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ABSTRACT This paper is based on an improved three-dimensional U-net convolutional neural network
deep learning algorithm for heart coronary artery segmentation for disease risk prediction, and it is practical
with multiple data sets under two backgrounds without centerline and with the centerline. By using a new
local feature to extract the ventricular information, and using the deep belief network to extract the features
to regress the contour coordinates of the biventricular. Combining features and deep belief networks and
training regression networks can not only extract high-level information but also accurately divide the
left and right ventricles at a small computational cost. The performance of segmentation based on the
dice coefficient compared between the two datasets. The results show that the model training effect of
the centerline preprocessing is superior to the original data. The experimental results show that the best
effect reaches the dice coefficient of 0.8291. In the experiment, it found that simple data expansion may
be detrimental to the test data. From the training curve, it is believed that with the improvement of the
quality of training data, the performance of coronary artery segmentation can be further improved, and it is of
great significance to provide doctors and patients with more accurate and efficient opinions and suggestions
in clinical practice to improve the quality of diagnosis and treatment. The purpose of assisting experts in

real-time diagnosis and analysis achieved.

INDEX TERMS Deep learning, heart coronary artery, graph segmentation, disease risk warning.

I. INTRODUCTION

Coronary artery disease (CAD), also known as ischemic
heart disease, is a disease that can cause angina (chest pain),
myocardial infarction (heart attack), and cardiac arrest. So far,
coronary artery disease is still the number one killer threaten-
ing human life [1]-[5]. Its risk is higher than that of tumors
and other diseases, accounting for more than 40% of resi-
dents’ deaths from diseases. It ranks first among the top ten
causes of death in the world and is globally the mortality rate
of patients with coronary artery disease reached 7.35 per mil-
lion [6]. Coronary heart disease is caused by the accumulation
of plaque. Plaque is composed of fatty deposits, cholesterol,
calcium, and other substances in the blood [7]. These deposits
cause arterial stenosis and sclerosis [8]. The arterial stenosis
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prevents oxygen-rich blood from reaching the heart, which
in turn leads to myocardial infarction and angina. Severe
stenosis can cause blood clots, leading to sudden cardiac
arrest, which in turn leads to sudden hypoxia of the heart mus-
cle [9]. Atherosclerotic plaques can be divided into calcified
plaques, non-calcified plaques, and mixed plaques according
to their composition [10]. Due to different types of plaque and
different levels of luminal stenosis (ie, arterial stenosis), the
symptoms of patients are also very different, so it is important
to detect and characterize coronary plaque and stenosis [11].
As deep learning has achieved very gratifying results in the
field of image processing in recent years, people naturally
think of applying deep learning to medical images [12]-[15].

In the past few years, papers on deep learning of medical
imaging have increased significantly [16]. Quan et al. pub-
lished a survey paper reviewing nearly 300 papers, 240 of
which published in the past two years [17]. The survey report
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covers different types of deep learning, including convolu-
tional neural networks (CNN), cascaded autoencoders (SAE),
and deep confidence networks (DBN) [18]. Then the papers
classified according to different types of tasks. The first task
is classification, where the classification network takes one
or more images as input and outputs a small number of
variables for judgment. For example, when inputting medical
images, variables can simply output whether a disease is
present [19]. The second task is target detection [20]. The
target detection network also takes images as input, and the
output is localized organs and targets [21]. The result can
be position, bounding box, and other variables, describing
the position and orientation of the anatomical structure in
the image [22]. For the registration of images, the neural
network can not only output the similarity measure between
the images but also output the direct transformation that
needs to be performed on the images [23]. The third task
is segmentation [24]. The segmentation network also takes
images as input and classifies each pixel/voxel as output [25].
Zhu et al. proposed a Full Convolutional Neural Network
(FCN), which uses a convolutional layer instead of a fully
connected layer, which makes it possible to use larger images
as input during network training [26]. However, the network
uses the maximum pooling layer for down sampling and the
output is smaller than the input image [27]. To solve this
problem, Long et al. proposed a method to move the image
one pixel in each dimension and segment it [28]. The scale
factor repeated the same number of times, and then the output
interleaved to obtain a complete result [29]. Li et al. proposed
a network called U-net, which solves the resolution problem
by using the same number of up sampling layers as down
sampling layers [30]. The network structure is composed of
a contraction part and an expansion part [31]. The network
uses jumpers before and after down sampling and up sam-
pling to the same level [32]. Perdikaris et al. proposed a
similar U-net-based 3D architecture V-net and introduced a
Dice-loss layer [33]. This network architecture allows down
sampling and up sampling to work on full images, which
means large intermediate the feature map needs to be stored
in each layer [34]. For 3D images, memory requirements have
increased dramatically [35]. Wang ef al. proposed a method
in which training data enhanced in real-time by elastically
deforming the input and ground truth for this problem [36].
Sun et al. discussed a common challenge of the above seg-
mentation methods, which is that these methods often create
spurious responses in the output [37]. Some methods use
post-processing steps on the prediction map generated by the
network [38]. Nam et al. proposed a method for segmenting
brain MR scan structures using two-dimensional FCN [39].
In the prediction output of CNN, improvements made by
using Markov random fields [40]. Shlezinger et al. used
a similar method to improve segmentation but used a 3D
conditional random field [41].

