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ABSTRACT Lane-Changing Decision (LCD) behavior is complex, dangerous, and varied by the Driver’s
Psychology (DP) and Driving Style (DS). For lacking the consideration of DP and DS, the existing LCD
models cannot predict the LCD process varying with the drivers and traffic conditions accurately. To deal
with the problems, a new LCD model coupling DP and DS, named DP&DS-LCD, is put forward. In the
model, a psychological field model is constructed to represent the DP effect on the scene vehicles. And then,
K-means and K-Nearest Neighbor (KNN) algorithm are respectively adopted in learning and recognition
phases to recognize the current driving style pattern. Finally, based on the DP and DS, the multi-Grained
Cascade Forest (gcForest) algorithm is applied to predict the LCD behavior. In experiments, DP&DS-LCD is
compared with other three LCD models by using the opening I-80 database from Next Generation Simulation
project (NGSIM). And the results showed that the DP&DS-LCD model achieved the best performance.
Therefore, the DP&DS-LCD model is effective and could provide support for the decision of autonomous

vehicles by predicting the surrounding vehicles’ Lane-Changing (LC) behavior.

INDEX TERMS Autonomous vehicles, driver’s psychology, driving style, lane change decision.

I. INTRODUCTION

With the development of autonomous driving technology,
the mixed driving of autonomous vehicles and artificial
vehicles will become a common situation in the future.
In order to ensure the safe driving of autonomous vehicles,
it is important to predict the LC behavior of the surrounding
artificial vehicles accurately.

Generally speaking, LC process contains LCD and LC
execution stages, as shown in Fig. 1. According to the LC
purpose, LCD can be split into Mandatory LCD (MLCD) and
Discretionary LCD (DLCD). For DLCD, it is implemented to
change the vehicle’s motion process from the current lane to
the target lane for the better driving speed. Here, the LCD
problem on DLCD is addressed. As usual, LCD procedure
could be divided into four stages: (1) LC intention generation;
(2) target lane selection; (3) LC condition judgment; (4) LC
execution. The LC intention is generated by drivers and
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FIGURE 1. Diagram of the LC process.

influenced by many complex factors, such as DP, DS,
driving circumstances, etc. However, the driver’s surrounding
circumstances could also produce the psychological stimu-
lation to the driver, which leads to the change of driver’s
psychological state. Accordingly, to describe LCD behavior
accurately, the effect of DP and DS should be considered, and
the unified form of DP effect could be quantified by driver’s
surrounding circumstances.
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Currently, many methods have been presented to predict
LCD (e.g. rule-based [1]-[3], fuzzy reasoning [4]-[6],
data-driven algorithm [7]-[10], etc.). However, these studies
focused on modeling the surrounding traffic conditions on
LC vehicles, and lacked consideration of DP and DS. This
may ignore the driver’s subjective effect on the LCD. Some
studies have added the DP into LC studies [11], and the DP is
generally obtained by questionnaire survey or physiological
tester. But the DP evaluation result is a qualitative or indirect
index by these methods, which cannot describe the DP
changes firsthand and quantitatively. Furthermore, DS also
affects the LC strategy. Some researchers have taken the DS
into the LC model [12], [13]. And there are many driving
style classification models [14]-[16]. But these methods
usually extract the driving style characteristics through a
large number of trajectory data, and then use unsupervised
learning method to classify driving styles. There is a problem
with these classification methods. That is once the driver’s
driving style is obtained from the historical data, it will not
change. However, the driving style is influenced by the traffic
conditions, external environment, etc., and it is not invariable.
Therefore, these classification models cannot get the driver’s
current driving style.

To solve the above issues, a novel LCD model from the
driver’s perspective is developed, by integrating the DP and
DS, called DP&DS-LCD. The psychological field model is
adopted to quantify the driver’s mental state, and it could
depict the driver’s psychological pressure caused by the
surrounding vehicles in the driving process. Then, a driving
style recognition system is designed, which includes offline
training stage and online recognition stage. Offline learning
phase uses the vehicles’ historical trajectories and K-means
to establish the mapping relationship between drivers’
characteristics and driving styles. The online identification
stage is to judge the driver’s current driving style based on
the real-time trajectories and KNN.

Furthermore, in order to provide the real-time decision
support for autonomous vehicles, it is necessary to obtain
the surrounding vehicles’ information timely. The Vehicle-
to-Vehicle (V2V) communication technology enables vehi-
cles to send information to each other, such as position
and speed. Therefore, autonomous vehicles could obtain
the real-time information of surrounding vehicles in V2V
environment, and then could predict the LC behavior of the
surrounding vehicles with LCD model, so as to plan their
behaviors, as shown in Fig. 2.

