dominating set as follows D = {xε G : deg(x) =
3}. Now |D| = 2(3(2n+1 − 1)) = 6(2n+1 − 1). This implies
that γ (G) ≤ 6(2n+1 − 1).
Theorem 4.2: If G be the graph of third kind of dendrimer

D3[n]. Then γP(G) = 3.2n+1 − 3 for n ≥ 0.
Proof: Let us denote the hexagons in the graph D3[n] by

Hi. From the construction of the graph, D3[n] has 3(2n+1 −
1) hexagons. In this graph degree of each hexagon is 2. Let
X = {Hi : Hi is Hexagon in D3[n]}. Since each hexagon Hi
is observed by a single vertex. Therefore, by Theorem 2.1,
li = 1, therefore γp(G) ≥ 3.2n+1 − 3.
Now to prove the upper bound, we construct a power

dominating set of cardinality 3.2n+1 − 3. Every vertex
of degree 3 in each hexagon observe all other vertices
in that hexagon. Let Y be a set which contain at least
one vertex of degree 3 in each of the hexagon. Then
γp(G) ≥ 3.2n+1 − 3.

V. THE GRAPH OF NANOSTAR DENDRIMERS
Themolecular graph of a nanostar dendrimerNS[n] is defined
in [1] with exactly n generations. Consider the core of NS[n]
and the graph with one generation NS[1] are depicted in Fig-
ure 3. The graph NS[n] is constructed by adding 3.2k (1 ≤
k ≤ n) copies of the graph of added branch H at each step.
Obviously, |V (NS[n])| = 12(3.2n − 1) and |EV (NS[n])| =
42.2n − 15. The domination number and power domination
of nanostar dendrimer are discussed in this section.

FIGURE 3. The graph NS[1] with one generation.

Lemma 5.1: If G be the graph of nanostar dendrimer
NS[n]. Then γ (G) ≥ 2(6.2n − 2), for n ≥ 0.

Proof: Let D be a dominating set for the graph G. Since
G has 6.2n − 2 hexagons, therefore it is enough to show that
the dominating setD contain at least two vertices from each
hexagon. Let H be an arbitrary hexagon in G with vertex
set V (H ) = {l1, l2, l3, p1, p2, p3}, where deg(li) = 3. It is
important that the vertices l1, l2, l3 connect the graph H to
the remaining graph. Now we have two cases.

Case 1: N (D) ∩ V (H ) = ∅
Since any vertex in H can dominate at most three vertices

ofH . ThereforeD contain at least two vertices of the graphH .
Case 2: N (D) ∩ V (H ) 6= ∅
In this case l1, l2, l3 can only belong to N (D). To dominate

the vertices p1, p2 and p3, at least one vertex from the set of
vertices {p1, l1, p2} and {l2, p3, l3} must belong to D. There-
fore γ (G) ≥ 2(6.2n − 2).
Lemma 5.2: If G be the graph of nanostar dendrimer

NS[n]. Then γ (G) ≤ 2(6.2n − 1), for n ≥ 0.
Proof: Let H be the graph of the added branch. Let D be

the dominating set consisting of the vertex (say x) which has
degree 3 in H and the vertex which is at distance 3 from x.
D = {xε H : degH (x) = 3} ∪ {yε H : d(x, y) = 3}. Since
there are (6.2n − 2) are edge disjoint copies of H , therefore
γ (G) ≤ 2(6.2n − 2).
From Lemma 5.1 and Lemma 5.2, we can state the follow-

ing main theorem.
Theorem 5.3: For n ≥ 0, γ (G) = 2(6.2n − 1).
Theorem 5.4: If G is the graph of Nanostar dendrimer

NS[n]. Then γP(NS[n]) = 2(3.2n − 1), for n ≥ 0.
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Proof: The molecular graph of nanostar dendrimer has
hexagons of degree 3 and 1. The hexagons of degree 1 lie
only in nth generation. Let X be the collection of all hexagons
of degree 3 and 1. Thus |X | = 2(3.2n − 1). Since each
hexagon Hi is observed by a single vertex, Therefore, The-
orem 2.1, li = 1. Hence, γP(G) ≥ 2(3.2n − 1). To prove
γP(G) ≤ 2(3.2n−1), we construct a power dominating set of
cardinality 2(3.2n−1). Let Y be the set constructed by taking
one vertex from each hexagon Hi. i.e Y = {xi ∈ V (Hi) : i =
1, 2, 3, . . . , 2(3.2n − 1)}. It is easy see that set Y observed
thee all vertices of NS[n].

VI. THE GRAPH OF TREE DENDRIMER
Consider the graph of tree dendrimer Tl,p known as regular
dendrimer defined in [18]. Let v0 be the center of the graph
of Tl,p. The degree of every non-pendant vertex is p and the
distance between every pendant vertex and the central vertex
v0 is l. T2,3 and T3,4 are shown in following figure.

FIGURE 4. The graph of tree dendrimer T2,3 and T3,4.

Theorem 6.1: For l, p ≥ 2,

γ (Tl,p) =



1+
p(p− 1)[(p− 1)l − 1]

(p− 1)3 − 1
, if l ≡ 0(mod3)

1+
p(p−1)2[(p− 1)l−1 − 1]

(p− 1)3 − 1
, if l ≡ 1(mod3)

p
(p− 1)l+1 − 1
(p− 1)3 − 1

, if l ≡ 2(mod3)

Proof: LetD be a dominating set and f (s) be the number
of vertices of the graph Ts,p in D. It is worthy to see that the
graph of Ts,p can be obtained from the graph of Ts−1,p by
adding p(p−1)l−2 (2 ≤ s ≤ l) copies of the added branchH .
Since the graph H is isomorphic to K1,s−1. Therefore to
dominate the pendant vertices there must exist at least one
vertex in D from each copy of the graph H . Also no vertex in
the graph Ts−3,p can dominate any vertex of the graph Ts,p.
Now we have the following three cases.

