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ABSTRACT To analyze the vibration characteristic differences of a gear transmission system with gear and
shaft cracks, an improved computational method for deriving the shaft stiffness matrix with breathing cracks
is developed. Also, the three-dimensional contact model of spur gear with a crack is established via the
finite element method (FEM), and its meshing stiffness is calculated. Simultaneously, considering bearing
stiffness and shaft flexibility, the finite element dynamic models of two-stage gear transmission system with
gear and shaft cracks are established. Based on this, different source fault vibration responses are compared
and the influencing factors are explored. In addition, a novel signal processing method based on the particle
swarm optimization, maximum correlated kurtosis deconvolution, variational, mode decomposition and fast
spectral kurtosis (PSO-MCKD-VMD-FSK) is utilized to extract fault characteristics for the signal-to-noise
ratio and uneven energy distribution problems. Results show that a system with gear cracks mainly presents
periodic impact in the time domain, while in the frequency domain it impacts rotation frequency modulation
near the meshing frequency and its multiple frequencies. However, the shaft crack breathing effect meant
that the time domain mainly presents ‘‘simple harmonic’’ modulation, and the rotation frequency and its
faulty shaft multiplication occurs in the low-frequency region of the frequency domain. The PSO-MCKD-
VMD-FSK method extracts fault features in a strong noise environment and has good robustness. Results
identify different source faults and provide a theoretical basis.

INDEX TERMS Gear transmission system, vibration response, gear crack, shaft crack, fault diagnosis.

NOMENCLATURE
rp Base circle radius of the driving gear
rg Base circle radius of the driven gear
α Pressure angle
Km Meshing stiffness matrix
Cm Meshing damping matrix
mp, mg Mass of gear
Ip, Ig Moment of inertia of gear
qo Crack depth
fs Normal impact force of gear pair
f Contact force of gear pair
rn Inner ring radius of driving gear
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km Meshing stiffness
Me Mass matrix of shaft element
Ce Damping matrix of shaft element
Ke Stiffness matrix of shaft element
� Input speed
Kc(t) Stiffness matrix of shaft element with crack
Kd

c Stiffness reduction t matrix of crack shaft
αo Circumferential angle of crack
e Eccentricity of the crack section
r Shaft radius
IOv , I

O
w The moment of inertia of crack part for

Ov and Ow
IOp The pole inertia moment of crack part for O
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IO
′

v′ , I
O′
w′ The moment of inertia of crack part for O′v′

and O′w′

IO
′

p′ The pole inertia moment of crack part for O′

λg Dimensionless crack depth for gear crack
λs Dimensionless crack depth for shaft crack
M Mass assembly matrix
C Damping assembly matrix
Kf Stiffness assembly matrix
fni The system natural frequency
fti Rotation frequency
fmi Meshing frequency

I. INTRODUCTION
The gear transmission system has the advantages of high
precision, efficiency, stability, etc. as well as being is widely
used in aerospace, transportation, energy equipment and other
fields. However, the gear transmission system structure is
becoming more complicated, and the working environment
remains relatively harsh, so the gear transmission is prone to
various failures throughout its life cycle. Among them, cracks
are the most common failure mode, whether it be for gears or
shafts. Different fault sources will cause different vibration
characteristics in the system. Therefore, analyzing the vibra-
tion characteristics of cracks in different fault sources for fault
location and diagnosis is greatly significant.

At this point, much research has been carried out on
gear and shaft cracks of rotating machinery. Studies [1], [2]
have shown that, gear meshing stiffness reduction is an
important index for measuring the degree of gear damage.
Howard et al. [3] used the finite element software to calculate
the meshing stiffness of gear pair with cracks, and estab-
lished the torsional vibration model of single stage reducer.
Yang et al. [4] calculated the meshing stiffness of gear pair by
potential energy method. On this basis, Tian et al. [5] further
modified the algorithm by considering the influence of shear
energy on the meshing stiffness of gears, and calculated
and compared the time-varying mesh stiffness (TVMS) of
missing tooth, cracked tooth and broken tooth. Then, Litak [6]
obtained the meshing stiffness of gear with fault by ana-
lytical method, and obtained the dynamic characteristics of
single degree of freedom gear transmission system with fault.
After that, Wu et al. [7] established a 6-DOF gear system
dynamic model considering the lateral vibration of the gear,
and studied the vibration characteristics of the transmission
system with crack. Meng et al. [8] calculated the meshing
stiffness of gear under the failure of tooth surface spalling
and crack by potential energy method, and analyzed the fault
characteristics. To sum up, at present, there are various and
more accurate methods to solve the time-varying meshing
stiffness, but most of the gear transmission systems use the
lumped mass method to establish the model, ignoring the
flexibility of the transmission shaft, so that the final solution
error is large. In order to solve the above problems, Sax-
ena et al. [9] established a dynamicmodel of single-stage gear
transmission system based on the finite element method. The

results show that the system response is more practical after
considering the shaft flexibility.

The literature mentioned above shows the extensiveness
of research on the dynamic response of the gear transmis-
sion system with gear failures. In contrast, the dynamic
response of the gear transmission system with shaft cracks
have not been fully studied, but the dynamics of bearing-
rotor system with crack has a certain foundation. As early as
1976, Gasch [10] utilized the hinge spring model to simulate
the simple solid shaft cracked rotor system and analyzed
its vibration characteristics. Then, Dimarogonas et al. [11]
found that the change of the vibration characteristics of a
cracked rotor is caused by the changing of the stiffness matrix
of the rotor. Mayes et al. [12] proposed to use the cosine
model to simulate crack opening and closing law. After that,
a breathing model was established in [13], [14] to simu-
late the opening and closing law of cracks. Patel [15] stud-
ied the influence of crack breathing effect on its vibration
characteristics. Al-shudeifat et al. [16], [17] considered the
time-varying product of the inertia and the moment of iner-
tia of the crack section, thereby derived a new stiffness
model of the cracked rotor, and verified the model through
experiments. Based on this, Lu et al. [18] studied the vibra-
tion characteristics of a double rotor system with a breath-
ing crack. In conclusion, past research, the research on the
fault of the common rotor system is more concentrated.
However, research on the gear coupling system is relatively
limited.