The rest of the paper is arranged as follows: section 2
reviews the related works about LCD models; section 3 gives
the details of DP&DS-LCD model, which includes the quan-
tified expression of the DP pressure with psychological field
model, DS classification algorithm, and LCD prediction;
section 4 discusses and analyzes the experimental results;
section 5 is the summary of the article and discussion.

The main contributions of this article are listed as follows.

1) A novel LCD model is proposed by coupling the DP
and DS.
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FIGURE 2. Framework of autonomous vehicle decision-making in V2V
environment.

2) A DP quantification method is present in this paper,
which is based on the driver’s psychological field.

3) Developing a DS classification model which could
recognize the driver’s current driving style.

Il. RELATED WORKS

The LCD behavior has been widely studied by many
researchers. And the current LCD researches can be divided
into three categories: rules-based, fuzzy logical, and data-
driven.

The rule-based LCD model deduces whether the vehicle
will perform LC at a certain position by formulating LC
rules. Gipps [1] firstly put forward a rule-based model
which considered six factors: safe distance, the location
of permanent obstructions, the presence of transit lanes,
the intended turning movement of the driver, the presence
of heavy vehicles, and the speed of the vehicle. Kind and
Kesting [2] developed a general LCD model named MOBIL
(Minimizing Overall Braking Induced by Lane Changes).
The model formulated a set of LC rules which mainly
considered the lane utility and LC risk. Wang et al. [3]
proposed a reinforcement learning method based on the LC
rules, which was used to provide support for autonomous
driving decision. This model mainly considered the safety of
self-driving vehicles.

The fuzzy logic model can better deal with the uncertainty
in driving decision, and it consists of several if-then rules.
For example, Das and Bowles [4] proposed a gap acceptance
model based on the fuzzy logic, which mainly considered the
speed of the front and rear vehicle in the target lane, and the
distance between them and the target vehicle. Balal et al. [5]
developed a LCD model based on the fuzzy reasoning system,
which took the distance between the main vehicle and the host
vehicle as the LCD factors. Moridpour et al. [6] designed two
and three fuzzy sets to predict the LCD behavior of heavy
vehicle.
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With the emergence of artificial intelligence algorithms,
there are numerous LCD models based on data-driven. There
is no specific formula for the data-driven LCD model, which
learns the characteristics of LCD samples through a large
amount of data. Coskun et al. [7] proposed a LCD model
by integrating the fuzzy logic and Markov Decision Process
(MDP). And they have verified the model effectiveness under
several driving scenarios. Yuan et al. [8] selected the distance
between the vehicle and the lane line, the longitudinal
velocity, and lateral velocity of the vehicle as the input of
LCD model. And they used Hidden Markov Model (HMM) to
train and test the model. Zhang et al. [9] selected the location
information of the target vehicle and the six surrounding
vehicles as the model input. And they proposed a Hybrid
Retraining Constraint (HRC) training to optimize the Long
Short Term Memory (LSTM) algorithm, then they used this
method to train the LC model. Xie et al. [10] selected the
speed and location information of the target vehicle, the front
car on the present lane, and the front car and the rear car on the
target lane as the model input. Then they used Depth Belief
Network (DBN) to predict the LCD behavior.

Although the above LCD models are based on different
modeling methods, they are similar in the selection of
LCD factors. These researches mainly concentrated on
the surrounding traffic conditions, which are generally the
position and speed information of some specific vehicles.
However, this would ignore the driver’s direct role for
LCD. The LCD behavior is mostly affected by the DP
and DS. Moreover, drivers’ heterogeneity determines the
difference of LCD strategies. And some studies have taken
the driver’s characteristics into the LC model. Li et al. [12]
used questionnaire survey to get the driver’s driving style and
took it into the LC intention model. The results showed that
distinguishing driving styles could improve the prediction
accuracy significantly. This is different from our work.
Because our method doesn’t need manually define the driving
style and all driver styles are learned from trajectory data.
Eftekhari and Ghatee [14] utilized the vehicles’ trajectories
and K-means to divide the drivers into three categories,
then adopted the multi-layer perceptron to predict the LC
behavior. The above methods usually obtained the driving
style from the historical trajectory data. And once getting the
driver’s driving style, it will not change. However, driver’s
driving style is affected by many factors (e.g. the present
traffic conditions, surrounding environment, etc.), and it is
not stable. So it may be more accurate to adopt real-time
trajectory data to calibrate the current driving style.

To solve the above problems, a DP&DS-LCD model based
on the driver’s perspective is developed in this study. And the
detailed modeling process is illustrated in section III.

ill. DP&DS-LCD MODEL

The DP&DS-LCD model mainly contains three parts,
as shown in Fig. 3. Firstly, the driver’s psychological
field model is used to quantify the DP. It includes the
definition of the driver’s psychological field, the affect area
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FIGURE 3. Framework of DP&DS-LCD model.

of psychological field under different driving scenarios, and
the calculation method of the psychological field strength.
Then, in order to get the driver’s current driving style, a DS
definition system is proposed. And the system includes the
driving style offline database and the online recognition.
Finally, the DP and the DS are used for LCD prediction. And
the gcForest algorithm is adopted to train the model.