Case 1: If p ≡ 0(mod3).
This case implies that f (s) ≥ f (s − 3) + p(p − 1)3s−2.

By backward substitution

f (Ts,p)≥ f (T3,p)+p[(p− 1)4+(p− 1)7 + . . .+ (p− 1)l−2]

Since f (T3,p) ≥ 1+ p(p− 1), so

f (Ts,p)≥1+p[(p−1)1+(p−1)4+(p−1)7+. . .+(p−1)l−2],

from above it is concluded that

f (Tl,p) ≥ 1+
p(p− 1)[(p− 1)k − 1]

(p− 1)3 − 1
.

Case 2: If p ≡ 1(mod3).
This case implies that f (s) ≥ f (s − 3) + p(p − 1)3s−1.

By backward substitution

f (Ts,p) ≥ f (T4,p)+ p[(p− 1)5 + · · · + (p− 1)l−2]

Since f (T4,p) ≥ 1+ p(p− 1)2, so

f (Ts,p) ≥ 1+ p[(p− 1)2 + (p− 1)5 + . . .+ (p− 1)l−2],

this conclude that

f (Tl,p) ≥ 1+
p(p− 1)2[(p− 1)l−1 − 1]

(p− 1)3 − 1
.

Case 3: If p ≡ 2(mod3).
This case implies that f (s) ≥ f (s − 3) + p(p − 1)3s−3.

By backward substitution

f (Ts,p)≥ f (T2,p)+p[(p− 1)3+(p− 1)6 + . . .+ (p− 1)l−2]

Since f (T2,p) ≥ p, so

f (Ts,p) ≥ p+ p[(p− 1)3 + (p− 1)6 + . . .+ (p− 1)l−2],

this conclude that

f (Tl,p) ≥ p
(p− 1)l+1 − 1
(p− 1)3 − 1

.

To prove the upper bounds in above three cases, we proceed
as follows:

Case 1: If p ≡ 0(mod3)
Consider the set D1 = {x ∈ G | d(x, v0) = 3l − 1,∀

1 ≤ l ≤ l
3 } ∪ {v0}.

Since the graph Tl,p has l-stages. If p ≡ 0(mod3), then in
each stage there are p(p−1)3s−2 vertices which are at distance
3s− 1 from v0. Therefore |D1| = 1+ p(p−1)[(p−1)l−1]

(p−1)3−1
Case 2: if p ≡ 1(mod3)
Consider the set D2 = {x ∈ G|d(x, v0) = 3l,∀ 1 ≤ l ≤

l−1
3 } ∪ {v0}.
In this case there are p(p − 1)3s−1 vertices which are at

distance 3s from v0. Therefore |D2| = 1+ p(p−1)2[(p−1)l−1−1]
(p−1)3−1

.
Case 3: If p ≡ 2(mod3)
Consider the set D3 = {x ∈ G|d(x, v0) = 3l − 2,∀ 1 ≤

l ≤ l+1
3 }

Since there are p(p− 1)3s−3 vertices which are at distance
3s− 2 from v0 in each stage. Therefore |D3| = p (p−1)

l+1
−1

(p−1)3−1
.

All above cases implies that all the vertices of the graph
Tl,p are dominated. Hence

γ (Tl,p)=



1+
p(p− 1)[(p− 1)l − 1]

(p− 1)3 − 1
, if p ≡ 0(mod 3)

1+
p(p−1)2[(p− 1)l−1 − 1]

(p− 1)3 − 1
, if p ≡ 1(mod 3)

p
(p− 1)l+1 − 1
(p− 1)3 − 1

, if p ≡ 2(mod 3)
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Theorem 6.2: γP(Tl,p) = p(p−1)l−2, for l ≥ 2 and p ≥ 2.
Proof: Let us denote all the star graphs in Tl,p by

Hi which are isomorphic to K1, s−1. These star graphs
are at distance l from the central vertex v0. The degree
of the central vertex in Hi is p. Let X = {Hi :
Hi is isomorphic to K1, s−1 in Tl,p}, where |X | = p(p−1)l−2.
Since eachHi is observed by a single vertex, therefore si = 1.
By theorem, we have γP(Tl,p) ≥ p(p − 1)l−2. Now to prove
upper bound, we exhibit a power dominating set of cardinality
p(p− 1)l−2. Let Y be a set which contain at least one vertex
of degree p − 1 in each of Hi. Then γP(Tl,p) ≤ p(p − 1)l−2.
It is easy to see that set Y observed all the vertices of Tl,p.

VII. CONCLUSION
Domination and power domination problem is graph theory is
widely studied problem. It has many applications in different
areas. In this work, domination and power domination num-
ber problem for some infinite classes of Nanostar Dendrimers
are explored and exact values of these parameters have been
computed. We believe that these results will be helpful for
people working in that filed to understand and predict the
physio-chemical properties for these chemical structures.
In future, we are interested to identify more such chemical

structures and compute their domination and power domi-
nation number and other graph parameters to explore more
physical chemical properties.
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