Scholars have also researched crack fault diagnosis.
To solve the lack of adaptability of traditional signal analysis
methods and the inability to extract effective fault-feature
information from strong noise and nonlinear vibration sig-
nals, scholars have proposed a series of signal processing
methods that are widely used in gear system fault diagnosis.
For example, Yu et al. [19] combined empirical mode decom-
position (EMD)with the autoregressive (AR)model to extract
effectively the feature vector of a gear fault; Cheng et al. [20]
combined localmean decomposition (LMD) and spectral kur-
tosis (spectral kurtosis) (SK) to identify gear faults. However,
EMD and LMD belong to recursive mode decomposition,
resulting in some unavoidable problems, such as mode mix-
ing, the end effect, the boundary effect and so on [21], [22].
In recent years, Dragomiretskiy et al. [23] proposed VMD,
which can not only avoid EMD and LMD shortcomings, but
also has good robustness to noise. Simultaneously, McDon-
ald et al. [24] proposed the MCKD algorithm. Through the
deconvolution operation, MCKD highlights the continuous
impulse submerged by noise and improves the correlation
kurtosis of the original signal. It is suitable for extracting
the continuous transient impulse of a weak fault signal. FSK,
proposed by Antoni [25], can accurately reflect the instan-
taneous impact component of the vibration signal in strong
noise, thereby quickly selecting the best filter.

In summary, previous research shows that relatively few
studies focus on the shaft fault of a gear system, and the
centralizedmassmethod is often utilized for modeling of gear
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transmission system with fault; therefore, transmission shaft
flexibility is not effectively taken into account.

In this work, to analyze the vibration characteristic dif-
ferences of a gear transmission system with gear and shaft
cracks, first, the time-varying meshing stiffness of a gear
crack fault was solved via FEM and the stiffness of the shaft
section with a breathing crack was derived. Second, consider-
ing the shaft flexibility, the two-stage gear drive system with
gear and shaft cracks were established respectively and its
vibration characteristics were studied. Finally, test data was
collected and the fault characteristic frequency is processed
by PSO-MCKD-VMD-FSK method.

II. FINITE ELEMENT MODEL OF GEAR TRANSMISSION
SYSTEM
A. MODEL OF TWO-STAGE GEAR TRANSMISSION SYSTEM
In this study, the transmission system of a two-stage spur gear
reducer is taken as the research object. The transmission sys-
tem consists of three shafts, two pairs of gear pairs and three
pairs of bearings. In order to improve the accuracy of solu-
tion of bearing vibration response and fault vibration signal,
taking into account the flexibility of shaft section, the finite
elementmodel of transmission system is established as shown
in Figure 1. And the model is divided into 32 nodes and
29 elements by using shaft element, gear meshing element
and bearing shaft element. Bearing nodes are respectively
located at nodes 5, 13, 14, 22, 23 and 31, gear nodes are
located at nodes 7, 16, 20 and 29, among which node 7 and
node 16 constitute the first stage mesh element, node 20 and
node 29 constitute the second stage gear mesh element.

B. DYNAMIC MODEL OF GEAR MESHING ELEMENT WITH
CRACK
One of the main causes of vibration and noise of gear box
is the periodic change of meshing stiffness of gear, during
the gear transmission. At the same time, gear failure will
reduce themeshing stiffness of the gear, resulting in abnormal
vibration of the gearbox. Therefore, the establishment of the
dynamic model of the gear with tooth root crack can provide
a theoretical basis for the fault diagnosis of the gearbox.

1) DYNAMIC MODEL OF NORMAL GEAR MESHING ELEMENT
The basic parameters of the gear pair are shown in Table 1,
Considering the influence of time-varying meshing stiffness
Km(t) and transmission error e(t), a 6-DOF meshing element
dynamic model of spur gear is established as shown in Fig-
ure 2. In Figure 2,wp,wg, vp and vg are the degrees of freedom
of the lateral vibration of the gear pair, and θp and θg are the
degrees of freedom of the torsional vibration of the gear pair.

The vibration displacement of the gear pair in each direc-
tion is projected in the direction of the meshing line to obtain
the relative total deformation δ:

δ=vp sinα+wp cosα−rpθp−vgsinα−wg cosα−rgθg−e(t)

(1)

FIGURE 1. (a) Internal structure diagram of experimental gearbox.
(b) Assembly model of two-stage gear transmission system. (c) Finite
element model of two-stage gear transmission system.

TABLE 1. Parameters of gear.

where, rp and rg are the base circle radius of the driving gear
and the driven gear, respectively, and α is the pressure angle.

Therefore, the gear meshing force can be expressed as

Fm = Km(t)δ + Cmδ̇ (2)

here, Km is meshing stiffness, Cm is meshing damping.
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FIGURE 2. Dynamics model of meshing gear pair.

FIGURE 3. Calculation of meshing stiffness.

According to the D’alembert’s principle, the differential
equation of motion of the gear meshing element is expressed
as 

mpv̈p + cmδ̇ sinα + kmδ sinα + fs sinα = 0
mpẅp + cmδ̇ cosα + kmδ cosα + fs cosα = 0
Ipθ̈p − cmδ̇rp − kmδrp − fsrp = 0
mgv̈g − cmδ̇ sinα − kmδ sinα − fs sinα = 0
mgẅg − cmδ̇ cosα − kmδ cosα − fs cosα = 0
Igθ̈g − cmδ̇rg − kmδrg − fsrg = 0

(3)

where, m, I and fs denote the mass, moment of inertia, normal
impact force of gear pair respectively, while the subscripts p
and g represent the pinion and driven gear, respectively.

2) CALCULATION OF MESHING STIFFNESS
Establish the three-dimensional contact model of spur gear,
and use the finite element method to solve the meshing stiff-
ness of the transmission system, as shown in Figure 3.

Mesh stiffness is solved under ideal conditions without
considering assembly errors, machining errors, and backlash.
This model uses a combination of hexahedral elements and
tetrahedral elements for meshing which the hexahedron mesh
is used to divide teeth and hub and the tetrahedral mesh is
used for the transition at the root position. Meanwhile, reduce

the number of meshes appropriately in non-contact areas to
improve computational efficiency.