A. DP QUANTITATIVE METHOD IN DP&DS-LCD MODEL

In order to predict the vehicle’s LCD behavior in different
traffic situations, it is necessary to model the psychological
effect of surrounding vehicles on the driver. The driver’s
psychological field theory [17]-[19] is used to make a
quantitative expression of DP in Car-Following (CF) and
LC process. The psychological field source is the driver,
and the effect area of the psychological field is determined
by the position of the surrounding vehicles which the
driver is concerned about. The psychological field strength
represents the driver’s psychological stress caused by the
surrounding vehicles. And the psychological field strength
can be obtained, by calculating the sum of the field strength
of the vehicles which are in the effect area of driver’s mental
field.

1) DRIVER'S PSYCHOLOGICAL FIELD MODEL
Driver’s attention range for the surrounding traffic circum-
stances determines the effect area of the psychological field.
Because there is a difference in driver’s attention range
between the CF and LC stage, which means, there is a
difference in the effect area of the psychological field. When
the vehicle keeps CF, the driver mostly focuses on the
preceding vehicles which are in the same driving direction
with the vehicle, as shown in Fig. 4. Conversely, a safe gap
is needed to find when executing LC. Therefore, the driver’s
attention is on the vehicles which are on the present lane and
target lane, as shown in Fig. 4 (taking left LC as an example).
After the effect area of psychological field is defined,
it is needed to determine the basic field strength of an
arbitrary point in psychological field. The basic field strength
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FIGURE 4. Illustration of driver's psychological field. Here “n” denotes
the host vehicle. “n+1" denotes the vehicle on the present lane. “n-2"
and “n+2" denote the vehicles on the left lane. “n+3" denotes the
vehicle on the right lane.

represents the psychological pressure of a certain point
surrounding the driver, and it is closely related to the
time distance from this point to the target vehicle. The
smaller the time distance between the point and the target
vehicle, the greater the psychological pressure (field strength)
generated by the driver. Therefore, there are the negative
correlation between the two variables. The basic field strength
can be expressed as:
Eby = M ()
do
here, v; is the speed of target vehicle, v, is the speed
correction. dy is the projected distance between the point and
the target vehicle in the moving direction of the target vehicle.
The construction of the equipotential line mainly refers to
the previous study of our research team [19]. Since the field
strength of any position on the equipotential line is the same,
the equivalent distance of the point in the moving direction of
the target vehicle can be calculated, as (2) shown.

_ dix.y)
T 1 — (1 —a(vy)|siné))
here, dixy) is the distance between any point and the origin
(the driver’s position). «(v;) is the ratio of the distance
between the point where the equipotential line intersects the
vehicle’s moving direction and the origin, and the distance
between the point where the equipotential line intersects
the direction perpendicular to the vehicle’s moving direction
and the origin. 6 is the angle between the vehicle’s running
direction, and the line from any point on the equipotential line
to the origin.

According to (1) and (2), the basic field strength of any
point in driver’s psychological field could be calculated, as (3)
shown.

do

@

Vi + ve

Eb; =
dixy)

[1— (1 —a())[sinb]] 3

2) CALCULATED METHOD FOR PSYCHOLOGICAL EFFECT OF
VEHICLES IN PSYCHOLOGICAL FIELD ON THE DRIVER

As shown in Fig. 5, based on the driver’s visual attention
mechanism, the driver could see the surrounding vehicle’s
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FIGURE 5. Visual projection diagram of the surrounding vehicle j relative
to the driver of target vehicle i. ¢ is the visual angle.

outline Q1 Q> and Q> Q3, which is actually a visual projection
line R1R» in driver’s eye. Each point on the line RjR; has a
basic field, so the first curve integral is adopted to calculate
the field intensity.

Set the coordinates of R and R are (x1, y1) and (x2, y2),
then the equation of the line R R, is:

xX=A
— X) — VaXx 4
y:y2 ylk+y12 y2xi @
X2 — X1 X2 — X1

The mental field strength of vehicle j on the driver at time
t is calculated as:

egj = / Ebi(x, y)ds
R\Ry

X2 —
=/ Ebi(k,yz 2 <A—x1>+y1)
X1 X2 —x

2

X2 — X]

Let )yé:)yci = h, ylii:ﬁx' = b, combining with (3), the (5)

can be simplified as:

efj =Wi+ve)VhZ+1
1
fi T ~d ).
« VA% + (hA + D) (6)
- |hA + b|
—U—a ) [P
A+ (b + D)
here, when R R, is above the X -axis, |hA + b| = hA-+b; when
R1R; is below the X-axis, |hA + b| = —hX — b. Particularly,
if R1 R, intersects to the X-axis, the intersection point will be
set as R3(x3, y3), then e;/. is:

e = (vi+ve) VhE+ 1
I
X

U V/A2 4 (hA + b)?

