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ABSTRACT Ubiquitous Internet of Things (IoT) devices have fueled plenty of innovations in the emerging
network paradigms. Among them, IoT edge caching has emerged as a promising technique to cope with the
explosive growth in network data traffic, withQuality of Service (QoS) improved and energy saved. However,
the intrinsic storage limitations of the edge servers poses a critical challenge for the IoT edge caching system.
Enabling edge servers to cooperate with each other can provide a potential perspective to improve the edge
storage utilization widely discussed. Nevertheless, it also incurs an additional communication overhead,
eventually making the caching system more complex. As a result, how to perform an efficient cooperative
caching becomes a critical issue. Thus, in this paper, we propose a deep reinforcement learning-based
cooperative edge caching approach, which allows the distributed edge servers to learn to cooperate with
each other. Specifically, edge servers determine their cache actions based on the local caching state. After
that, the centralized remote server evaluates these actions and feeds back the evaluation results to edge
servers for subsequent caching actions optimization. We show that, by designing an appropriate reward
function, our approach promotes cooperation between edge servers as well as improving the system hit rate.
On this basis, we consider a practical and reasonable scenario with inconsistent data item size and propose a
novel multi-agent actor-critic caching algorithm. Extensive simulation results demonstrate the performance
improvement using our proposed solution over three other caching algorithms.

INDEX TERMS Cooperative edge caching, Internet of Things, multi-agent deep learning, actor-critic,
multi-agent deep deterministic policy gradient.

I. INTRODUCTION
Fueled by the ubiquity of the Internet of Things (IoT) devices,
IoT data has been growing exponentially. According to the
related reports, the number of devices connected to IP net-
works will be more than three times the global population by
2023 [1] and the total data volume of connected IoT devices
is projected to reach 79.4 zettabytes by 2025 [2]. Further,
researchers have noted that, it is challenging for the current
network paradigm to accommodate these data especially in
terms of storage and transmission. This mainly results from
the fundamental design of the Internet [3], [4].

A promising technique to address this challenge is the
emerging edge caching [5], which provides cloud-like storage
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resources for IoT data at the edge of the network. As a conse-
quence, IoT applications can retrieve these data without going
through the backhaul link, resulting in a significant reduction
in data transmission [6]. Furthermore, it also saves the energy
consumption of edge servers by reducing the non-essential
utilization of backhaul connections [7], and further decreases
the energy cost of IoT devices by minimizing the time to
obtain IoT data [8].

In fact, edge caching has been investigated exhaustively
[9]. Most of them focus on caching points in isolated
domains, either at the network edge or the base station.
Nevertheless, in practical scenarios, the caching performance
is always constrained by the limited storage of an individual
edge server [10]. An effective solution is to enable edge
servers to cooperate with each other, by sharing data items
through their internal connections. Consequently, the set of
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cached data can be enlarged and IoT devices can be served
by multiple edge servers to exploit caching diversity [11].

Moreover, designing a caching mechanism for each server
independently may also result in an insufficient utilization
of caches. This happens, either when the cached data in
neighboring servers are overlapped or when the caching loads
of edge servers are imbalance [5]. To this end, a well-tuned
cooperative caching mechanism is needed, with the purpose
of fully utilizing vacant servers and avoiding caching too
many redundant data duplicates with data retrieving time
guaranteed.

Exploiting the envisioned cooperative edge caching poses
several technical challenges. First, in order to actualize coop-
eration, edge servers should be aware of the caching status of
their neighboring servers by an information exchange mech-
anism, which may induce significant overheads [5]. Second,
a dynamic and adaptive caching framework is required for
efficient cooperation management [12]. Third, the caching
algorithm should be designed with the capability of tack-
ling large-scale information, incurred by information inter-
action and huge data items. To the best of our knowledge,
techniques, such as integer linear programming or dynam-
ical programming, are qualified in addressing the first two
issues [13], [14]. However, many projections of them may
become prohibitive in problems involving high-dimensional
parameters [15]. Recently, with the significant exploration of
edge computing [16] and deep reinforcement learning (DRL)
based approaches [17], [18] in coping with system dynamics
and complexity, we are motivated to use these approaches
in our problem domain. Specifically, a DRL agent can be
implemented at the edge server to seek for its optimal caching
decisions and learn to dynamically adjust its actions based
on the other servers’ information. Then, with an appropriate
reward function, all servers can work cooperatively with
overall performance improved.

In this work, we investigate the cooperative caching mech-
anism in the IoT edge caching scenario, where IoT applica-
tions send the request to its assigned edge servers and the
edge servers perform cooperatively to satisfy the request. For
practicality and generality, we consider that IoT data items
are of different sizes, which is reasonable in most actual IoT
environments but are not sufficiently investigated. Our main
objective is to maximize the overall hit rate, further, minimize
the backhaul traffic cost. Inspired by [19], [20], we first pro-
pose a deep reinforcement learning-based cooperative edge
caching approach by leveraging the actor-critic reinforce-
ment learning scheme [21]. In the proposed approach, each
edge server makes their caching decisions based on the local
state, and its model is updated by the Temporal-Difference
error (TD-error), which is calculated depending on other
servers’ caching states and actions in a remote centralized
server. Besides, we propose a multi-agent actor-critic coop-
erative caching algorithm and explore the impact of coop-
eration between edge servers on the system hit rate. We
validate the performance improvements of our algorithm over
two conventional caching algorithms and one state-of-the-art

learning-based caching algorithm [22]. Simulation results
also point out reasons to indicate how the cooperative edge
caching could achieve a higher system hit rate and why the
proposed algorithm outperforms the others.

Our main contributions of this work are as follows.