In this study, calculation of contact between teeth by
penalty function method. And it is assumed that the two con-
tact points are connected by linear springs. Thus, according
to Hooke’s law, the permeability relationship between contact
points can be expressed as

f = kµ (4)

where, f is contact force, k is contact stiffness, and µ is
penetration depth, k can be calculated as follows:

k =
foMA2

V
(5)

In which, fo represents penalty coefficient, whose value is
generally taken as 0.1. M is bulk modulus of contact element,
A is contact element area, V is contact element volume.

In local cylindrical coordinate system, the transverse dis-
placement of the drivingwheel is restrained, and then the joint
force is applied on the inner ring joint of the gear to realize
the load torque on the driving gear. The torque calculation
formula is as follows

T = nfmrn (6)

where, n is number of inner ring nodes of driving gear, fm is
circumferential nodal force, rn is inner ring radius of driving
gear.

Therefore, the equivalent force along the meshing line of
the gear is

Fb =
T
rp

(7)

here, rb is base circle radius of driving gear.
In order to avoid the influence of local deformation,

the average value of the displacement of all nodes on the inner
ring of the driving wheel is used to equivalent the torsional
deformation amount n of the inner ring of the gear. Thus,
the relative angle of the drive gear is expressed as

θ =
δn

rn
(8)

The equivalent deformation caused by the comprehensive
deformation on the meshing line is

δb = θrp (9)

Finally, the calculation formula of gear meshing stiffness
is obtained as follows:

Km =
nfmr2n
δnr2p

(10)

Divide the meshing period of a gear tooth of the driving
gear into 10 equal parts, adjust the position of the driven gear
according to the meshing relationship of the gear pair. On this
basis, 10 meshing states of gear pair are obtained, and the cor-
responding meshing stiffness of 10 meshing states is obtained
by repeating the above stiffness calculation steps. Thereafter,
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FIGURE 4. The curve of TVMS without fault.

FIGURE 5. Gear model with root crack fault: (a) gear with root crack fault
(b) meshing stiffness curve.

the curve of meshing stiffness of a meshing period is obtained
by fitting by interpolation method as shown in Fig.4.

Fig.4 shows the meshing stiffness of double teeth is greater
than that of single teeth. The entire meshing cycle is shown
as double tooth meshing-single tooth meshing-double tooth
meshing alternately, and the meshing time of double teeth is
longer than that of single teeth. When the single and double
teeth are alternated, there is a step change in the meshing
stiffness, which causes the transmission system to present a
more obvious stiffness excitation.

3) MODEL OF GEAR CRACK
The gear teeth are constantly subjected to the impact of the
meshing force during the meshing process. Due to the stress
concentration, cracks are often prone to occur at the root of
the meshing surface. Therefore, the structural cracks at the
root of the tooth are shown in Figure 5.

In Fig. 5(a), d is the tooth width, do is the crack extension
length in the tooth width direction, γ is the crack angle,
and qo is the crack depth. Repeat the II.B.2-section meshing
stiffness calculation procedure during calculation, and finally
get the gear meshing stiffness curve with root crack as shown
in Figure 5(b). As shown in Figure 5(b), when a crack failure
occurs on the first-stage gear pair driving wheel (γ = 15◦),
the stiffness change curve of the faulty tooth during the
meshing period. Compared with the time-varying meshing
stiffness of healthy gears, it can be seen that due to the
presence of cracks, the flexibility of the gear teeth is increased
and the meshing stiffness is reduced. As the depth of the
crack expands, the meshing stiffness of the system also tends

TABLE 2. Parameters of shaft.

FIGURE 6. Schematic diagram of shaft element.

to decrease, and the effect of the crack on the single-teeth
meshing area is more significant than that of the double-teeth
meshing area. Due to the existence of cracks, the meshing
stiffness of the gear appears to be periodically weakened,
so that the system vibration signal exhibits periodic impact.

C. MODEL OF SHAFT ELEMENT WITH CRACK
1) MODEL OF HEALTHY SHAFT ELEMENT
In the spur gear transmission system, the rotating shaft is
mainly subjected to the external force torque and the radial
load generated by the gear transmission. The parameters of
the transmission shaft are shown in Table 2. Considering the
influence of shear deformation, a simple space beam element
model is constructed by combining Timoshenko beam theory
as shown in Figure 6.

Each node of the model considers three degrees of free-
dom, including degrees of freedom of translation in w and v
directions and degrees of freedom of torsion in α direction.
Thus the differential equation of motion of the shaft segment
element is expressed as:

MeẌe + CeẊe + KeXe = 0 (11)

where, Xe = {vi, wi, θi, vj, wj, θj}T represents the displace-
ment column vector of the shaft element; Me is the mass
matrix of the shaft element; Ke is the stiffness matrix of the
shaft element;Ce is shaft element damping matrix, calculated
by Rayleigh damping

Ce = α ·Me + β · Ke (12)

here, α and β are Rayleigh damping proportional coefficients.

2) CRACKED SHAFT ELEMENT MODELING
During the operation of the gear transmission system,
the crack of the shaft is affected by the gravity and the rotation
movement, which results in the time-varying stiffness of the
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FIGURE 7. Breathing crack model.

cracked shaft element. When the crack is closed, the crack
shaft element stiffness can be approximated to the normal
shaft element stiffness. When the crack is in the fully open
state, the stiffness reduction of crack shaft element reaches
the maximum. While in the operation of the equipment,
the cracks are more in the transition state. During this period,
the amount of stiffness reduction continuously changes with
time. In view of the time-varying stiffness of crack shaft
element, cosine model is used to simulate the opening and
closing law of crack.

f (t) = 0.5(1+ cos(�t)) (13)

where, � is the input speed of the system, and the opening
and closing rules are shown in Figure 7.

The stiffness of crack shaft element can be expressed as

Kc(t) = Ke − f (t)K d
c (14)

where Kc(t) is the time-varying stiffness matrix of the crack
shaft element, and Kd

c is the stiffness reduction amount of the
crack shaft element.