—(=a ) [¥ A2 + (WA +b)?

hi +b
X2
+(1 —a () [ D)

P VA2 (ha+b)?

N
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Attention, the (6) and (7) are valid on the premise of
X1 < xp. If the reader is interested in other cases, you can
derive it by yourself.

In conclusion, the driver’s total field intensity e§ can be

expressed as:
eﬁ = Z eﬁj (8)

here, eS f is the effect scope of psychological field of driver i
at time ¢.

B. DS DETERMINATION SYSTEM

Drivers with different driving styles have different prefer-
ences for driving speed, acceleration, deceleration, and LC
frequency [20], [21]. So the feature vector of driving style
can be constructed as:

f=1{v.lal,nrc} )

where v, |a|, npc are respectively the vehicle’s velocity,
absolute acceleration, and LC frequency at unit length.

Nevertheless, driving style is affected by the traffic
situations. In different traffic states, the same driver may
present diverse driving styles. Therefore, it is necessary to
divide the traffic states, and classify the driving styles under
the same traffic condition. The traffic state around the driver
is termed as Local Dynamic Density (LDD) in this study.
The change of driver’s psychology comes from the traffic
circumstances’ stimulation, so the surrounding traffic states
could be reflected through the psychological field strength.
And there is an equivalence relation between the two. The
LDD can be expressed as follows:

pl = (10)

here, ,of is the LDD perceived by driver i at time ¢.

Since the driving style has a certain stability, this paper
supposes that the driver’s driving style does not change within
T time-length. And the range of T is suggested from 3 s to
10 s. Then, statistical indicators are utilized for driving style
representation, which include average value and Standard
Deviation (SD). Therefore the evaluation indexes of driving
style are constructed as:

/ t—T,t =T, t—T,t t=T,t t—Tt
f = {Vmean »Vsp s |a|mean ’ |a|SD e } (11)

In order to improve the practical operability, a driving
style recognition framework is established in this study,
which combines the personalized driving characteristics with
surrounding traffic circumstances. As described in Fig. 6,
the framework includes the driving style offline database and
driving style online recognition system. The offline database
mainly uses the unsupervised learning algorithm K-means to
establish the mapping relationship between driving behavior
features and driving styles. The online identification system
can identify the driver’s current driving style effectively. Then
these two parts will be described in detail.
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In Fig. 6, the processing method of the original training
dataset and original estimated sample is annotated with “x”.
And the selecting principle for the original data from time
t-T to time ¢ is: considering the continuity of the traffic
state evolution, extracting the continuity range of LDD from
time 7-T to time ¢, which belongs to the same LDD category
and close to time ¢, then correspondingly calculating the
evaluation indexes. Some symbols in Fig. 6 will be explained,
ko is the initial cluster number. g and k are the number of
traffic condition categories and the cluster number of driving
styles. g’ is the g’-th traffic condition, where g’ € [1, g].
G and K are the maximum classification number of traffic
conditions and driving styles. N is the maximum iterations,
¢ is the criteria of stopping iteration. The objective function
J(c, ) is defined as:

k m
Jew=7)_ Y

i=1 j=I

’
Cij — Cij

(12)

here c;; and c;.i(i € [1,k],j € [1, m]) are the j-th parameters
of k-th cluster in which they are distinguished with each other
for computation.

K-means is a commonly used unsupervised classification
algorithm, which takes the Euclidean distance to evaluate
the similarity between vector quantities. However, K-means
needs to be given a fixed number of clusters, which may
lead to the clustering results cannot achieve the desired effect.
Therefore, in order to improve the performance of K-means,
the Davies-Bouldin (DB) index is utilized in this paper, which
can evaluate the dispersion degree between different clusters.
More details please refer to [22]. The DB index is calculated
as follows:

k k
- 1 1
Ry = T ZR,- =z Zr?;llxRU (13)
i=1 i=1
with
e st "
d(ci, ¢j)
1
stei) = — Y lx — puill (15)
|Ci| XEC;
d(ci, ¢j) = | i — (16)

where Ry, is the DB index when the driving styles are divided
into k clusters. R;; is the similarity between cluster i and
clusterj. s(c;)/s(c;) is the average distance between the vectors
in the cluster i/j and the center of the cluster i/j. d(c;, ¢j) is
the distance between cluster i and cluster j, and Euclidean
distance is adopted in this paper. x is the individual of cluster i.
|c;| is the number of individuals of cluster i. ; and (; are the
cluster center of cluster i and cluster j.