However, there are also many problems [42]-[45]. Firstly,
the identification and positioning of coronary arteries is an
important prerequisite for coronary artery segmentation and
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lesion detection [46]. However, manual identification of coro-
nary arteries takes a lot of time, and the segmentation results
are also susceptible to the operator’s subjective factors [47].
Secondly, medical images have their particularities: First,
the structure of the medical image at the same location is
very similar in appearance, which makes it very difficult to
judge whether it is healthy or diseased [48]. The second is
that medical images have obvious defects compared with
natural images, mainly manifested in lower brightness and
contrast [49]. Therefore, the recognition of many features
is more difficult. In use, there will be insufficient features
and insignificant differences in features [50]. The third is
that during the acquisition of medical images, it will be
interfered with by multiple factors, such as different patients,
different imaging equipment, different shooting angles, and
shooting environments [51]. These interference factors may
cause image ghosting and noise interference. These charac-
teristics make medical images extremely complex and vari-
able, so many methods are effective in some images, but
they cannot be applied in other images [52]. In response
to these problems, the segmentation and feature extraction
methods for coronary CT angiography images must meet
the following conditions: first, the extracted vascular plaque
features must be rich and accurate, and also to ensure that
subtle differences can be discovered; second, the algorithm
must be robust [53]. To deal with possible problems, such
as various adverse factors and harsh environments; finally,
due to the very high timeliness requirements in practical
applications, this requires that the algorithm must meet easy
implementation, fast calculation speed, and low calculation
complexity [54].

Based on the above reasons, this article focuses on
coronary CT angiography images, studies the segmentation
methods in medical image processing, and optimizes the
algorithm following clinical application needs. Image seg-
mentation based on a fully convolutional neural network
model. The FCN-VGG16 network structure improved by
VGGNet described, and the network structure and imple-
mentation process described in detail. Use FCN to train
on the natural image set PASCAL VOC2012. The results
obtained are not detailed enough. Although the effect of
8 times upsampling is much better than 32 times, the
result of upsampling is still blurry and smooth, and it is
not sensitive to the details in the image. To classify each
pixel, the relationship between pixels is not fully consid-
ered. It ignores the spatial regularization step used in the
usual pixel-based segmentation method, and lacks spatial
consistency. Research on segmentation method based on the
U-net network. The U-net network introduced, and a new
network designed based on the U-net network. The data
set and data processing required for this article introduced.
The improved U-net network used to accurately segment
the coronary arteries. According to the evaluation criteria
of the segmentation results in this experiment, the results
compared with the results of other methods and the results
are analyzed. It can provide doctors with three-dimensional
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visualization images of coronary vessels, which is conve-
nient for doctors to diagnose and treat coronary artery dis-
eases. Compared with some image segmentation methods,
the author chose to use the fully convolutional neural network
FCN for image segmentation, and the natural image dataset
PASCAL VOC2012 for network training and testing.

Il. ANALYSIS OF GRAPH SEGMENTATION MODEL BASED
ON A DEEP LEARNING ALGORITHM

A. IMPROVED U-NET ALGORITHM

As we all know, the training of deep neural networks requires
a large amount of labeled data. However, the marking of
medical images is difficult and time-consuming, so the avail-
able data is usually small, and many neural networks cannot
be applied. This problem not solved until Ronneberger pro-
posed network architecture [55]. This network architecture
is currently a very popular U-net in the medical field. U-net
network mentioned a strategy, namely the use of the data
augmentation method, which can make full use of the sample
when the labeled sample is limited. The design of U-net
is based on the fully convolutional neural network FCN.
Only the up part of the FCN network has been modified to
enable the network to propagate context information to higher
resolution layers [56]. Structurally, the contracting path on
the left is somewhat symmetrical to the expansive path on the
right, forming a U shape as shown in Figure 1.

T
<

FIGURE 1. U-network structure diagram.

Since the network on the left will lose image information
and details at the pooling layer and will reduce the image
resolution, and this operation is irreversible, so when the
network on the right supplements the picture information
during the up sampling process, the information is not It is
sufficient, so you need to connect the picture with a higher
resolution on the left. The specific method is to directly copy
and crop the picture on the left to obtain a picture with the
same size as the up sampled picture. This will not only obtain
high resolution but also retain abstraction.

The output of each layer of a fully convolutional neural
network is a three-dimensional array, where O and k are
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spatial dimensions and d is the feature or channel dimen-
sion [57]. The image with the input pixel size w*h and
channel number d in the first layer.

k : k
Oij — min Oij
ko 1<k<K
fOt] - k . k (1)
max Qij — min Oij
I1<k<K I<k<K

where k is the size of the convolution kernel, s is the step
size, and different layers have different P [58]. When the
convolution kernel size and step size follow the conversion
rules, the function can be transformed into:

k : k
Pl] — min Oij
1<k<K
fPh=— T @
max Ql.j — min Oij
1<k<K 1<k<K

Fully convolutional networks can calculate inputs of any
size and give corresponding outputs. The loss function is as
follows:

k : k
Qij — min Oij
k 1<k<K
oy = —————r 3)
max Qij — min Oij
I<k<K  1<k<K

The formulas for data propagation from the data layer to

the hidden layer and the reverse direction expressed as:

o JOsi(1 — fOs}) + fQsifOs}
v 1 —fOsg- +st§-

1
11

max ) fi;
pasi

“)