The schematic diagram of crack section is shown
in Figure 8, and the shaded part indicates the cracked part.
O-vw is the fixed coordinate system with the original center
of the shaft as the coordinate origin, where the coordinate
origin O is the centroid of the section of the shaft without
crack, O′-v′w′ is the fixed coordinate system with the new
centroid of the shaft after crack as the coordinate origin, and
O′ is the centroid of the eccentric section of the crack. αo is
the circumferential angle of the crack, e is the eccentricity
of the crack cross section relative to the original centroid,
h is the crack depth, r is the radius of the rotating shaft, and
the dimensionless crack depth λs = h/2r .
Ac represents the area of the crack section, and the area of

the area of the crack-free section is Ar, so

Ar = πr2 − Ac (15)

Among them,

Ac = R2αo +
√
2Rh− h2(R− h) (16)

αo = arccos((r − h)/r) (17)

FIGURE 8. Schematic diagram of the cracked element cross section.

The eccentricity of the crack section is

e =
2r3

3Ar
(
2hr − h2

r2
)3/2 (18)

As the crack propagates, the moment of inertia and the
moment of polar inertia of the crack part also change. The
moment of inertia of the crack part to the coordinate axis and
to the origin of the fixed coordinate system are expressed as
follows

IOv = 2
∫ r

r−h
w2
√
r2 − w2dw (19)

IOw = 2
∫ √2rh−h2

0
v2(
√
r2 − v2 − r + h)dv (20)

IOp = IOv + I
O
w (21)

Use the Simpson formula to convert the above integral
formula as follows

IOv =
h
3
[
√
2hr − h2(r−h)2 +

1
2

√
4hr − h2(2r − h)2] (22)

IOw =
2hr − h2

3
(
1
2

√
4r2 − 2hr + h2 − r + h) (23)

Considering the effect of the crack on the centroid, com-
bined with the parallel shift axis theorem, the moments of
inertia IO

′

v′ , I
O′
w′ of the crack part on the coordinate axes O′v′

and O′w′, and the polar moment of inertia IO
′

p′ of the centroid
O′ after eccentricity is expressed as follows

IO
′

v′ = IOv + Are
2 (24)

IO
′

w′ = IOw (25)

IO
′

p′ = IO
′

v′ + I
O′
w′ (26)

so, the moment of inertia of the area without crack in the new
centroid coordinate system: can be expressed as

I O
′

r v′ =
π

4
r4 − IO

′

v′ (27)

I O
′

rw′ =
π

4
r4 − IO

′

w′ (28)
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TABLE 3. Parameters of bearing.

FIGURE 9. (a) Model of the bearing element. (b) The curve of time varying
bearing stiffness.

Therefore, the crack element stiffness matrix reduction is
expressed as (29), as shown at the bottom of the next page
where, ϕv =

12EIv
ξArGl2

, ϕw =
12EIw
ξArGl2

, G represents 80 Gpa

for shear modulus, E is 210 Gpa for elastic modulus and
ξ is 4/3 for shear coefficient.

The time-varying stiffness matrix Kc(t) of cracked shaft
element can be obtained by substituting stiffness reduction
element K d

c into formula (14).

D. MODEL OF BEARING
In the gear transmission system, the bearing mainly plays a
role of supporting the shaft system and reducing the friction
coefficient during the movement. The specific parameters are
shown in Table 3. During the running of the bearing, the roller
passes through the loading area in turn, and the whole process
is contact-contact deformation maximum-recovery deforma-
tion. In this process, the bearing load can be divided into ‘‘odd
pressure’’ and ‘‘even pressure’’, as shown in the figure9.

The radial displacement can be expressed as

δr = 4.36× 10−4
Q2/3
max

D1/3 cosα
(30)

where, Qmax is the maximum normal load of the roller ‘‘odd
pressure’’, D is the diameter of the roller, and α is the contact
angle of the bearing.

The stiffness of bearing under odd pressure is expressed as

kbo =
Fr
δr

(31)

here, Fr is the radial load of the bearing.

In the case of even pressure, the load distributed to the
azimuth angle of the roller is regarded as the maximum load
at this time, and the value is substituted into the formula (31)
to obtain the stiffness kbe of the bearing under even pressure.

Considering the stiffness distribution of the three groups
of deep groove ball bearings in this model as isotropic, Kv(t)
and Kw(t) represent the time-varying stiffness of the bearings
in the horizontal and vertical directions, respectively.

Kv,w(t) = Ko + Ka sin(2π fbt + βo) (32)

where, Ko is the bearing static stiffness; Ka is the fluctuation
amplitude of bearing stiffness; fb is the bearing passing fre-
quency; βo is the bearing phase angle, andKo = (kbo+kbe)/2.

E. SYSTEM MODEL
Considering the coupling relationship between the elements
and the total stiffness matrix bandwidth, the elements are
integrated according to the node number. Figure 10 shows
the schematic diagram of stiffness assembly. After removing
rigid body displacement, the total assembly matrix contains
95 degrees of freedom of nodes, including 38 degrees of
freedom of nodes in the input shaft section, 27 degrees of free-
dom of nodes in the intermediate shaft section, 30 degrees of
freedom of nodes in the output shaft section, and 0 elements
in the blank.

Figure 10(a) shows the general assembly diagram of the
stiffness matrix of the system with a gear crack. As the
coupling element of the connecting shaft system, the gear
meshing element not only reduces local joint stiffness where
the gear is located, but also changes the stiffness value of
the coupling position when the gear fails, thus realizing the
transmission of the system fault. Figure 10(b) shows a general
assembly diagram of the stiffness matrix of the system with
a shaft crack, which mainly affects the stiffness values of the
element in which the crack is located as compared with gear
faults.

Therefore, the dynamic differential equation of the two-
stage gear transmission system with crack is expressed as

MẌ + CẊ + Kf X = Po + Fe (33)

where, X represents displacement array of nodes, which is
expressed as {v1, w1, v2, w2, θ2, . . . , v31, w31, θ31, v32, w32,
θ32}; M, C and Kf are 95 × 95 matrices, which respectively
represent mass assembly matrix, damping assembly matrix
and stiffness assembly matrix of system with cracks, and C is
Rayleigh damping, which can be expressed asC = κM+ιKf ;
Po is external excitation of system; Fe is error excitation of
system.