After the offline database of driving style is established,
supervised learning algorithm KNN is adopted to identify the
driver’s current driving style. The core of KNN algorithm is to
estimate the category of samples by comparing the similarity
among the k£ most adjacent samples in the feature space.
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FIGURE 6. Framework of driving style determination.

The detailed flow is shown in the right side of Fig. 6, for more
detailed, please refer to [23].

C. LCD BEHAVIOR PREDICTION

1) INPUT AND OUTPUT OF DP&DS-LCD MODEL

According to the existing researches, driver’s LC intention
will last 1 s to 5 s [24], [25]. Since different drivers have
different intension lengths. In order to capture the driver’s
intention as much as possible, a time-window 7' from 1 s to
5 s is adopted. Then the driver’s psychological field intensity
before the LCD time ¢ is composed of feature vectors with
T’ time length, which is a time series, and set it to E’. The
expression for E’ is defined as follows:

E' = {et—T” et—T/-I-rAt’ et—T/-I-ZrAt’ o et} (17)
here At is the frequency of data acquisition, At € [0.01, 1]s.
r is the time step, r € [1, T'/Ar — 1].

Moreover, there are obvious differences in driver’s mental
state between LCD process and CF stage. In order to capture
the effect of driver’s psychological changes on LCD, three
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features are extracted. They are respectively the average value
of E’, the psychological field intensity at the LCD time-point
(¢"), and the mean value of AE’. Here, AE! is the difference
between E/~2 and ¢/, which is a time series. The expression
for AE! is as follows:

AE'
_ iAet—T’,t Aet—T/—I-rAt,t Aet—T/—I—ZrAt,z Aet—AI,t}
(18)

with
Aet_TI’t — et—T’ _et (19)

here Ae'~T" is the difference of psychological field intensity
between time ¢ — T’ and time ?.

Therefore, the model input are expressed as:
X =[E', ¢, AE"] (20)

The output is expressed as ¥ = {0, 1}, where “0”” denotes
Lane-Keeping (LK) behavior, “1”” denotes LC behavior.

132619



IEEE Access

Z. Li et al.: DP and DS-LCD: A New Lane Change Decision Model Coupling DP and DS

2) gcFOREST ALGORITHM

The gcForest [26] algorithm is utilized to train and
test the DP&DS-LCD model. Compared with other com-
mon deep learning algorithms, gcForest does not have
high requirements on the number of samples and has
high training efficiency, so it can be expanded eas-
ily. The gcForest method is composed of multi-grained
scanning and cascade forest. Multi-grained scanning is
a feature processing method which can transform fea-
tures. Cascaded forest uses the pooling method of deep
neural network, which can extract characteristic features
efficiently.

1) Multi-grained Scanning: As the left of Fig. 7 illustrates,
the raw features of the DP&DS-LCD model are 3-dimension.
Suppose that the sliding window size is 2-dimension, then a
2-dimension truncated feature vector will be generated by the
sliding window at each step, and it will produce two feature
vectors corresponding to the window. The total vectors will
be used to train a random forest (Forest A, as shown in
Fig. 7) and a completely random forest (Forest B, as shown
in Fig. 7), which can extract features of different classes, then
the class vectors will be generated. Because the output of the
DP&DS-LCD model is two categories, so finally all the class
vectors will be connected into a transformed feature vector
with 8-dimension. The transformed feature vector has higher
dimension and enhanced representation compared with the
raw feature vector.

2) Cascaded Forest: As shown on the right of Fig. 7,
cascade forest adopts the structure of deep network, which
inputs data from the front layer, and let the output as the
input of next layer. Each level of forest all includes random
forests and completely random forests. Using the transformed
feature vector as the input of the first-level cascaded forest,
then each forest will produce two class distributions. The
estimated class distribution will be combined with the
original feature vector, which is a new feature vector with
16-dimension. And the new feature vector will be used as the
input for the next level of cascade forest. In order to reduce the
risk of overfitting, the class vector of each forest is generated
by k-fold cross validation.

The forests in the concerned level will generate their own
estimates, which will be applied to estimate whether the
current level is enough. And the final prediction results can be
obtained by averaging these estimates of the same class and
selecting the class with the maximum value. If the prediction
result has no significant performance gain, which means the
current number of levels is enough, and the training process
could be terminated.

IV. EXPERIMENTS

In order to demonstrate that the DP&DS-LCD model is
effective, the NGSIM database is used in the experiment.
And this section contains three parts: database and data
processing, model validation, and experiment results and
analysis.