By« = ANsN (5)

The process of network training is to find the optimal
parameter A and offset b to minimize the target function.
This paper uses the quasi-Newton (L-BFGS) gradient descent
method to update the network weight parameter W and the
offset Q. First, calculate the error ratio from the feature hidden
layer to the data output layer, which expressed as:

P(yi) = p)'(1 — p)' ™ (©6)

Then calculate the derivative of the objective function to
the weight parameter W and the derivative to the offset L [58],
as follows:

exp(a + Z xiiB;)

IL =1
L Se—1=0
i=1 1 +expla+ Y x;iBj)
j=1
m
. exp(a+ Y- x;B))
oL J=1
. > - %l =0,
—— 1 +expla+ Y x;iBj)
j=1

j=1L2,....m (8)
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After obtaining the above depth features, use the labeled
data to train the Softmax classifier to classify the depth
features [59]. The training process is as follows:

1 n
(1) = }}g}% h_" E =" <Zl)f(t — mh) )]
m=0

We further define the loss function of the Softmax model
as:
> 4 2.(O

Xep N Ve |+p?
xeB

1

—_— 4+ 2.(0
XXG:B |V"Mx|+p2+ «0)
xeB’

(10)

Uy =

The second item is the network weight parameter con-
trol item, which makes the network weights attenuate prop-
erly and prevents overfitting during model training. In the
training of Softmax classifier, the previous quasi-Newton
optimization algorithm also used to optimize the network
weight parameters and obtain the optimal solution. The rel-
evant parameter settings of the Softmax classifier are shown
in Table 1. The initial weight of the classifier is randomly
set to 1.658, the weight attenuation coefficient is 2.414,
and the maximum number of pieces of training is 100.
Big data analysis and sampling are not contradictory. The
development of distributed (map-reduce, etc.) and real-
time processing (stream computing, in-memory computing)
makes large-scale data analysis possible. However, from the
perspective of efficiency and cost, appropriate and reasonable
sampling is also necessary. Like two extremes, and we always
have to find a tradeoff.

TABLE 1. Classifier parameter setting.

Name Values
TPR 4.545528
TNR 5.018352
ACC 4.282174
PV+ 3.401171
PV- 5.232758
AUC 4.489796

TPR-1 8.286432

TNR-1 8.170699

ACC-1 8.929217

PV+-1 1.733804

PV--1 2.389557
TPR 6.722375
AUC 5.405291
ROC 1.570693

Finally, the area AUC of the receiver operating char-
acteristic curve (Receiver Operating Characteristic, ROC)
will be recorded to evaluate the generalization ability to
participate in comparison methods. The training of the
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pathological diagnosis model requires the segmentation mask
of the lesion as an input. To avoid the influence of segmen-
tation errors on the training effect of the diagnostic model,
during the training process, the segmentation mask required
for multi-channel image construction will use the lesion
markers obtained by experts through “Double Reading™.
During the test, the pathological diagnosis model will use
the segmentation model trained by enhanced sequence breast
cancer MRI to provide segmentation mask input. In other
words, the pathological diagnosis model will be tested in
the two-stage medical image disease diagnosis framework
proposed in this paper for testing.

B. SEGMENTATION STRATEGY AND SEGMENTATION
NETWORK STRUCTURE ANALYSIS

Data enhancement strategy: When the training samples are
not sufficient, data enhancement is indispensable. There are
many ways to enhance the data, such as rotating the image,
cropping the image to different sizes, or changing the resolu-
tion [60], [61]. To solve the problem of insufficient training
data. As far as medical images are concerned, the available
data and its lack, data enhancement strategies can make
up for this defect. The operation of data enhancement can
provide more sufficient data for the experiment so that the
network can learn more features through training. The data
enhancement method is easy to operate and requires only a
small amount of image preprocessing time. Because U-net is
suitable for super-large image segmentation, the U-net net-
work currently has a good performance in biomedical image
segmentation, and the data enhancement makes only a few
labeled data. Overlap-tile (overlap-tile) strategy: U-net uses
the overlap-tile strategy when performing shallow feature
fusion: that is, the white module in Figure 2 is the blue
module on the left. Figure 2 is a schematic diagram of the
overlap-slicing strategy. The prediction of the segmentation
in the yellow box requires the image data in the blue box as
input, and the missing data inferred from the mirror image.

FIGURE 2. System for serum electrolyte disorder Segmentation strategy
diagram.
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Medical images are mostly in the form of blocks, generally a
whole picture is composed of many slices. If you use a two-
dimensional network model to process three-dimensional
medical images, it is also possible to solve a problem. You
can only use the labeled medical images CT one by one as the
input to train the designed model. In this way, the efficiency
is very low, and it will be very difficult in the processing
process, and then the method of data preprocessing is rela-
tively cumbersome. In response to these problems, this paper
proposes a network structure based on U-net.