• We propose a deep reinforcement learning-based
cooperative edge caching approach by combining
the characteristics of the deep reinforcement learning
approach and the IoT edge caching system. We define
the feature and action spaces to cope with the obstacles
caused by the inconsistent IoT data item size, and design
an efficient reward function to promote cooperation
between edge servers.

• We develop a multi-agent actor-critic algorithm to con-
duct the proposed approach. In particular, each edge
server makes caching decisions locally. After that,
the remote centralized server evaluates the actions based
on the global caching information and feeds back the
evaluation results to edge severs to optimize their sub-
sequent caching decisions. We treat TD-errors as the
evaluation results and use them to update the model in
the edge server.

• We demonstrate the performance improvements of the
proposed algorithm over two conventional caching
algorithms and one state-of-the-art learning-based algo-
rithm. The simulation results also provide a view of
how the edge servers cooperating with each other and
how the cooperative edge caching achieving a higher hit
rate.

The organization of this paper is as follows. We present
related works about edge caching in Section II and illus-
trate the IoT edge caching system model in Section III.
In Section IV, we describe the proposed framework and
provide the definition of caching state, action, and reward.
Based on the proposed framework, we develop a cooperative
edge caching algorithm in Section V. Simulation results and
performance analysis are shown in Section VI. And finally,
we conclude this paper in Section VII.

II. RELATED WORK
A. DEEP REINFORCEMENT LEARNING
BASED EDGE CACHING
Due to the efficiency of reinforcement learning approaches in
making caching decisions, many excellent works have been
done to cope with the key issues in edge caching systems.

In [23], authors have discussed key issues in mobile edge
caching and propose a learning-based mobile edge caching
schemes to achieve context awareness and intelligence in
mobile edge caching. By combining the DDPG (Deep Deter-
ministic Policy Gradient) [24] with the Wolpertinger archi-
tecture [25], which can narrow the size of the action space
and avoid missing the optimal policy, the authors of [26]
propose a DRL-based framework aimed at maximizing the
hit rate. To jointly consider data-transiency and dynamic
context characteristics, the authors use DRL to solve the
problem of caching IoT data at the edge [27], which aims
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to strike a balance between the communication cost and
the loss of data freshness. Besides, in [28], the authors
have leveraged the actor-critic learning framework to solve
the joint decision-making problem in the cloud-based IoT
scenario. In this framework, caching strategy, computation
offloading policy, and radio resource allocation are simulta-
neously considered. Using edge caching as one of the key
enablers in the services of smart cities, the authors in [29]
integrate networking, caching, and computing resources to
improve the performance of applications for smart cities and
then develop a novel big data deep reinforcement learning
approach. Also, an integrated framework is proposed in [30],
which enables dynamic orchestration of networking, caching,
and computing resources in the vehicular networking [31],
and the DRL approach in this work is aimed at solving the
resource allocation problem.

Unlike most of the aforementioned works, size of the
content items is assumed to be the same, but in [30], authors
have taken the content item’s size as a feature, based onwhich
they have developed a model-free reinforcement learning
algorithm to address the cache admission problem with the
goal of improving the hit rate. In [33], authors have proposed
a DRL algorithm to solve the resource allocation problem,
with an objective to jointly optimize tasks offloading, cache
allocation, computation allocation, and dynamic power distri-
bution. Besides, the authors of [34] leverage a reinforcement
learning approach to deal the edge caching problems in the
vehicular networks, aiming to enhance the download rate
of vehicles. Additionally, a DRL with the multi-time scales
framework is developed in [35], which is used to tackle the
joint communication, caching, and computing design prob-
lem in the vehicular network, taking into account the vehicles’
mobility and the hard service deadline constraint.

B. COOPERATIVE EDGE CACHING
Note that, in cooperative edge caching scenarios, a request
may be served either by the local edge server or the neigh-
bor edge server. And this implies that the cached content
can be shared between edge servers. Therefore, cooperation
has become another research direction in the edge caching
literature in order to enhance performance.

In [36], the authors have considered an integrated mobile
content distribution framework with universal in-network
caching and collaboration across domains and develop a
context-aware solution to provide collaborative video content
distribution. By investigating the impact of collaborative
cache constraints, the authors of [37] propose a collabo-
rative cache scheme for the 5G wireless network, which
improves the overall performance of the wireless networks
in terms of transmission delay, local availability of contents
and utilization of caches. By leveraging information-centric
networking, the authors of [38] have proposed a social-aware
fog network and develop a social-aware content caching and
distribution scheme allowing nodes to collaboratively cache
content locally. In [39], the authors formulate an optimiza-
tion problem to cope with the issues of collaborative cache

allocation and computing offloading, aiming at maximizing
resource utilization. By considering content sharing between
user devices, the authors of [40] construct a content sharing
framework in the D2D scenario and propose a distributed
collaborative cache management scheme to make caching
decisions. In [41], the authors have developed an analyt-
ical framework to evaluate the data volume that can be
downloaded using a cooperative drive-thru Internet scheme.

Further, in our literature review we have also noticed some
works using learning-based approaches to address the coop-
eration problems. In [42], two novel proactive cooperative
caching approaches are proposed to predict users’ content
demand in mobile edge caching network, by leveraging deep
learning algorithms. Similarly, a proactive caching mecha-
nism, named Learning-based Cooperative Caching strategy,
is proposed to reduce transmission cost while improving
QoE for mobile edge computing. Authors in [41] have used
the Q-learning method to design the cache mechanism and
develop an action selection strategy for the cache prob-
lem. Through the learning-based method, the appropriate
caching state can be found and the cache performance can
be effectively improved. In [44] and [45], firstly authors
have modeled the cooperative content caching problem as a
multi-agent multi-armed bandit problem, and then propose a
multi-agent reinforcement learning-based algorithm to solve
the problem. Very recently, the authors of [22] develop a
deep actor-critic reinforcement learning-based multi-agent
framework to make caching decisions in the cooperative edge
caching scenario, aiming to minimize the overall transmis-
sion delay. We have used this algorithm in our research
modified it and further re-evaluated it. The proposedmodified
algorithm is compared with the original one.