132620

A. DATABASE AND DATA PROCESSING

The I-80 dataset from NGSIM database is applied to train and
test the LCD model. The dataset was collected from seven
lanes and included three periods: from 4:00 p.m. to 4:15 p.m.,
from 5:00 p.m. to 5:15 p.m., and from 5:15 p.m. to 5:30 p.m.
The vehicles’ trajectory data were collected by 0.1 s. The data
filtering methods are as follows:

1) The LCD behavior of the passenger car is only studied.
This is because the other two kinds of vehicles’ LCD factors
are different from the passenger car and the sample size is
small.

2) Only vehicle data on lane 2, 3, 4, and 5 are used. Because
the lane 6 and lane 7 are near the entrance of the ramp and
many vehicles are forced to change lanes. Moreover, since
lane 1 is a high-occupancy lane, the vehicles’ movements on
this lane are not considered.

3) The continuous LC data are excluded. Because any
vehicle movement more than one lane is more likely a
mandatory movement.

The most accurate method to label the LCD point is finding
the continuous change point of lateral position by using the
vehicle trajectory. However, this method is less efficient when
marking mass of data. According to the existing research [27],
in the first 5 s before the vehicle’s lane ID changing, when
the lateral velocity is larger than 0.6m/s for the first time,
it will be marked as the LCD point. And the LCD time-point
is represented as f7.cp. Then, based on the above LC intention
time-window, the LCD data are the trajectories from time
trep—T' to time t7¢cp. Moreover, to ensure the LK trajectories
and LCD trajectories have the same time length and in similar
traffic conditions, the trajectories from time t,cp—27" to time
trep — T’ are labeled as LK samples. Finally, 802 LC samples
and 701 LK samples are obtained.

Furthermore, in order to eliminate the possible influence of
the non-uniform data dimension on the experimental results,
minimum-maximum normalization processing is adopted for
the original data.

B. MODEL VALIDATION

To verify the effectiveness of the DP&DS-LCD model, three
comparative experiments are designed, including Gipps [1],
fuzzy reasoning inference [5], and DBN model [10]. The
input variables of the three LCD models are shown in Table 1.
And the gcForest algorithm is used in the three comparison
models on training phase.

TABLE 1. Input of the three LCD models.

Comparative Model Model Input
Gipps v, dﬂl.l7+: ] dﬂ!.f’+2’ A"n+2.n—2
Fuzzy Inference dypity Ay @y dypin o
DBN v, AV,,_,H.] N AV,,_,H_g s AV,,‘,,_E s d,,_,,+1 5 d,,_,,+g, G’,,‘,,_g

In order to guarantee that the training data and test data are
disjoint, a cross validation is utilized to evaluate the model

VOLUME 8, 2020



Z. Li et al.: DP and DS-LCD: A New Lane Change Decision Model Coupling DP and DS

IEEE Access

[ Multi-grained Scanning [ Cascaded Forest 1
| &mm|| 16-dim 16-dim 8-dim |
= Sliding [T m
° Il E —
1P g Wl o' 2 ||m ] i |
E".’E o) EE} %E) 2i|h.t'1\|.cs|:>b D) ese) 1 o 1
[as' = —_ -=
F Il . 'I-» i bf] [ of)
T 1 o 5, 3 = E M
| 2 h:s';*:lccs | | LIJ |
| I | . D J I
b Jo Levell _ LevM _  LevlN J

FIGURE 7. Overall illustration of gcForest algorithm.

performance. In this paper, each group of data is randomly
divided into 10 folds, 9 folds will be used to train the model,
and the other one fold will be applied to test the model
effectiveness. The same procedure will be conducted 10
times. Accuracy, True Positive Rate (TPR) and False Positive
Rate (FPR) are used to evaluate the prediction performance.
The three evaluation indexes are calculated by (21).

N7p + N1y
Accuracy = ————
Np + Ny
N
TPR = — 1P
Nrp + Npy
N
FPR = — ™ 1)
Nrp 4+ N1n

where N7p, N7y, Nrp, and Npy are the true positive, true
negative, false positive, and false negative. This research
labels the LC samples as positive samples, conversely, the LK
samples are negative samples. The final experimental result
is the average value of ten results.

C. EXPERIMENT RESULTS AND ANALYSIS
The experimental results include two parts: driving style
classification and LCD prediction results.

1) DRIVING STYLE CLASSIFICATION RESULTS

The experimental data are randomly divided according to
the ratio of 8:2. The first 80% of the data are adopted
for the establishment of the driving style database, and the
last 20% are used for the driving style identification. For
simplifying, the LDD is divided into three categories by
pre-equidistance. The previous studies mostly divided the
driving styles into three categories [12], [13], [16], so the
initial clustering number of driving styles ky is set to 3.
And the DB indexes of different driving style classification
number are compared, the maximum classification number
K is set as 8. The comparison results are shown in Fig. 8.
It can be found that in the low and medium LDD, when the
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FIGURE 8. DB index of different classification numbers under the three
traffic conditions.

classification number of driving styles is set to 3, the DB
indexes all obtain the minimum value. For the high LDD,
when the classification number is set to 4, the DB index gets
the minimum value. However, if the class number is set to 4,
the LC sample size of different driving styles will not meet the
requirement of LC prediction. Therefore, for the high LDD,
the classification number of driving styles is set to 3.