The network in this paper is based on the previous U-net
architecture, which includes a contracting path for analyzing
the entire image and a contracting path for generating full-
resolution segmentation. U-net is a 2D structure. The network
proposed in this paper requires 3D input and 3D process-
ing, so all 3D operations in this network will be replaced
with 3D, such as 3D convolution, 3D pooling, and 3D up
sampling [62]. Use batch normalization to prevent network
bottlenecks. The size of the input data shape is (1, 64, 64, 16),
where 1 represents the number of input channels. After con-
volution, nonlinear ReLU and Max Pooling operations are
applied. A convolution kernel with a size of 3*3*3* is used,
and the convolutional layers are separated by Max Pooling.
The maximum pooling Max Pooling size is 2*2*2, and the
step size is 2 for down sampling. After the first up sampling
layer up sampling, it connected to the output from the pre-
vious Max Pooling layer, that is, concatenate generates the
same size input, and so on, and an activation layer using the
sigmoid function added after all convolution layers.

Performance may decline after replacing a batch of data
sets. Here, we consider using some heuristic multimodal opti-
mization strategies to replace the optimization algorithm used
in training, so that the final optimization results can be used
in a wider range. Our laboratory has achieved some results
on these strategies, which can be adapted appropriately.
Also, because both the lesion segmentation sub-model and
the pathological diagnosis sub-model adopt a multi-channel
CNN architecture, operations can be performed in paral-
lel. Therefore, we will also consider using the laboratory’s
achievements in distributed deep learning to improve the
specific implementation of the model. The specific method
is: during training, several batches of image data are input
into several different graphics processing units (Graphics
Processing Unit. GPU), and a forward propagation and back-
propagation are completed at the same time.

The research focus of this paper is to explore the appli-
cation of deep learning in the automatic segmentation of
coronary arteries. To accomplish this task, the author used
two different data sets to train and evaluate the network. The
first data set is data with segmentation labels but no vessel
centerline information, from 34 subjects. Use 30 patient data
for deep neural network model training, and another 4 data
for testing. Since the original data has 200 to 500 pieces
of coronary angiography CTA images each with a size of
512 x 512, their size is too large for model training, and
the amount of data is too small for deep networks. On the
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original CTA data, 16 used as a step size to cut, cut into a 3D
cube of 32 x 32 x32, discard the volume less than 160, and
get 12364 individual blocks for network training. The second
data set provided by the Rotterdam coronary artery algorithm
evaluation framework. It includes data from 18 subjects [63].
A list of points describing the position and radius of the
centerline of the four selected blood vessels provided for each
training body. Ground truth obtained from the blood vessel
slices in each CTA image. Using the centerline, an image
cross-section) along the centerline extracted to form three-
dimensional data. In this way, a total of 78 image slice
marker data that can be used for training and testing can be
obtained, the data is further cropped into smaller parts along
the centerline, and the data image is cropped along the x, y,
and z axes, and shifted to perform Data enhancement. After
augmentation, all training data cut in steps of 1 along the
centerline in units of (64, 64, 16). Before training, normalize
the data by subtracting the mean and dividing by the standard
deviation. Three-dimensional body blocks obtained from the
CTA of 15 subjects for model training, and the CTA of 3 other
subjects used for detection.

IIl. MODEL FOR SEGMENTATION AND PREDICTION OF
CORONARY ARTERY

A. PERFORMANCE EVALUATION OF SEGMENTATION
CLASSIFICATION MODEL

Evaluating and comparing the results of the classifier is an
indispensable part of the classification model construction
process. The commonly used evaluation indicators include
accuracy (ACC), sensitivity (True Positive Rate, TPR), speci-
ficity (True Negative Rate (TNR), positive predictive value
(PV+), negative predictive value (negative predictive value
(PV—) and the area under the receiver-operating characteris-
tic curve (AUC). The specific classifier classification results
are shown in Table 2:

TABLE 2. Classification result in from confusion matrix.

Name Secondary diagnostic criteria
TP Cough at night
FP Ankle edema
TN Hepatomegaly
FN Difficulty breathing after activity
PV- Pleural effusion
PV+ Tachycardia (> 120 beats / min)
TN-Y Reduced vital capacity to 1/3
FN-Y Tachycardia (<120 beats / min)

In the above table, TP (true positives) indicates the number
of samples that are classified as patients, FN (false negatives)
indicates the number of samples classified as non-patients,
and TN (true negatives) ) Indicates the number of samples
not affected by patients who are correctly classified as non-
patients, and FP (false positives) indicates the number of
samples classified as patients by patients affected. Accu-
racy (Accuracy, ACC) represents the percentage of the total
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number of samples that correctly classified by the model in
all samples.
fit; — worst(g)

mi(g) = best(g) — worst(g) (in

Sensitivity (True Positive Rate, TPR), also known as the the
true positive rate, indicates that the actual diseased patients
correctly classified as the percentage of patients by the model.
This index reflects the model’s ability to recognize diseased
patients.

Fid(t) = ZjeK randeg(t) (12)

The specificity (True Negative Rate, TNR), also known as
the true negative rate, indicates that the percentage of samples
non-diseased patients correctly classified as non-patients by
the model. This indicator reflects the ability of the model to
recognize non-diseased patients.

p
fitness = min(Error) = % Z (t(i) — O(i)* (13)
i=1

Positive predictive value (positive predictive value, PV+)
represents the proportion of all diseased patients identified
by the model, the actual diseased patients in all the identified
samples.