III. SYSTEM MODEL
In this section, the IoT edge caching model is introduced
and basic assumptions are given first. Besides, the caching
decision issue is formulated as an optimization problem with
the objective of maximizing backhaul traffic reduction.

A. MODEL DESCRIPTION
The proposed IoT edge caching is illustrated in Fig. 1. IoT
applications have access to Edge Servers within their service
region. All Edge Servers are connected with each other and
can retrieve the IoT data from the Internet through a reliable
backhaul link. There also exits a Central Server, that acts as a
manager of all edge servers.

In this work, Edge Servers are the cache entity with limited
storage and work cooperatively to share IoT data items. For
example, if a data request cannot be fulfilled locally by Edge
Server 1, it can be satisfied by Edge Server 2 or Edge Server
3 through the internal connections depending on whether
Edge Server 2 or Edge Server 3 has the requested data item.
The Central Server does not store any IoT data item. Instead,
it has a global view of caching states. Besides, when all Edge
Servers cannot fulfill an IoT data request, the Central Serve
is responsible for fetching the requested data item from the
Internet through the backhaul link.

133214 VOLUME 8, 2020



Y. Zhang et al.: Cooperative Edge Caching: A Multi-Agent Deep-Learning-Based Approach

FIGURE 1. Cooperative IoT edge caching system model.

The workflow of the proposed system is described as
follows. 1) An IoT data request is first sent to its assigned
edge servers. 2) If the local cache has the relevant data
item, it returns the requested item immediately; otherwise,
the request is reported to the central server. 3) The central
server queries whether other edge servers have the requested
data item. If it exists, it will be sent back through the inter-
nal connections between edge servers; otherwise, the central
server fetched the data item from the Internet through the
backhaul link.

Usually, the primary goal of a caching server is to
maximize its hit rate to minimize the traffic cost incurred by
data transmission. For the proposed system, maximizing the
hit rate of an individual edge server would be inferior to maxi-
mizing the total hit rate of all servers, as the latter could enable
edge servers to cache more data items and thus achieve a
larger backhaul traffic reduction. Nevertheless, improving the
total hit rate requires the edge server to be enabled to adjust
its caching decisions based on other servers’ caching states.
To this end, there is a need to efficiently exchange the caching
information, including request feature and caching states,
between edge servers. Although cooperative edge caching
may cause additional traffic overhead due to caching informa-
tion interaction, still it can significantly improve the total hit
rate and reduce the overall backhaul traffic load. Furthermore,
the traffic overhead incurred is negligible compared with
fetching a data item from the Internet.

Towards making a caching decision, there are usually
two methods to develop a caching decision: Centralized and
Decentralized. For the centralized method, caching deci-
sions are determined in the central server and then sent to
edge servers. In this mode, edge servers are only respon-
sible for data storage and caching decision execution, and
the central server provides optimal caching decisions based
on the global view of caching states. However, for the
decentralized method, it is the edge servers that deter-
mine the caching decisions. In this mode, an edge server
receives other servers’ caching information and then deter-
mines its own caching decisions based on local data requests.

The center server works for caching information interaction
and synchronization.

In the rest of this paper, E = {e1, e2, . . . , eN } is used
to denote the set of Edge Server, where en represents the
cache capacity of Server n. Here N represents the number
of Edge Servers. The set of IoT data item is denoted by
C = {c1, c2, . . . , cM }, where cm represents the size of the
data item m, hereM is the total number of IoT data items. In
addition, time is assumed to be slotted into periods, denoted
by T = {1, 2, . . . ,T }. Then, caching decisions is determined
and updated periodically as well as caching information.

In the domain served by en, the number of IoT application
is assumed to be Ln and requests generated by l at time t is
denoted by a binary vector U t

n,l = {u
t
n,l,1, u

t
n,l,2, . . . , u

t
n,l,M },

where utn,l,m = 1 means application l requests data item m
at time t while utn,l,m = 0 otherwise. Here, the popularity of
the IoT data item is assumed to be unknown. Instead, F tn,l =
{f tn,l,1, f

t
n,l,2, . . . , f

t
n,l,M } is introduced to record the request

frequency of data items. Specifically, f tn,l,m represents the
cumulative number of requests for data itemm by application
l at time t . In addition, data requests are assumed to be
independent.

B. PROBLEM FORMULATION
Based on the above assumptions, the cooperative caching
problem is formulated as an optimization problem with a
goal of maximizing the long time averaged backhaul traffic
reduction.
To describe a caching decision, this work introduces a

binary matrix X t = {x tm,n|cm ∈ C, en ∈ E}, where x
t
m,n = 1

indicates that the data item m is cached in the edge server en
at time t , while x tm,n = 0, otherwise. Since the total size of
the cached data items cannot exceed the storage capacity of
the edge server, the capacity constraints is

M∑
m=1

cm · x tm,n ≤ en (1)

In general, the backhaul traffic reduction is proportional to
the frequency of requests for the cached data items. It is calcu-
lated as the accumulated weighted sum of the requested data
items. When considering the proposed model, it is divided
into two parts: local caching traffic reduction and cooperation
caching traffic reduction. For the first part, the backhaul
traffic reduction is achieved by the cached data items in local
edge server.

r tn,0 =
M∑
m=1

Ln∑
l=1

f tn,l,m · u
t
n,l,m · cm · x

t
m,n (2)

For the second part, it is achieved by other servers sharing
their data items, which is expressed by

r tn,1 =
M∑
m=1

Ln∑
l=1

f tn,l,m · u
t
n,l,m · cm · (1− x

t
m,n) · y

t
n (3)

where ytn = (1−
∏N

n‘=1,n‘6=n (1− x
t
m,n‘))
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Although sharing data items reduces the backhaul traffic
load, it causes an additional traffic overhead. Therefore, a dis-
count factor, βn ∈ [0, 1], is introduced. Now, the expected
traffic reduction is

Rt =
N∑
n=1

(r tn,0 + βn · r
t
n,1) (4)

Consider Eq. (4), βn = 0 means that internal traffic is
equivalent to the backhaul traffic. Under this circumstance,
cooperation between servers is meaningless. On the contrary,
βn = 1 implies that the internal connection traffic is ignored.
Finally, there is no difference between caching a data item
locally and on other servers.