III. RESPONSE ANALYSIS
A. MODAL ANALYSIS
Natural frequency is the reflection of system inherent
attributes. In order to identify the frequency components of
system dynamic response and measure the degree of equip-
ment damage, natural frequency of the system is solved.
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FIGURE 10. Schematic of the assembly rules of the overall system.
(a) System considering a crack on the gear. (b) System considering a crack
on the shaft.

The system’s undamped free vibration equation without
external excitation is

MẌ + Kf X = 0 (34)

The characteristic equation of the system is thus
constructed:

|Kf − w2
iM | = 0 (35)

where, wi denotes circular frequency.
Convert the system circular frequency wi into the system

natural frequency wn
i by formula (36)

wni = wi/2π (36)

Natural frequency of 95orders and corresponding vibration
modes of the system are obtained. It is observed that gear
failure mainly affects low-order natural frequency while
shaft failure mainly affects high-order natural frequency. So,
the first 10-order natural frequencies, the 51st to 65th natural
frequencies and corresponding vibration modes of the two
fault systems are given here as shown in the table 4 and 5.

Tables Table 4 and 5 show how the overall stiffness of the
system tends to decrease with the existence of cracks; there-
fore, the natural system frequency tends to decrease under

both faults. Also, as the crack depth increases, the natural fre-
quency reduction amount gradually increases, but the vibra-
tion mode corresponding to the natural frequency has not
changed. Moreover, gear failure mainly affects the low-order
natural frequency of the system, especially the low-order
natural frequency corresponding to the torsional vibration
mode, such as the changing of the 4th, 7th, 8th, and 10th order
natural frequency values, while the 51st to 65th order natural
frequency values almost remains unchanged. The difference
is that the shaft crack fault has a greater influence on the
natural frequencies above the 10th order (including the 10th
order), and its effect is not limited to the natural frequencies
corresponding to the torsional vibration modes.

B. VIBRATION CHARACTERISTIC ANALYSIS
At an input shaft speed of 50 rad/s and a load of 100N · m.,
obtained input shaft rotation frequency ft1 = 8.3Hz, inter-
mediate shaft rotation frequency ft2 = 3.3Hz, output shaft
rotation frequency ft3 = 0.96Hz, first gear pair meshing
frequency fm1 = 299.8Hz and second gear pair meshing
frequency fm2 = 95.7Hz can be obtained. The dynamic
equation of the drive system is solved by Newmark-β and
the bearing vibration signal at the right end of the input shaft
is extracted as shown in the figure 11.

Figure 11(a) shows the time-domain and frequency-domain
diagrams of the transmission system with non-failure. In the
frequency domain, the system vibration response is domi-
nated by the meshing frequency and its double frequency, and
the first-order natural frequency fn1 of the system also exists.

Figure 11(b) shows the vibration response time-domain
and frequency-domain diagrams of the 1st stage gear sec-
ondary driving gear with a crack; the crack angle is γ = 15◦,
and the crack depth is 30%. In the time domain, a clear peri-
odic shock component exists, and the shock period is 1/ft1.
The frequency-domain diagram shows that a sideband is
generated near the gear pair meshing frequency and its fre-
quency multiplication, and the side frequency interval is 1/ft1,
where the carrier frequency is the meshing frequency, and the
modulation frequency is the input shaft rotation frequency.

K d
c =



12EIO
′

v′
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0 0 −

12EIO
′

v′
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0 0

0
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(29)
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TABLE 4. Natural frequencies of the system for the first 10 orders.

TABLE 5. Natural frequencies of the system for the 51st to 65th order.

Figure 11(c) shows the time-domain and frequency-domain
diagrams of the vibration response of the system with the
crack in the gear position (λs = 0.3). Influenced by crack
breathing, simple harmonic periodic modulation appears in
the time domain, in which the carrier frequency is the mesh-
ing frequency and the modulation frequency is the rotating
frequency of the input shaft. The long-term component in the
time domain is the rotating frequency of rotating shaft (1/T)
and the short-term component is themeshing frequency of the
gear system. In the frequency domain, ft1 and 2ft1 are clear,
and a small amount of side frequency modulation appears
near the meshing frequency.

In summary, the time-frequency response differences of
the two fault sources include: (1) In the time domain, the

transmission system with gear cracks appears as impact sig-
nals, while the transmission system with shaft cracks shows
‘‘simple harmonic’’ modulation; (2) The frequency domain
shows that the transmission systemwith gear cracks is mainly
manifested as side frequency modulation near the meshing
frequency, and the latter mainly exhibits the rotation fre-
quency ft1, 2ft1, and 3ft1.

IV. EXPERIMENT
A. SIGNAL ACQUISITION
Spectra Quest comprehensive fault diagnosis test bench is
used in this test. As shown in Figure 12, the main drive
chain consists of two-stage fixed-shaft gear drive system
and single-stage planetary gear drive system. DEWESoft
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FIGURE 11. Time domain and frequency domain diagrams of the system. (a) Normal system. (b) System with gear crack.
(c) System with shaft crack.

FIGURE 12. Comprehensive test platform for fault diagnosis.

data acquisition system is selected for data acquisition.
Prefabricated 2mm crack at tooth root of primary drive gear
and input shaft respectively at a speed of 500r/min. The
parameters of gear and drive shaft are in accordance with the
simulation.

Figure 13 shows the original vibration signals of gear crack
and shaft crack collected by the test-bed. The vibration sig-
nals appear irregular distribution in time domain. Due to the
influence of noise and other factors, the fault characteristics
cannot be clearly reflected, so it is necessary to process the
vibration signal.

B. SIGNAL PROCESSING
According to the features of fault signal, a joint
PSO-MCKD-VMD-FSK algorithm is proposed to extract
fault features. The PSO is mainly used to optimize the initial

set filtering length L and the deconvolution period T in
MCKD. And optimize the decomposition mode parameter
K and penalty parameter α of VMD. Firstly, MCKD is
used to reduce noise and enhance signal of the original
signal; secondly, VMD algorithm is used to decompose the
signal after preprocessing; then, components are screened
by Pearson correlation coefficient method; finally, FSK and
envelope demodulation method are used to distinguish fault
characteristics, and the specific processing flow is shown
in Figure 14.