NER
G — lim — _
aDif (0 = lim - ZO( 1"
m=|

Cv+1)
T —ma 1y ¢

(14)

Negative predictive value (negative predictive value, PV-)
represents the proportion of all non-diseased patients identi-
fied by the model in the truly undispersed patients in all the
identified samples.

G(t) = (Go, t) = Gy x exp(—a x t/T) (15)

The training process of the ESN network is shown
in Figure 3. First, the network initialized to determine the
number of corresponding nodes in the reserve pool. The
selection of the number of nodes in the reserve pool is
related to the spatial dimension of the task. The more nodes,
the higher the spatial dimension of the network. Then ran-
domly generate a matrix of node connections in the reserve
pool, and normalize the weight matrix. And randomly gen-
erate input and output weight matrix. In the network training
process, after inputting sample data, it will id some time to
allow some data to initialize the state of the reserve pool to
reduce noise interference caused by the connection matrix
randomly generated during the initialization process. Then,
according to the network state update formula, the reserve
pool state connection parameters updated to obtain the final
network weight. During the testing process, after inputting
the test sample, it is also idling for a certain time, and finally,
the predicted output of the network given.

The area under the curve (AUC): the area under the
ROC curve, which is usually in the range of 0.5 to 1. In the
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FIGURE 3. Performance evaluation of segmentation classification model.

ROC graph, the abscissa represents (1-specificity), and the
ordinate represents sensitivity. The calculation of the AUC
value needs to consider both the sensitivity and specificity
indicators. When the two indicators have higher values,
the AUC value Only when the AUC value is larger, that is,
the AUC value is closer to 1, it indicates that the classification
effect of the model classifier is better, as shown in Figure 3.

Effectiveness indicators: The main outcome indicators
include the total clinical effectiveness (total effective = sig-
nificant efficiency + effectiveness). Significant effect: heart
function is improved by more than two levels, and symptoms
and signs are significantly improved; effective: heart function
is improved by one level, but insufficient at both levels,
symptoms and signs have improved; ineffective: the heart
function is not improved by one level or the condition is
aggravated or died.

The medical record database designed by the research
group used by this research institute contains a total
of 768 variables, including detailed data such as the patient’s
basic history, comorbidities, clinical manifestations, etc., and
many unquantified treatments.

If all the variables are directly included in the model for
training, not only will it occupy a lot of computer resources,
increase the model training time, but also a large number
of unrelated variables will also reduce the model perfor-
mance and affect the model performance, so before the for-
mal training model. The collected data were subjected to
variable screening: unused unstructured data was specifically
eliminated, various laboratory examination indicators in the
medical record, as well as electrocardiogram, cardiac color
Doppler ultrasound, coronary angiography,,and other image
data,, were selected for admission for 24 hours Carried out
within. After screening through the above indicators, a total
of 147 variables remain. To continue to improve the perfor-
mance of the model, a simple one-factor test first performed
to screen out statistically significant variables. On this basis,
the random forest algorithm based on the AUC criterion used
for independent variable screening.
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B. PROCESS AND PREDICTIVE ANALYSIS

Broadly speaking, the contribution of Bi-DBN segmentation
method includes the following points: (1) Application, it is
a kind of fully automatic biventricular segmentation method,
which is based on fewer assumptions and helps to evaluate
cardiac function indicators; (2) Way, the biventricular seg-
mentation task is handled as a boundary regression problem,
using a very flexible boundary representation strategy, which
holistically uses deep learning to obtain optimal segmenta-
tion; (3) method, using local DAISY features and boundary
regression to model The highly nonlinear mapping relation-
ship between the ventricle with variable shape and the target
boundary. The DAISY feature used as the input of the DBN to
obtain the relevant context information of the boundary point.
The boundary point used as the output of the DBN and guided
by the global shape a priori.

The flow chart of the Bi-DBN framework is shown
in Figure 4. The framework includes three basic mod-
ules: feature extraction, regression, and boundary represen-
tation. Dense local DAISY features extracted from cardiac
MR images used as input to the regression model. DAISY
features are like SIFT, which can effectively calculate at
each pixel and are more robust to photometric and geometric
transformations. The output of the regression model is the
outline of the left ventricle and the right ventricle. They are
each represented by a set of discrete points and quantified as
the coordinates of these points. This point-based boundary
representation method has a high degree of flexibility when
representing a heart with variable shapes. To establish a
reliable regression model from the input image to the target
boundary, Bi-DBN uses multi-output DBN as the regressor.
The regression model performs segmentation through the
overall regression output and the overall regression input.

Training
)\ WF W‘M' e i
/= = “W »\-,Lr,l,y» il [
Training
: ha A 'y’
: W VAN st ‘v‘“‘wwn .
NI o
= Trainin
B & i
P s /f‘?\'m OO0 ANLAG ‘M
i - Training
Training images > Feature ~ Boundary regression model — Contour

Input —

Boundary regression model (testing)

FIGURE 4. Flow chart of DBN framework.
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The overall output method is that the model returns all bound-
ary points at the same time instead of one after another.
Based on the input image and global shape prior information,
it effectively solves problems such as local The problem of
large changes in local shape such as missing borders; the
overall input method is that the model uses the full image
as input to return to each boundary point, so it can obtain
the complete context information of each boundary point and
reduce local noise interference.