Based on the above discussion, the caching problem with
the objective of maximizing backhaul traffic reduction is
formulated as follows:

max
1
T

T∑
t=1

Rt

s.t.
M∑
m=1

cm · x tm,n ≤ en, ∀cm ∈ C, ∀en ∈ E

M∑
m=1

x tm,n ≤ 1,
N∑
n=1

x tm,n ≤ N , x
t
m,n ∈ {0, 1}

1 ≤ m ≤ M , 1 ≤ n ≤ N , 0 ≤ βn ≤ 1 (5)∑M
m=1 x

t
m,n ≤ 1 and

∑N
n=1 x

t
m,n ≤ N constrains that the edge

server is not allowed to cache duplicate data items.
Although the above optimization problem could provide

an optimal caching decision, it requires a lot of computing
resources to obtain the exact solution of X t . This is because
the above problem is NP-hard. To prove this, a simple case
of problem (5) is considered. Let βn = 0, means there is no
cooperation between edge servers. Then, the reduced problem
is divided into n independent sub-problems. For one sub-
problem, it can be understood as follows. There are M data
items of different sizes and the objective of an edge server is
to select a portion of the data items for storage to maximize
the weighted sum of the cached data without exceeding its
capacity. Obviously, the sub-problem is converted to a knap-
sack problem [46]. Since the knapsack problem is known to
be NP-hard, the problem (5) is also NP-hard.

In the following section, a deep reinforcement learning
approach is proposed to cope with the cooperative caching
problem, in which edge servers could learn to adjust caching
decisions according to other servers’ states and actions.

IV. DEEP REINFORCEMENT LEARNING-BASED
COOPERATIVE CACHING APPROACH
In this section, a deep reinforcement learning-based coop-
erative caching framework is first proposed by combining
the characteristics of the deep learning approach and the
cooperative edge caching system. Then, the feature and action
spaces are defined to cope with the obstacles brought by

FIGURE 2. Deep Reinforcement Learning-Based Cooperative Caching
Framework.

inconsistent IoT data item size, and a reward function is
designed to promote cooperation between edge servers.

A. COOPERATIVE CACHING FRAMEWORK
As discussed in Section III. A, there are usually two methods
to develop a caching decision: Centralized and Decentralized.
However, both methods will incur new problems. For the
centralized method, the deployment of the caching decision
would cause an additional delay, as caching decisions are not
determined locally; for the decentralized method, the issue
of how to exchange the caching information between edge
servers needs to be addressed, as it has a severe impact on
executing cooperation between edge servers.

To alleviate the above problems, this work proposes a
cooperative caching framework with centralized training and
distributed operations by leveraging the deep reinforcement
learning based approaches, as shown in Fig. 2.

In the proposed framework, each edge server has an agent
and a cache buffer. The agent extracts the features of data
requests and determines the cache action locally. The cache
buffer performs the cache action and stores the requested data
items. Request features, cache actions, and buffer states of all
edge servers are periodically reported to the central server,
and the model in each agent is updated depending on the
parameters sent by the central server.

With this framework, cooperation between edge servers
can be achieved with information exchanging overheads sig-
nificantly reduced. This is mainly because the parameters,
send by the central server, are treated as the indicators of other
servers’ caching information and these parameters would
cost lower transmission overheads. Also, the central server
could include the cooperation reward in the parameters with
cooperation promoted.

The workflow is discussed as follows. When data
requests arrive at edge servers, they make caching deci-
sions based on their current states. Then, they report their
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caching information, including actions, states, and requests,
to the central server. The central server evaluates the actions
and trains models. Following this, the central server sends the
parameters to each edge server to update their models.

We believe that, the proposed caching framework is natu-
rally compatible with the commonly used DRL algorithms,
such as DQN (Deep Q-Network) [47], Actor-Critic [21],
and DDPG (Deep Deterministic Policy Gradient) [24]. These
DRL algorithms have one thing in common. That is, they hold
multiple neural networks. For example, the basic Actor-Critic
algorithm has two neural networks, one determines acts,
and the other evaluates these acts. By leveraging the above
framework, the actor network can be deployed in the edge
server and the critic network can be trained in the central
server. In this way, the central server could send TD-errors to
the edge servers for actor network update. Other DRL-based
approaches with the same characteristics can also be similarly
implemented in this framework.

B. FEATURE SELECTION, ACTION ANALYSIS, AND
REWARD DESIGN
The proposed framework provides a clear vision to perform
cooperative edge caching, however, there is still a key chal-
lenge that needs to address. That is how to define the feature,
the action, and the reward.

1) FEATURE SELECTION
This work considers a complex but practical scenario, where
the size of the IoT data item is not constant. This poses an
obstacle in defining the feature space. The essential reason
lies in the difficulty to describe the caching state with a
fixed-length vector.