1) PSO
PSO uses the sharing of information among individuals in a
group to make the movement of the whole group produce an
evolutionary process from disorder to order in the problem
solution space, so as to obtain the optimal solution. The basic
calculation process is as follows:

(1) Initialize the population and set basic parameters such
as the maximum genetic number (T), inertial factor ($ ),
learning factors (c1, c2), etc.

(2) According to the objective function, the fitness function
of particles is calculated, and the local optimal solution of
particle swarm is calculated.

(3) The speed and position of particles in the population
are optimized according to the local optimal solution.

(4) Determine whether the termination condition is satis-
fied, and terminate the iteration if the requirements are met,
otherwise return to step (2). The update formula of particle
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FIGURE 13. The diagram of experimental vibration response. (a) System with gear crack. (b) System with shaft crack.

FIGURE 14. Flow chart of fault diagnosis.

speed and position in particle swarm algorithm is as follows:

vip(n+ 1) = ωvip(n)+ c1r1(dip(n)− xip(n))

+ c2r2(dgp(n)− xip(n)) (37)

xip(n+ 1) = xip(n)+ vip(n+ 1) (38)

where, xip(n) is the p-dimensional position of the nth iteration
of particle i; vip(n) is the p-dimensional speed of the nth
iteration of particle i; dip(n) is the individual extreme point
position of the nth iteration of particle i; dgp(n) is the group
extreme point position of the nth iteration of particle i; c1 and

c2 are learning factors; $ is inertia coefficient; r1 and r2 are
random numbers between [0,1].

In this paper, PSO is used to search the parameters combi-
nation of the MCKD algorithm [filter length: L, deconvolu-
tion period: T ] and the VMD algorithm [decompositionmode
parameter: K , penalty term parameter: α], so as to realize the
adaptive parameter selection.

2) MCKD
The essence of the MCKD algorithm is to find a FIR filter,
and recover the input signal Y through the output signal x,
as follows:

y = f ∗ x =
L∑
k=1

fkxn−k+1 (39)

where, f = [f1 f2 · · · fL]T is the filter coefficient of length L
In order to highlight the continuous sharp pulse in the decon-
volution result, the algorithm takes the correlation kurtosis
of the signal as the evaluation standard, and maximizes the
correlation kurtosis as the final objective function, which is
expressed as follows

O(CKM (T )) =

N∑
n=1

(
M∏
m=0

y(n− mT ))2

(
N∑
n=1

y2n)M+1
(40)

In order to obtain the optimal inverse filter f coefficient,
the first derivative of the objective function is defined as zero,
namely:

d
dfk

CKM (T ) = 0, k = 1, 2, · · · ,L (41)

Based on this, the best filter coefficient is obtained

f =

∥∥y2∥∥
2 ‖β‖2

(XoXTo )
−1

M∑
m=0

(XmTαm) (42)
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FIGURE 15. Time-frequency diagram after MCKD processing. (a) System with gear crack. (b) System with shaft crack.

where, α0 = [y1y21−T y2y22−T · · · yN y
2
N−T ]

T , α1 =
[y1−T y21 y2−T y

2
2 · · · yN−T y

2
N ]

T β = [y1y1−T y2y2−T · · ·
yN yN−T ]T ,

Xr =


x1−r x2−r x3−r · · · xN−r
0 x1−r x1−r · · · xN−1−r
0 0 x1−r · · · xN−2−r
...

...
...

. . .
...

0 0 0 · · · xN−L−r−1


L×N

(43)

The specific calculation steps of the MCKD algorithm are
as follows

(1) Determine the length L of the filter, the number of
conversions M and the period T of the signal.

(2) Calculate the Xo, Xot and XmT of the original signal
x(n)

(3) Find the filtered output signal y (n).
(4) Update the filter coefficients.
If the signal1CKM (T ) < ε before and after filtering, stop

the iteration and jump back to step (3).
The deconvolution signal y of the actual acquisition signal

x can be obtained by substituting the obtained inverse filter
coefficient into equation (2).

Set the combined parameter [L, T] in combination with
PSO, the noise reduction result of vibration signal with gear
crack is shown in Figure 15(a), with L= 22, t= 22; the noise
reduction result of vibration signal with shaft crack is shown
in Figure 15(b), with L = 16, T = 168.

3) VMD
VMD decomposes the different frequency components of
complex vibration signals from high to low, and generates a
series of components with different frequency scales, which
can separate themain components representing the fault state.

The VMD decomposes the vibration signal f(t) into k
modal components with a center frequency of ωk. For
this purpose, an optimal variation model is constructed as
follows

min
{uk },{ωk }

{∑
k

∂

∂t

{[
δ (t)+

j
π t

]
∗ uk (t)

}
e−jωk t ||22

}

s.t.
K∑
k=1

uk (t) = f (t)

(44)

When solving the problem, the second penalty factor α
and Lagrange multiplier λ(t) are introduced to transform
the original model into a non-constrained variation prob-
lem, and an extended Lagrange expression formula (45) is
obtained

L({uk}, {wk}, λ) = α
∑
k

||∂t

[
(δ(t)+

j
π t

) ∗ uk (t)
]
e−jwkt ||22

+ ||f (t)−
∑
k

uk (t)||22

+〈λ(t), f (t)−
∑
k

uk (t)〉 (45)

Thereafter, the multiplier algorithm is used to alter-
nate the direction of solution (45), iterate continu-
ously and update alternately un+1k , wn+1k and wn+1k as
equation (46-48), in order to search for the ‘‘saddle point’’
of extended Lagrange.

un+1k (w) =

f (w)−
∑
j6=k

uj(w)+
λ(w)
2

1+ 2α(w− wk )2
(46)

wn+1k =

∫
∞

0 w|uk (w)|2dw∫
∞

0 |uk (w)|
2dw

(47)
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FIGURE 16. Processing results by VMD. (a) System with gear crack.
(b) System with shaft crack.