For X in Y = f(X), as the input of the regression model,
it represented by the image local feature descriptor DAISY.
DAISY and SIFT, GLOH use different directional gradient
weighting schemes, but the calculated histograms are very
similar. At the position of each pixel in the calculation of
DAISY, calculate multiple convolution patterns on concen-
tric circles centered on the position, where the number of
Gaussian smoothing is proportional to the radius of the circle,
and the calculated multiple convolutions A vector constructed
from the values of the directed graph to calculate the DAISY
description operator.

DAISY combines an isotropic Gaussian core with a cir-
cular grid to make it more resistant to rotation disturbances.
The overlapping area can ensure that the descriptor changed
smoothly along the rotation axis, and by increasing the size of
the overlapping area, it can be made more robust. The shape
and size of DAISY are determined by four parameters: radius
(R, the distance between the center point and the outermost
sampling point), radius quantization (Q, the number of layers
in the convolution direction), and angle quantization (T, the
histogram in each layer Number of graphs), histogram quanti-
zation (H, the number of bins in each histogram) and the step
of adjacent sampling points. The dimension of the DAISY
feature description operator for each sampling point is H. The
larger the dimension, the higher the accuracy of result, but
the higher the calculation cost. Considering the memory and
speed requirements, the DAISY parameters are set as follows:
step =25, R=18,Q=2,T =7, H=09, and finally the
dimension of the description operator is 948.

The DBN structure used by the Bi-DBN framework
includes two RBMs and a regression layer. The schematic
diagram of the DBN process is shown in Figure 5.

To verify the anti-jamming ability of the algorithm in this
paper, we artificially added Gaussian white noise with differ-
ent signal-to-noise ratio to the heartbeat data. It can be seen
from this that when the noise amplitude is small (20-80dB),
it does not have much impact on the overall recognition
accuracy of the heartbeat. If and only if the noise amplitude
is large enough (40dB), will the recognition accuracy of the
heartbeat have reduced to a certain extent? The main reason
for reducing the accuracy of heartbeat recognition is that the
ECG signal itself is weak, and the larger noise will annihilate
some features related to the heartbeat classification in the
noise.

To meet the memory and speed requirements, the num-
ber of iterations is set to 528. As the number of iterations
increases, the network segmentation performance improved.
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FIGURE 5. Schematic diagram of DBN structure.

During this process, continuous fine-tuning performed until
the error between the boundary predicted by Bi-DBN and the
true boundary Small enough.

IV. RESULT ANALYSIS

A. EXPERIMENTAL COMPARISON RESULTS WITH OR
WITHOUT CENTERLINE DATA SET

In this paper, we first segment the coronary artery without
centerline information and use the first data set for exper-
iments. The first data set has a segmentation label but no
vascular centerline information. Use 20 samples for training
and 4 for testing. In this paper, 125804 individual blocks
obtained after data preprocessing for network training. The
results of training and testing are shown in Figure 6.

Figure 6 is the loss graph of training and verification,
where the blue curve represents the training loss, the red curve
represents the test loss, the x-axis represents Epoch, and the y-
axis represents a loss. With the increase of Epoch, the training
loss continues to decline, and the final training, the loss is
—0.8989; and the verification loss tends to be stable after the
8th Epoch, and the final verification loss is —0.8926.

The CTA data of the test subjects in the coronary artery
data set without vascular centerline information was tested,
and the average value of the Dice coefficient was 0.7839. This
result has reached a high level and surpassed many classic
segmentation methods.

Next, this article will segment the coronary arteries with
vascular centerline information, and use the second data set
for the experiment. The second data set provided by the
Rotterdam Coronary Artery Algorithm Evaluation Frame-
work. It includes data from 18 subjects. Each data has the
position information of the centerline, and the data prepro-
cessed to obtain a total of 200 image slices and 18 patient
labeled data, which can be used for training and testing. Using
pre-processed data, 18 subjects’ CTA data used for network
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FIGURE 6. Loss curve without a centerline data set.

training, and the remaining 3 tested. Figure 7 is the training
and test loss graph.
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FIGURE 7. Loss curve with a centerline data set.

Because the data preprocessing of the second data set is
different from that of the first, the obtained data label is
more accurate than the first data set, so the segmentation
results obtained are also more accurate. The author thinks
that if the data further optimized, more accurate results can be
obtained. Based on this, the author used medical knowledge
to process the image. Because the intensity of different blood
vessel positions is variable, this article uses Hounsfield units
(HU, the unit of CT value) as the unit, sets the CT intensity of
the blood vessel in the CTA image between —100 and 1200,
and uses 80HU as the average intensity and 180HU Normal-
ized as the standard deviation. This can better standardize
the subject’s CTA data. To prevent overfitting, this paper
gave up the use of shifting steps to increase the data. In this
way, there are 1566 data image blocks for training. Through
experiments, the results obtained are that the training loss and
test loss are —0.898 and —0.891, respectively, and the average
dice coefficient is 0.7852.
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By observing Figure 8, we can find that the Dice coef-
ficient obtained by segmenting the coronary artery without
centerline is 0.645, and the Dice coefficient obtained by the
three-dimensional Deep Medic method is 0.605 [19]. The
Dice coefficient obtained when segmenting a coronary artery
with a centerline is 0.625-0.678, and the Dice coefficient
obtained when segmenting a coronary artery with central
line information based on the level set tissue probability
method is 0.649-0.753. Compared with other Dice coeffi-
cients of 0.640~0.773, although the deep learning method
proposed in this paper still limited in training and test data,
the effect is better.