A simple solution is to use the pre-defined binary matrix
X t = {x tm,n|cm ∈ C, en ∈ E}. However, this approach brings
two problems. First, the total number of data items needs to
be known in advance, which is almost impractical. Second,
using X t would make DRL algorithms inefficient in making
caching decisions, due to its large-scale space.

To tackle the above problems, this work divides the cache
buffer of en intoKn pieces, whereKn = den/(min(C))e. Then,
the caching state of en is described by Sn = {s1, s2, . . . , sKn},
in which sk = {δk , ϕk}. k denotes the location in the cache
buffer, δk indicates the cached data item, and ϕk represents
its size. When δk = 0, it means there is no data item and
ϕk equals to zero. In this way, the state of a cache buffer is
represented by a fixed-length vector whose length is related
to the cache size.

In addition to the caching state, the features of data items
also need to be defined. Consider conventional caching
heuristics, which usually treat the data item size, request
frequency, and request interval as features and use them to
make caching decisions. For example, LRU (Least Recently
Used) determines whether to cache a data item based on
its request interval and LFU (Least Frequently Used) tends
to store data items with large request frequency. This work
also incorporates these features. Thus, the feature of a data

TABLE 1. Notations of data item feature.

item is denoted by qm = {δm, ϕm, ωm, µm}, where δm is the
indicator of the data item m and ϕm, ωm and µmrepresent
its size, request frequency, and request interval respectively.
Note that, ϕm = cm and ωm =

∑
t
∑

l f
t
n,l,m.

To better describe a data item, this work also introduces
three additional features, similar to [26]: short-term request
frequency ρtm,s, medium-term request frequency ρtm,m, and
long-term request frequency ρtm,l . These variables are use-
ful for characterizing the popularity and can be updated as
requests arrive. They are calculated as follows:

ρtm,s =

t∑
t−τs

∑
l

f tn,l,m (6)

ρtm,m =

t∑
t−τm

∑
l

f tn,l,m (7)

ρtm,l =

t∑
t−τl

∑
l

f tn,l,m (8)

Therefore, the features of a data item can be described
as qtm = {δm, ϕm, ωm, µm, ρ

t
m,s, ρ

t
m,m, ρ

t
m,l} and the caching

state is stk = {δk , ϕk , ωk , µk , ρ
t
k,s, ρ

t
k,m, ρ

t
k,l}. The features

used in this work are listed in Table 1.

2) ACTION ANALYSIS
In this work, the output of the DRL algorithm is treated as the
cache action, and it faces a similar problem with the cache
feature.

Specifically, if the cache action is defined by using the
caching state, the action space varies w.r.t the size of the
requested data item as well as the current caching states.
For example, when the requested data item size is min(C),
the action space is described by An = {0, 1, 2, . . . ,Kn},
where an = k means that the kth data item in the cache
buffer is replaced by the requested data item. However, when
the requested data item size is 2 × min(C), the above action
space only works in the case that all cached data items are no
smaller than the requested. Otherwise, the action for storing
the requested item must be represented by a pair of an, which
means the edge server has to drop out up to two data items to
store the requested one. Under this situation, the size of the
action space is extended to Kn + Kn · (Kn − 1)/2+ 1.
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Furthermore, to store a data item of size cm, the number of
actions can be calculated by

�m
action =

κm∑
κ=1

(
Kn
κ

)
(9)

where κm = dcm/(min(C))e.
Thus, the total size of the action space is as follows.

�action =
∑
m

κm∑
κ=1

(
Kn
κ

)
+ 1 =

η∑
κ=0

(
Kn
κ

)
(10)

where η = d(maxC)/(min(C))e.
It is obvious that the action space grows exponentially

with the cache size. Thus, it is impractical to define the
cache action when the cache size is large. Moreover, �action
only represents the number of all possible actions, including
considerable amount of invalid actions, which may increase
the difficulty of choosing an optimal cache action.

To cope with the above issues, this work also develops
a caching policy selection scheme. In particular, the output
of the model specifies a simple caching policy instead of a
caching replacement behavior, and then, the actual caching
replacement behavior is determined by the selected policy.
In other words, the DRL algorithm is used to select a caching
policy instead of making caching decisions.

By this means, the action space is greatly reduced, and we
denote this by a fixed-length vector An = {p1, p2, . . . , pn},
where an = pn means that the edge server would execute pn
policy to determine its caching decisions. Besides, the size
of the action space also depends on the number of policies
deployed in the edge server.

The following example illustrates how the proposed
scheme works. When a data request’s features are fed into
the model, an output is taken, which represents that a certain
caching policy is deployed in the edge server. The cache
buffer operates this policy to determine whether and how to
cache it, further also to update the buffer state.

The proposed scheme have further significant advantages.
1) All actions are valid and model training can be accelerated.
2) The worst-case performance can be guaranteed.

In this work, to simplify, the caching policies are defined
by the features An = {ϕ, ω,µ, ρs, ρm, ρl}. An ω policy
indicates that the cache buffer determines its caching replace-
ment behavior based on the request frequency of a data item.
In particular, the buffer sorts the cached and the requested
data items based on their cumulative requests and kicks off
the least one. Other policies work in a similar method.

3) REWARD DESIGN
In our work the cooperation among edge servers is extremely
important and challenging. To this end, we note that giving
rewards is one of the good approach but that needs to be
carefully designed.

For a caching system, the hit rate is usually selected as
the reward to present the primary objective. It is often set to
be the number of requests for the cached data items in the

next epoch. Nevertheless, for the proposed system, the data
items cached in the local server and the neighboring servers
both contribute to the system hit rate. Thus, the reward can be
set as the weighted sum of the both to promote cooperation
between edge servers:

gtn = v · htn + υ · o
t
n (11)

where htn denotes the number of requested data items in the
local server and otn denotes that in neighboring servers. v and
υ are the weights to balance the rewards gained by the local
server and neighboring servers.When υ is zero, it implies that
the edge servers works without cooperation.