The comparisons of the three driving styles under different
traffic conditions are shown in Fig. 9 and Fig. 10. In the
two figures, “Cau.” represents the cautious drivers, ‘“Neu.”
represents the neutral drivers, and “Agg.” represents the
aggressive drivers. As shown in Fig. 9, the speed on the three
types of drivers is significantly different in the same traffic
situation. Firstly, the speed distribution of different drivers
varies greatly for a given traffic condition. Drivers with more
aggressive style tend to have higher speed. Moreover, it finds
that the speed distribution in different traffic conditions is in
the different range, which reflects the differences of traffic
states. These experimental results also prove the reliability of
LDD proposed in this paper. In Fig. 10, it can also get the
similar conclusion: drivers with more aggressive style also
have higher acceleration under the same traffic condition.
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TABLE 2. Accuracy of DP{&}DS-LCD model (Unit: {%}).

. Time Window
Driving Style
1s 2s 3s 4s Ss

Cautious 94.7 95.6 96.3 96.4 96.7
Neutral 96.4 93.5 98.2 98.2 98.8
Aggressive 96.5 97.1 97.5 96.1 96.3
Mean 95.9 95.4 97.3 96.9 97.3
Non-Classified 92.9 91.5 93.2 93.7 92.5

2) PREDICTION RESULTS OF DP&DS-LCD MODEL

Table 2 shows the prediction accuracy of DP&DS-LCD
model under different time windows. In Table 2, the maxi-
mum accuracy obtained by the same driving style is bolded.
For the cautious and neutral drivers, it finds that with
the increasing of time-window size, the prediction results
achieve the best at the 5 s time-window. And for aggressive
drivers, the accuracy gets the best at the 3 s time-window.
Moreover, the predicted accuracy after classification is
significantly higher than that of unclassified data for different
time windows.

Table 3 shows the prediction accuracies of the four models.
And the maximum accuracy of each LCD model is bolded.
Among them, the accuracy of DP&DS-LCD model is the
average accuracy under the five time-windows. From Table 3,
it can be found that the overall accuracy of DP&DS-LCD
model is better than the other three models, whether for
classified samples or non-classified samples. For a specified
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TABLE 3. Accuracy of the four LCD models (Unit: {%}).

Fuzzy

Driving Style DP&DS-LCD Gipps Inference DBN
Cautious 95.9(SD=0.65) 60.7 69.4 63.3
Neutral 97.0(SD=1.77) 65.6 71.1 60.0

Aggressive 96.7(SD=0.48) 60.2 71.5 60.7
Mean 96.6(SD=0.71) 62.2 70.7 61.3
Non-Classified | 92.8(SD=0.68) 57.7 67.8 57.8

driving style, the average accuracy of DP&DS-LCD model
is higher than 95%, whereas the Gipps model is from 60%
to 66%, the fuzzy inference model is from 69% to 72%, and
the DBN model is from 60% to 64%, which are lower than
DP&DS-LCD model. For non-categorized data, it could also
find that the accuracy of DP&DS-LCD model is superior to
the other three models. Furthermore, it can also obtain the
same conclusion with the Table 2: for the four LCD models,
the accuracies after classification are higher than that of the
unclassified samples.

TABLE 4. TPR values of the four LCD models (Unit: {%}).

Driving Style | DP&DS-LCD |  Gipps Ini:f:g’ce DBN
Cautious 97.2(SD=0.82) 52.6 57.4(1) 52.0
Neutral 97.9(SD=0.50) 52.1 64.7 46.8(1)

Aggressive 98.1(SD=0.40) 48.8 63.1 52.0

Mean 97.7(SD=0.34) 51.2 61.7 50.3

Non-Classified | 98.6(SD=0.94) 46.9 60.0 46.9
TABLE 5. FPR values of the four LCD models (Unit: {%}).