λn+1(w) = λn(w)+ τ [f (w)−
∑
k

un+1k (w)] (48)

Setting combination parameters [K, α] with PSO, the
decomposition results of vibration signal with gear crack
are shown in Figure 16(a), with K = 8, α = 2526; the
decomposition results of vibration signal with shaft crack are
shown in Figure 16(b), with K = 7, α = 3473.
Subsequently, the VMD components are screened by Pear-

son correlation coefficient, and the component with the
largest correlation coefficient value is selected as the optimal
component. In order to realize the fast calculation of spectral
kurtosis, the optimal component of VMD is analyzed by FSK
in reference [26], and the signal envelope diagram is obtained
as shown in the figure. From figure 17, it can be seen that both
fault frequencies are the rotation frequency where the fault
occurs, which is consistent with the theoretical analysis.

FIGURE 17. The signal envelope spectrum. (a) The signal envelope
spectrum for gear crack. (a) The signal envelope spectrum for shaft crack.

V. ANALYSIS OF INFLUENCING FACTORS AND
DIFFERENCES
A. EFFECT OF CRACK DEPTH ON VIBRATION
CHARACTERISTICS
As in the previous section, the effect of crack depth on the sys-
tem vibration response is investigated at an input shaft speed
of 50 rad/s and a load of 100N ·m. Figure 18 shows a three-
dimensional graph of the crack depth and vibration response.
Figure 18(a) shows a graph of the relationship between the
crack depth and the time-domain history under the gear crack
fault. Figure 18(b) shows a graph of the relationship between
the crack depth and the time-domain history under the shaft
crack fault. Figure 18(c) shows a graph of the relationship
between the crack depth and the frequency-domain under the
gear crack fault. Figure 18(d) shows a graph of the relation-
ship between the crack depth and the frequency-domain under
the shaft crack fault.

Figures 18(a) and 18(b) show that as the crack depth
positively correlated with the two fault responses, the deeper
the root crack, the stronger the system impact; the deeper
the shaft crack, the more apparent the system time-domain
modulation phenomenon.

Figures 18(c) and 18(d) show that as the gear crack deep-
ens, the sideband near its meshing frequency become more
obvious; as the shaft crack fault becomemore serious, the fre-
quency conversion and its frequency doubling corresponded

VOLUME 8, 2020 133693



Y. Shen et al.: Comparative Study on Dynamic Characteristics of Two-Stage Gear System With Gear and Shaft Cracks

FIGURE 18. Three-dimensional spectrum diagram. (a) Time domain response varies with crack depth (gear crack). (b) Time domain response varies
with crack depth (shaft crack). (c) Frequency response varies with crack depth (gear crack). (d) Frequency response varies with crack depth (shaft
crack).

to the fault shaft becoming more obvious, and the ft1 is the
most significant; and the amplitude of 2ft1 become more
apparent as the crack depth increases, while the amplitude
of 3ft1 slowly increases.

B. EFFECT OF INPUT SPEED
In order to explore the characteristics of vibration response
during system speed-up under different fault conditions, tak-
ing into account the flexibility of shaft section, the whole
acceleration process keeps the load torque of 100 N ·m. The
crack parameter is λg,s = 0.5, which is located in the 6th
element. The calculated speed-amplitude curve is shown in
the Fig.19.

Figure 19 shows that system resonance can be caused
when the external excitation frequency (frequency conver-
sion, engagement frequency of two-stage gear, and its fre-
quency multiplication) of the system is close to the natural
system frequency. The peak value of point A corresponds
to the input speed of 380 rad/s, and 2fm2 is close to the
fn3; Point B corresponds to a speed of 560 rad/s, and the
2fm1 approximates the fn8; at point C, the corresponding
speed is 780 rad/s, and the fn1 is close to the first natural
system frequency; and at point D, the corresponding speed
is 840 rad/s, and the fm2 is close to the fn3. Simultaneously,

FIGURE 19. Vibration amplitudes versus input speeds.

the system failure; mean that the system flexibility of the
system is enhanced, so that the response amplitude is greater
than the normal response of the system, and, at the same
speed, the response amplitude caused by the gear crack is
greater than the response amplitude caused by the shaft
crack.
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FIGURE 20. Time domain statistical indicators changes with speeds. (a) RMS changes with speeds. (b) Kurtosis changes with speeds.

FIGURE 21. Time domain statistical indicators changes with loads. (a) RMS changes with loada. (b) Kurtosis changes with loads.

C. EFFECT OF WORKING CONDITIONS ON FREQUENCY
CHARACTERISTICS
Mean square root (RMS) and kurtosis are selected to char-
acterize signal characteristics, in which the mean square
root is often used to measure the energy level of vibration
time-domain history. The mathematical expression is

RMS =

√√√√ 1
N

N∑
n=1

(x(n)− x̄)2 (49)

where, x̄ = 1
N

N∑
n=1

x(n).

Kurtosis is a numerical statistic on the distribution of vibra-
tion signals, which can reflect the fault impact component in
the vibration signals. It is calculated as follows

Kurtosis =

1
N

N∑
n=1

(x(n)− x̄)4[
1
N

N∑
n=1

(x(n)− x̄)2
]2 (50)

And, in order to explore the correlation between variable
operating conditions and RMS and kurtosis index, further
analysis of signal characteristics with speed and load changes.

Under the condition of a load torque of 100 N ·m, he RMS
change trend, the kurtosis index, and the speed increase
are shown in Figure 20. Figure 20(a) shows that t a peak
value exists near the speed of 550 rad/s. This is because,
at this speed, the 2fm1 is close to the fn8, resulting in system
resonance and raising the RMS peak value. Figure 20(b)
shows that the kurtosis index of the three is different when
the rotating speed is 50∼200rad/s, and the kurtosis index
of the three gradually shrank with the increase of rotating
speed.

The RMS change trend, the kurtosis index, and load all
increase at the speed of 50 rad/s, as shown in Figure 21.
The RMS value of the system increases in direct proportion
o the load torque increases. The load increases, means that
the RMS value of the gear fault system gradually became
greater than that of the shaft fault system, but the overall
difference is small. For example, when the load is 250N ·m,
the difference between the two is only 1.66 µm. In contrast,
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FIGURE 22. Processing results by VMD (simulation signal). (a) Normal.
(b) System with gear crack. (c) System with shaft crack.

the kurtosis values of different systems are different at low
speed, but with an increasing load, the kurtosis of each system
is not obvious, only exhibiting a small range of fluctuations.
When the load is 50N · m, the kurtosis of the fault system
with the shaft crack is 15.6% higher than that of the normal
system, and the kurtosis of the fault system with the gear
crack is 48.4% higher than that of the normal system. This
demonstrates that the impact phenomenon caused by gear
failure is more significant, because the single and double
alternation of low-speed gear is the main excitation source of

FIGURE 23. IMF energy distribution in different states.

the system, and crack generation makes the stiffness mutation
more apparent, which shows that the kurtosis value of the
fault system with the gear cracks is larger.