However, in this work, (11) may not embody the objective
well. It is mainly because the backhaul traffic reduction is
affected by both hit rate and data item size. Particularly,
caching a data item with a large hit rate and small size may
not reduce more traffic than caching a data item with a bit
lower hit rate and larger size. And this implies that both the
hit rate and data item size must be taken into consideration
when designing the reward function.

Therefore, this work incorporates the size of a data item
into the reward.

gtn = v ·
∑
k

htn,k · ϕk + υ ·
∑
k‘

otn,k‘ · ϕk‘ (12)

where htn,k is the number of requests for the locally cached
data item k and otn,k‘ is the number of requests for the data
item k‘ stored in neighboring servers. With this design, coop-
eration between edge servers can be dynamically adjusted by
v and υ. When v is large, the edge server would pay more
attention to its local performance. Andwhen υ becomes large,
it would prefer to assist its neighbors.

V. MULTI-AGENT ACTOR-CRITIC ALGORITHM FOR
COOPERATIVE EDGE CACHING
In this section, a multi-agent actor-critic caching algorithm,
Algorithm 1, is proposed to tackle the cooperative caching
issue, which is inspired by the Actor-Critic algorithm [21].

The Actor-Critic algorithm provides a learning frame-
work with two separate neural networks, where one is for
action output, namely the actor network, and the other is for
action evaluation, namely the critic network. As illustrated in
Section IV. A, it is compatible with the proposed framework,
as the actor network can be deployed in the edge server for
caching policy selection and the critic network can be in the
central server for caching decision evaluation. Further, this
work extends the Actor-Critic algorithm to multi-agent sce-
narios, where other servers’ caching information is consid-
ered when evaluating caching decisions. Then, the TD-errors
used to update the actor network is treated as the indicators
of other servers’ caching information and calculated with the
purpose of promoting cooperation.

In the proposed algorithm, the actor network is deployed
in the agent of the edge server and the critic network is in the
central server.
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Algorithm 1 Multi-Agent Actor-Critic Algorithm for
Cooperative Edge Caching
1: Initialize: the cache buffer sate Sn = {s1, s2, . . . , sKn};

the actor network πn(Sn|θπn ) with weights θπn ; the critic
network Qn(S1, S2, . . . , Sn, an|θ

Q
n ) with weights θQn ; the

replay buffer Mn.
2: for t = 1,T do
3: Each edge server observes the caching state S tn.
4: For edge server en, select action an = πn(Sn|θπn ) w.r.t.

the current actor network.
5: Execute atn, observer new state S t+1n and send

(S tn, a
t
n, S

t+1
n ) to the central server.

6: for n = 1,N do
7: The central server calculates the reward gtn for en

and stores (S tn, a
t
n, g

t
n, S

t+1
n ) in Mn.

8: Sample a random minibatch of I transitions
(S in, a

i
n, g

i
n, S

i+1
n ) from Mn.

9: Set yin = gin + γQ‘n(S
i+1
1 . . . S i+1N , πn(S i+1n )|θQ‘n )

10: Calculate the TD-error based on the current
parameter φn = 1

I

∑
i
(yin − Qn(S

i
1 . . . S

i
N , a

i
n|θ

Q
n ))

11: Update the critic network Qn by minimizing the
loss: Lossn = (φn)2.

12: Send φn to edge server en.
13: end for
14: Each edge server updates the actor network by max-

imizing ∇θπn J = ∇θπn logπn(Sn, an)φn
15: Update cache state.
16: end for

Actor network: The input of the actor network includes the
caching state and request features of the local edge server. The
actor network is noted by θπn and it is defined as a function
to seek the optimal caching policy, which maps the caching
state Sn to an action an. In each decision epoch, edge servers
choose their actions based on the current parameters and the
caching state.

atn = πn(S
t
n|θ

π
n ) (13)

Critic network: The critic network is mainly used for
estimating the values of the selected actions. The input of
the critic network contains all edge servers’ caching states
(S1, S2, . . . , SN ) and the local server’s action an. The basic
idea of this design lies in the consideration that the action
value of an edge server is determined by the overall system
state and its action. Then, the critic network calculates the
TD-error, φn by

φn =
1
I

∑
i

(yin − Qn(S
i
1, . . . , S

i
N , a

i
n|θ

Q
n )) (14)

yin = gin + γQ‘n(S
i+1
1 , . . . , S i+1N , πn(S i+1n )|θQ‘n ) (15)

where γ is the discount factor of the future accumulated
reward with the range of (0, 1), I is the size of minibatch,
and θQn denotes the parameters of the critic network.

Update: The critic network is updated by minimizing the
loss function.

Lossn = (φn)2 (16)

And the actor network is updated by the policy gradient.

∇θπn J = ∇θπn logπn(Sn, an)φn (17)

The workflow of the proposed algorithm is discussed
as follows. The edge server receives its data requests and
extracts the features. Then, it feeds the current caching state
and request features into the actor network to obtain the
caching action. After executing the action, the edge server
sends the current caching state, the next caching state, and
the caching actions to the central server. At the central
server, the critic network assigned to the edge server cal-
culates the reward and the TD-error of the current caching
action. By minimizing the loss function, the critic network
is updated. And by sending the TD-error to the edge server,
the actor network is updated.

Note that, the proposed algorithm can be implemented in
the following way to support online work and offline training.
Specifically, all the actor and critic networks of edge servers
are deployed in the central server, and each edge server holds
a duplicate of its assigned actor network. Then, the training
of each model can be operated in the central server with
the aggregated caching information in an offline manner. For
online work, each edge server can observe its caching states
and obtain the selected caching policy from its local actor
network. With this implementation, when the model needs
to be updated, the local actor network parameters can be
replaced by that in the central server.