\ [ ) Values\
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FIGURE 8. Method comparison.

After optimizing the experimental data processing method,
although the experimental results obtained did not change
significantly, the training loss and verification loss did not
seem to be as good as the results in Figure 9. However,
the test results show that the improved average Dice coef-
ficient is 0.8752, which is an increase of 4.2% from the
previous one. It proves that it plays a certain role in data
optimization. From the visualization results, the network uses
the improved data to remove some useless information from
the segmentation results.

Due to the relatively small training data, this article started
using 15 of the 20 subjects for training, leaving only 1 for
testing, changing the segmentation rate from 0.825 to 0.945,
which is 90.25% for training and 10% for verification. The
tested Dice coefficient is 82.78%. Compare the segmentation
performance of the two datasets based on Dice coefficients.
The results show that the model training effect of the cen-
terline preprocessing is superior to the original data. The
experimental results show that the best effect reaches the Dice
coefficient of 0.8491. In the experiment, the author found
that simple data expansion may not be conducive to test data.
From the training curve, the author believes that with the
improvement of the quality of training data, the performance
of coronary artery segmentation can be further improved.

A layer-by-layer analysis of the U-net network carried
out, a new three-dimensional network structure designed
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according to the U-net network, and the overlap-tile strategy
and data enhancement in the U-net motorways applied to
the new network. Two different data sets selected to test
the effect of using the centerline on the results. The data is
pre-processed for network training, and then the network con-
tinuously optimized according to the training and verification
loss graph and Dice coefficient graph. Compared with the
other four popular methods, the method in this article is more
excellent.

B. INDEPENDENT VARIABLE SCREENING RESULTS

BASED ON AUC-RF

In the RStudio environment, the independent variables
filtered by loading the AUC-RF package. The initial
random forest model constructed using 49 variables prelim-
inarily screened by the chi-square test and rank-based non-
parametric test. The distribution of the importance evaluation
index MDG of the model performance is shown in Figure 9,
from which we can see that the importance the top five
variables are BMI, CERA, UREA, ALT, and QTC.

FIGURE 9. Model importance comparison.

Firstly, given the challenges faced by the automatic
detection of coronary arteries and the limitations of existing
detection methods, an end-to-end joint learning framework
CAC-Net proposed. It does not undergo the preprocessing
step of ROI and passes two seamlessly connected features.
The extraction module separately extracts 2D and 3D calcifi-
cation characteristics to obtain rich calcification information
and then realizes coronary artery specific calcification detec-
tion. Finally, the experimental results presented, the results
analyzed, and compared with other methods to illustrate the
effectiveness of CAC-Net in detecting coronary calcification.

The cross-validation test is set to 5-fold cross-validation.
Figure 10 shows the probability of each variable selected into
the model after 100 repeated random forest independent vari-

VOLUME 8, 2020



C. Xiao et al.: Heart Coronary Artery Segmentation and Disease Risk Warning

IEEE Access

B8 sen. (num) B8 Sen. (vol) B PPV (num)
B PPV (vol) [ FI (vol)

0.0
FCN U-Net

U-DenscNct
Structures

Twofold CAC-Net

FIGURE 10. The final selection of variables.

able screening based on AUC criteria. Among these variables
are gender, smoking history, family history, and heart rhythm.
Abnormalities, hypertension, lung disease, chest suffocation,
shortness of breath, ankle edema, lung rales, sinus rhythm,
atrial fibrillation, STT abnormalities, segmental wall motion
abnormalities, aortic valve insufficiency, pulmonary valve
insufficiency, SEN, PPV, FL are selected into the model with
a probability of 4, indicating that the 28 variables listed above
are selected After each model was verified, the selection
probability of variable cough, allergy history, drinking his-
tory, dizziness, sputum, malnutrition, and loss of appetite also
exceeded 80.78%. In this study, the total selection probability
was greater than 80.57% All 30 variables included in the
model as independent variables for the final model construc-
tion. The specific values and units of each variable are shown
in Figure 10.

To evaluate the performance of each model in a timely and
accurate manner, this study used stratified sampling method
to extract 1/4 samples from all collected medical records
data to form a training data set for model training, and the
remaining 3/4 samples were used For the construction of
the test data set, the test data set is mainly used to evaluate
the performance of each model. The 32 independent vari-
ables obtained from the above independent variable screening
process used as input variables, and whether the coronary
angiography operation Gemini score is greater than 8 used as
the outcome variable. Based on logistic regression, BP neural
network, random forest algorithm, the model adjusted by
adjusting the model parameters. Training, and finally use the
test data set to evaluate the performance of the model an
compare the performance of the model.

When obtaining the training data set and test data set
required for the model establishment and evaluation, from a
total of 2826 samples that meet the inclusion and exclusion
criteria of this study, repeated 108 stratified samplings, based
on the 120 training data drawn Set 108 different logistic
regression models for training, but the final model into the test
data set for performance testing, obtain the comprehensive
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performance evaluation index of each model, use the median
to describe the concentrated trend of the resulting classifica-
tion model, use the upper quartile The number of digits and
the lower quartile are used to describe the discrete trends of
the classification model indicators. The specific results are
shown in Figure 11.