Driving Style | DP&DS-LCD |  Gipps Ian:rZ:nyce DBN
Cautious 95.2(SD=0.92) 67.2 79.1 72.2
Neutral 96.2(SD=3.18) 76.9 76.5 71.3

Aggressive 95.6(SD=1.06) 69.8 78.5 67.9
Mean 95.7(SD=1.14) 71.3 78.0 70.5
Non-Classified | 87.9(SD=0.74) 66.6 74.2 66.9

The TPR and FPR values of the four models are shown
in Table 4 and Table 5, where TPR is the prediction
accuracy of LC samples and FPR is the prediction accuracy
of LK samples. The down arrow (] ) is used to show the
performance decrease of classified method compared with
non-classified method. Attention, the TPR (FPR) value of
DP&DS-LCD model refers to the mean value of TPR (FPR)
under all time-windows. For DP&DS-LCD model, it finds
that the prediction accuracy of LC behavior is slightly better
than LK behavior. Similarly, whether TPR or FPR value,
DP&DS-LCD model is all better than the other three models.

In addition, because gcForest algorithm is used in training
the three comparative models, which may lead to the
advantages of the comparative models are not be fully
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reflected. Therefore, this paper compared the results of the
original articles with the DP&DS-LCD model. Gipps [1]
proposed the Gipps model, but they did not actually calibrate
and verify the model through actual data. So the results of
other two models in the original text are compared, which are
the fuzzy reasoning model [5] and DBN model [10], as shown
in Table 6.

TABLE 6. Experimental results of the comparative models in the original
papers.

Indexes DP&DS-LCD Fuzzy Inference DBN
LC Samples 802 334 1078
LK Samples 701 442337 1120

Accuracy (%) 96.6 / 99.3

TPR (%) 97.7 82.2 99.5

FPR (%) 95.7 97.0-99.5 99.1

For fuzzy reasoning model, the prediction accuracy of LC
samples was 82.2%, and the accuracy of LK samples was
from 97.0% to 99.5%. Although the accuracy of LK samples
was slightly higher than DP&DS-LCD model, the accuracy
of LC samples was severely lower than DP&DS-LCD
model. So on the whole, DP&DS-LCD model get the better
performance than fuzzy inference model.

Then, for DBN model, the overall prediction accuracy in
the original article was 99.3%, with the values of TPR and
FTR were 99.5% and 99.1% respectively. The prediction
results of DP&DS-LCD model were slightly lower than the
DBN model. However, it must note that the verification
method of the two papers were different. The verification
method of DBN model was dividing the training and test data
according to the ratio of 8:2, and the final experimental results
were the optimal results that can be achieved by the test set at
one time. But this paper used the 10-fold cross validation, and
the final results were the average of ten experiments. If the
same verification method was adopted in this study, the final
results may be better.

In conclusion, compared with Gipps model, fuzzy rea-
soning model, and DBN model, DP&DS-LCD model
achieved the encouraging results. The average accuracy of
DP&DS-LCD model was 96.6%, the average accuracy of
LC samples was 97.7% and that of the LK samples was
95.7%. Additionally, the overall accuracy of DP&DS-LCD
model improved from 92.8% to 96.6% after considering the
driver’s current driving style. The results of DP&DS-LCD
model proved that it was meaningful to coupling DP and DS.

V. CONCLUSION AND DISCUSSION

LCD behavior is mainly affected by the DP and DS. However,
the present LCD researches mostly focused on the objective
LC traffic conditions, few considered the DP and DS
simultaneously. Therefore, a novel LCD model is developed
in this research, which integrates the DP and DS, named
DP&DS-LCD. In DP&DS-LCD model, psychological field
model is developed to quantity the driver’s psychology effect
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of the surrounding vehicles on the driver. Then, a driving
style classification model is developed, which includes the
learning and recognition stage. This method could obtain
the driver’s current driving style. After that, the gcForest
is adopted to train the DP&DS-LCD model. The gcForest
algorithm can extract feature vectors effectively. Finally,
the open I-80 dataset from NGSIM database was utilized for
model validation. The experimental results showed that the
clustering effect obtained the best when the driving styles
were divided into cautious, neutral, and aggressive groups. It
also found that the accuracy improved effectively after adding
the real-time driving style into the LCD model. And the
DP&DS-LCD model get encouraging results compared with
the Gipps, fuzzy reasoning, and DBN model. In conclusion,
the DP&DS-LCD model is verified to be effective.

Additionally, in V2V environment, DP&DS-LCD model
could be utilized to predict the vehicles’ LC behavior in real-
time. Then, the prediction results can provide support for the
automatic vehicles’ decision. Moreover, this research can also
enable the automatic vehicles to make human-like decisions
in man-machine shared driving, which could improve driver’s
driving comfort. However, due to the length limitation of
experimental road, the long-time individual trajectory data
cannot be obtained. This may lead to inaccurate classification
of driving styles. Therefore, the next work of this study is
to use the driving simulator to obtain a relatively long-time
trajectory data of individual vehicles, and still adopts the
driving style classification method proposed in this paper.
Taking the individual driver’s historical trajectory data as the
training samples, and analyzing the driving style that drivers
present in different traffic circumstances, then judging the
driver’s current driving style. Thus, the final LCD prediction
results may be better.
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