VI. SIMULATION RESULTS
In this section, the performance of the proposed caching
algorithm is validated by comparing it with two conventional
algorithms and one state-of-the-art learning-based algorithm,
which are described as follows.
• LRU: LRU algorithm determines its cache action based
on the arrival time of the request. It keeps track of the
most recent requests. When the cache buffer is full,
it replaces the least requested data itemwith the new one.

• LFU: LFU algorithm determines its cache action based
on the request frequency. It prefers to store data items
with a large request frequency. When the cache buffer
is full, it replaces the least requested data item with the
newly requested one.

• Multi-Agent Actor-Critic algorithm with Centralized
Critic [22]: This algorithm employs amulti-agent frame-
work with a centralized critic network. Caching deci-
sions are determined based on the observation of each
agent. All caching states are inputted into the critic
network to calculate the TD-error and all actor networks
are updated using the same TD-error. In the following
text, this algorithm is also referred as MAAC-C.

Note that, although both the MAAC-C and the proposed
algorithm employ a multi-agent framework, there still exist
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FIGURE 3. Total Hit Rate vs Cache Capacity, where Zipf parameter, α, varies as {0.7, 0.9, 1.1, 1.3} and cache capacity ranges from 10 to 50.

three key differences. First, the MAAC-C contains only one
critic network and all actor networks are updated by using
the same TD-error. However, in the proposed algorithm,
there are multiple critic networks, each corresponds to an
actor network. Second, the MAAC-C assumes that the data
items are of the same size. However, the proposed algorithm
addresses the issue that the size of the data item is not a
constant. Third, the feature, the action, and the reward are
different with different purposes, whereMAAC-C attempts to
minimize the transmission delay and the proposed algorithm
has an objective of maximizing backhaul traffic reduction.

For comparison, MAAC-C is modified to adapt to the
proposed system in this work, and its goal is also changed
to be consistent with the proposed algorithm.

A. SIMULATION SETUP AND PARAMETER SETTINS
In this work, the default number of edge servers is set to 3,
as shown in Fig. 2. The cache size of each edge server varies
from 10 to 50 units. Data requests are generated according to
a Zipf distribution with a parameter α, which varies as 0.7,
0.9, 1.1, 1.3. The total number of the data items is assumed to
be 2000 and the size of each data item varies from 1 to 5 units
randomly. The backhaul traffic cost is assumed to be the
accumulated data item size fetched through the backhaul link.
The episode length is set to 5000 in each simulation and
each data point in the figures is averaged based on 100-times
simulation.

For the caching algorithm, both the actor network and
the critic network have two hidden layers using ReLu as the
activation function. The inputs of the actor network are the
features selected in Section IV. B, and the input of the critic
network includes all the features and the actions of the three
edge servers. The additional short-term, medium-term, and
long-term features are set to the request frequency within the
most recent 10, 50, 100 requests.

B. HIT RATE
In this subsection, the hit rate of the proposed algorithm is
evaluated based on the simulation results. Moreover, the local
hit rate and the other hit rate are presented to illustrate how
the edge servers cooperate. The local hit rate is achieved
by caching data items in the local server and the other
hit rate denotes the requests satisfied by neighboring edge
servers.

Fig. 3 illustrates how the total hit rate varies with the cache
size under different Zipf parameters. As shown in Fig. 3,
the hit rate of all algorithms increases as the cache size
increases, and the learning-based algorithms, the proposed
algorithm, andMAAC-C, outperforms the conventional algo-
rithms. This is mainly because the conventional algorithms
only use a single feature for caching decisions, but the
learning-based algorithms combine more features, which
captures various aspects of a data item to make effective
caching decisions. Besides, the performance of MAAC-C is
better than LFU and LRU, and this is consistent with [22].

For the learning-based algorithms, the proposed algorithm
has better performance, when compared with MAAC-C. The
reasons can be explained as follows. The MAAC-C algo-
rithm has only one critic network and all actor networks are
updated by the same TD-error. This may promote cooperation
between edge servers. However, this may not be conducive
to maintaining the independence of each edge server, which
could make the edge server to tend to store data items with
similar features, and may lead to a reduction in total hit rate.

Another observation from Fig. 3 is that the hit rate of all
algorithms increases with the increase in the Zipf param-
eter α. This can be understood easily. When α is large,
the requested data items become concentrated. In this sit-
uation, all algorithms prefer to store the data item with a
large request frequency resulting in an increase in the total
hit rate. In addition, the gap between LRU and LFU becomes
small as α raises. However, the gap between learning-based
algorithms and LFU remains almost constant. This scenario
can be further explained as follows. Since both the LRU and
LFU prefer to store the most popular data items, they would
like to make similar caching decisions. Thus, the gap between
them becomes small. As for the learning-based algorithms,
both α and cooperation have an impact on caching decisions,
which results in a relatively steady improvement in the total
hit rate. Besides, cooperation between edge servers implies
that each edge server may sacrifice a partition of the local hit
rate in exchange for the total hit rate increment. And this can
be validated in Fig. 4 and Fig. 5.

As a supplement to Fig. 3, Fig. 4 and Fig. 5 is used to
illustrate that the learning-based approaches could achieve
a higher hit rate. Fig. 4 shows the local hit rate of the edge
server, which represents the number of requests satisfied by
the local edge server. In Fig 4. (a), the local hit rates of all
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FIGURE 4. Local Hit Rate vs Cache Capacity, where Zipf parameter, α, varies as {0.7, 0.9, 1.1, 1.3} and cache capacity ranges from 10 to 50.