D. VMD DECOMPOSITION OF VIBRATION SIGNALS
For VMD decomposition of simulation signal, the principle
of close center frequency is used to determine the number of
decomposition layers. Here, it is determined that the number
of decomposition layers K = 4, the default value of penalty
factorα is 2000, τ = 0, and the decomposition result is shown
in Figure 22.

Figure 22(a) shows that the overall distribution of the nor-
mal system vibration signal is relatively stable; Figure 22(b)
shows is the decomposition diagram of the vibration signal of
the system with the gear crack fault, in which the components
of IMF2, IMF3, and IFM4 take the first stage gear meshing
frequency as the center frequency, and different degrees of
sidebands near the center frequency exists. The more obvious
the sideband is, the larger the proportion of impact com-
ponents in the corresponding time-domain component is;
Figure 22(c) is the vibration signal decomposition diagram
of the fault system with the shaft cracks. IMF1 represents the
main component in the fault state of the shaft cracks, that is,
the frequency component. At this time, the IMF1time-domain
component has obvious frequency conversion modulation,
which shows as ‘‘simple harmonic’’.

The energy distribution of signals in different frequency
bands is affected because the different weakening mecha-
nisms of the system stiffness were caused by different faults.
To explore the energy distribution difference of different
faults, the energy of different frequency bands is extracted
for analysis.

The energy of the ith IMF component can be expressed as

Ei =
∫
+∞

−∞

(x(n))2dt (51)

Thus, the energy distribution coefficients of three states
(normal, including gear cracks, including shaft cracks) are
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constructed

[e1, e2, · · · , en] = [E1/Eall,E2/Eall, · · · ,En/Eall] (52)

where, Eall =
n∑
i
Ei.

The distribution coefficients of the three state components
are calculated as shown in Figure 23.

In the normal system, the energy distribution is more uni-
form, the uncertainty is greater, and the energy entropy of the
whole system is larger than that in the fault state; the vibration
signal of the fault system with gear crack is concentrated
in the frequency band where the meshing frequency exists,
mainly concentrated around 5fm1 and 7fm1; and the vibration
signal energy of IMF1 of the fault system with shaft crack
is 95% of the whole system, indicating that the energy is the
main focus on low frequency areas.

VI. CONCLUSION
In this study, the meshing stiffness of a gear with crack
fault is calculated via FEM, and the stiffness matrix of a
shaft element with a breathing crack is derived. Considering
shaft flexibility, the finite element dynamic models of the
secondary gear drive system with the gear and shaft cracks
are established respectively. Finally, different fault source
vibration responses are compared and the influencing factors
are analyzed by combining the tests. The conclusions are as
follows:

(1) Affected by the gear crack, the vibration response
of the system shows periodic impacts in the time domain.
In the spectrum, side-frequency modulation occurs mainly
near the meshing frequency and its multiplication. Also under
the influence of the shaft crack, the time domain presents
as ‘‘simple harmonic’’ modulation, while in the frequency
domain, it manifests as frequency conversion and frequency

multiplication of the faulty shaft in the low-frequency region.
Both fault modulation periods are the reciprocal of the shaft
rotation frequency where the fault is located.

(2) The gear crack fault mainly affects the low-order nat-
ural system frequency, especially the low-order natural fre-
quency corresponding to the torsional vibration mode. The
difference is that shaft crack fault has a greater influence
on the natural frequencies above the 10th order (including
the 10th order), and its effect is not limited to the natural
frequencies corresponding to the torsional vibration modes.

(3) The PSO-MCKD-VMD-FSK method effectively
extracts the two fault characteristics in this study. Results
are consistent with the theoretical analysis, and this method
effectively resists the influence of noise on the signal.

(4) The system frequency characteristics of different
source faults are different, and cracks affect the energy distri-
bution of the system. The gear cracks concentrate vibration
energy mainly near the meshing frequency and its multipli-
cation, while under the effect of the shaft crack; the system
energy mainly concentrates on the low-frequency area.

APPENDIX
THE ELEMENT MATRICES OF SHAFT AND GEAR PAIR

Me =
πr3l
6



2 0 0 1 0 0
0 2 0 0 1 0

0 0
2J
πr2

0 0
J
πr2

1 0 0 2 0 0
0 1 0 0 2 0

0 0
J
πr2

0 0
2J
πr2


where, l is Shaft element length, J is polar moment of inertia
of shaft section to center of circle the equation can be derived,

Ke =



G · πr2

λ– · l
0 0 −

G · πr2

λ– · l
0 0

0
G · πr2

λ– · l
0 0 −

G · πr2

λ– · l
0

0 0
G · J
l

0 0 −
G · J
l

−
G · πr2

λ– · l
0 0

G · πr2

λ– · l
0 0

0 −
G · πr2

λ– · l
0 0

G · πr2

λ– · l
0

0 0 −
G · J
l

0 0
G · J
l



Km =



km sin2 α km sinα cosα −km sinαr1 −km sin2 α −km sinα cosα −km sinαr2
km sinα cosα km cos2 α −km cosαr1 −km sinα cosα −km cos2 α −km cosαr2
−km sinαr1 −km cosαr1 kmr21 km sinαr1 km cosαr1 kmr1r2
−km sin2 α −km sinα cosα km sinαr1 km sin2 α km sinα cosα km sinαr2
−km sinα cosα −km cos2 α km cosαr1 km sinα cosα km cos2 α km cosαr2
−km sinαr2 −km cosαr2 kmr1r2 km sinαr2 km cosαr2 kmr22
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as shown at the bottom of previous page. where, G is shear
modulus, λ– is cross section shape coefficient of shaft element
the equation can be derived, as shown at the bottom of previ-
ous page.
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