FIGURE 5. Other Hit Rate vs Cache Capacity, where Zipf parameter, α, varies as {0.7, 0.9, 1.1, 1.3} and cache capacity ranges from 10 to 50.

algorithms increase as the cache size increases, and LFU
has the highest local hit rate, followed by the learning-based
algorithms, and then LRU. However, in Fig. 4 (b), the local
hit rate of learning-based algorithms first raises and then
remains almost constant. In Fig. 4 (c), the learning-based
algorithms show the same trend. But after the cache sizes
grow to 45, there is almost no difference between LRU and
learning-based algorithms. Moreover, in Fig. 4 (d), the local
hit rate of LRU is higher than learning-based algorithms as
the cache size grows larger than 25.

Fig. 5 shows the other hit rate. It can reflect the coop-
eration between edge servers. From Fig. 5 (a) and (b),
the other hit rate increases as the cache size grows. However,
in Fig. 5 (c), the other hit rate of LFU and LRU remains almost
constant while learning-based approaches continue to grow.
Nevertheless, in Fig. 5 (d), the other hit rates of LFU and
LRU decrease with the increase of cache size. In addition,
both Fig. 5 (c) and (d) display the phenomenon that initially
the other hit rates of learning-based algorithms are lower than
LRU, but they continue to grow as cache size raises.

Based on the above illustrations, there are some findings
that help to understand the reasons why learning-based
algorithms outperform LRU and LFU. 1) As shown in
Fig. 4 and Fig. 5, the local hit rates of LFU are always the
highest, while the other hit rates are the lowest. This is
mainly because LFU pays more attention to the efficiency of
the edge server itself and ignores the cooperation between
edge servers. In contrast, learning-based algorithms learn
to work cooperatively. They sacrifice their local hit rate in
exchange for the improvement of the total hit rate. 2) The
other hit rates of LRU and LFU remain constant in Fig. 5 (c)
and decrease in Fig. 5 (d). This is due to the tendency of
edge servers to store same data item when alpha is large.
Once the cache size is large enough, there will be a large

overlap between the cached data items. Thus, requests that
cannot be satisfied locally are also difficult to be served in
neighboring edge servers. However, different from LRU and
LFU, the learning-based algorithms leverage the global view
to make caching decisions, and this makes them avoid the
aforementioned situations. 3) The local hit rates of LFU are
always higher than that of LRU in Fig. 4, while the other hit
rates of LFU are always lower in Fig. 5. This phenomenon
is mainly due to the randomicity of caching decisions. When
compared with LFU, LRU has stronger randomicity, which
promotes the whole system to store different items leading to
an increment in the other hit rate. In addition, this can also be
used to explain why learning-based algorithms show better
performance.

In addition, in Fig. 4, the local hit rates of MAAC-C and
the proposed algorithm are almost the same. The reason is
that both algorithms make cache decisions locally, based on
the current cache state of each edge server. Moreover, from
Fig. 4 (d) and Fig. 5 (d), it can be observed that when the
cache size is small, all edge servers choose to maximize
the local hit rates. However, as cache size increases, they
pay more attention to cooperate with each other. This sce-
nario implies that both algorithms tend to improve system
performance by cooperation. Further, the local hit rates of
MAAC-C and the proposed algorithm are almost the same
in Fig. 4, but the other hit rate of the proposed algorithm is
higher than that ofMAAC-C in Fig. 5. This phenomenon con-
vinces the reason why the proposed algorithm outperforms
MAAC-C.

C. BACKHAUL TRAFFIC COST
In addition to the hit rate, the backhaul traffic cost is also
presented to validate the performance of the proposed
algorithm in this subsection, as shown in Fig. 6.
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FIGURE 6. Other Hit Rate vs Cache Capacity, where Zipf parameter, α, varies as {0.7, 0.9, 1.1, 1.3} and cache capacity ranges from 10 to 50.

From Fig. 6, it is seen that the proposed algorithm con-
sumes the least amount of the backhaul traffic, followed
by MAAC-C, then the LFU, and finally LRU. Besides, all
subfigures in Fig. 6 show a trend that the backhaul traffic cost
decreases as cache size increases. These results imply that the
backhaul traffic cost can be reduced by improving the hit rate.

Moreover, Fig. 6 also shows that the backhaul traffic cost of
all algorithms decreases as the Zipf parameter, α, increases.
This phenomenon is attributed to the improvement of the hit
rate. As α increases, more requests could be satisfied, which
would result in an increment in the hit rate and a reduction in
the backhaul traffic cost.

Another observation noted from Fig. 6 is the gap between
learning-based algorithms and the conventional algorithms
becomes larger as α grows larger. However, in Fig. 3, the gap
between them remains almost constant. It is mainly due to the
fact that the requested data items become concentrated as α
becomes larger. In this case, the higher the hit rate is, the less
the traffic would cost. In addition, this situation also implies
that the cooperation between edge servers may bring more
benefits when the hit rate is high.

VII. CONCLUSION
In this work, we proposed a deep reinforcement learning
based cooperative caching approach for IoT edge caching.
The caching states and the caching actions were defined to
cope with the obstacles brought by inconsistent data item
size. A reward function was designed to promote cooperation
between edge servers. On this basis, a multi-agent actor-critic
cooperative edge caching algorithm was developed to con-
duct the proposed approach. Simulation results confirmed the
performance improvement using our proposed algorithm over
one state-of-the-art learning-based algorithm and two con-
ventional algorithms, and provided a view in explaining the
superior performance brought by cooperative edge caching.

In the future, there are still several issues to be investigated.
First, it should be discussed how to take other factors, such as
user preference, into consideration. Besides, more situations
need to be explored, such as how to make edge servers coop-
erate to perform computing tasks. In addition, the proposed
approach will be implemented in a real system and verified
by the real-life workload.
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