0.71 0.72 0.73 0.74 0.75 0.76

99.5
98

90

70 -
50
30 e

Cumulative Counts

0.71 0.72 073

Bin 0.74 0.75 0.76

FIGURE 11. Regression classification model results.

Figure 11 contains only the median and upper and lower
quartile intervals describing the classification evaluation indi-
cator to model. Figure 12 shows the specific conditions of
each classification evaluation index of each percentile of the
logistic regression model (interval of 10 percentiles).

When applying the maximum flow algorithm to extract
the coronary intima contour, the stability of the algorithm
depends on the setting of the initial flow volume. The initial
flow capacity of any layer in the algorithm is set to the
absolute value of the difference between the gray value of
each point in the image and the label value set by the layer.
The gray label value of each layer is determined by the gray
distribution characteristics of the OCT image along the radial
direction.

The gray scale of OCT images usually shows layered
features, and the inner endometrial contour is the vascular
lumen area, which usually shows the characteristics of low
gray values, accompanied by high gray value catheter shad-
ows. In addition to the intima contour, the area close to the
intima contour is a region of the high gray value. Further out,
away from the contour area of the intima, it becomes a low
gray value area again. The outermost layer is the non-image
effective area. Ideally, the label value of each layer should be
the average gray value of the layer. However, it is not known
in advance what the average gray value of each layer is, and
although different images will also exhibit a layered structure,
the average gray values differ to better determine the label
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FIGURE 12. Regression classification model evaluation index percentile.

value of each layer, we conducted a gray distribution analysis
of the image.

Aiming at the problem that a pathological diagnosis is
prone to insufficient medical features, a two-way CNN fea-
ture extractor with a “‘static-dynamic” structure used in com-
bination with feature redundancy penalty loss to increase
the richness of the extracted features. Among them, ““static”
CNN mainly used to extract general multi-scale medical
features, while “dynamic” CNN is based on context-aware
mechanisms and channel attention units to extract pathologi-
cal semantic features that are more relevant to medical scenes.

As can be seen from the above table, in the test data
set, the sensitivity of the logistic regression model has been
maintained above 70.788% since 10, and the highest sen-
sitivity has reached 84.40%; the specificity range is from
60.83% to 86.63%, median 72.75%, indicating that the logis-
tic regression model is relatively weak in identifying non-
patients; the model’s accuracy ACC index fluctuates around
75.68%, the highest value does not reach 80.98%, and the
logistic regression model’s ability to identify real patients and
non-patients is relatively Insufficient; the minimum value of
PV + 15 70.12% and the median is 73.75%; the median value
of PV- is 72.45% and the highest is 77.643%; the highest
value of AUC is only 0.7873.

C. RISK WARNING RESULTS
Repeatedly extract the training data set and test data set
16 times by stratified sampling, and record the classification
performance evaluation indicators of each model in the test
data set (including accuracy, positive predictive value, neg-
ative predictive value, sensitivity, specificity, the area under
the ROC curve (AUC index), using the median to describe
the concentration trend of the evaluation indicators of the
obtained BP neural network model, using the upper quartile
and the lower quartile to the BP neural network model The
discrete trends of evaluation indicators are described, and the
specific results are shown in Figure 13.

At the same time, to more intuitively and comprehensively
reflect the regression and classification results during the test,

140118

PV-1 ’ o= ACC

ACC-1

TNR-1 * AUC
TPR-1

FIGURE 13. BP neural network model classification results.

we counted the number of true positives / false positives in all
the nodule regions marked in the test set and calculated the
true positive rate under different probability threshold (TPR)
and false-positive rate (TNR), drawn as ROC curve as shown
in (Figure 13), after calculation, the area under the ACC curve
is 0.8862, that is, the AUC value is equal to 0.8862, which
accurately and comprehensively reflects the test data Set the
effect on the trained model.

The above table only contains the median and upper and
lower quartile intervals describing the classification evalua-
tion indicators of each BP neural network model. To further
reflect the performance of the BP neural network model in
the test data set during the 200 repeated sampling process,
the following table shows the distribution of the percentiles
(percentiles of 20 percentiles) of each model classification
evaluation index in the 200 process.

To build a deep learning model to classify serum electrolyte
disorders requires a lot of training data, but because a series
of clinical trials has just begun, there is not much labeled data.
Although data can be directly extracted through the hospital’s
information system, these data cannot be used immediately.
Deep learning is currently superior to past methods in many
fields, such as computer vision analysis, image classifica-
tion and recognition, natural language processing, speech
recognition and synthesis, and IoT sequence data classifi-
cation, but there are still some problems that need further
research, such as models Theoretical analysis, label-free data
classification and model generalization ability and adaptive
technology.

Coronary heart disease is a common and severely damag-
ing heart disease in daily life. The main reason for the high
mortality and serious disease burden of patients with coro-
nary heart disease is the further deterioration of the coronary
artery stenosis, and the process of stenosis development is
irreversible. Once coronary stenosis occurs, it accompanied
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by many serious complications. The prognosis of patients
with coronary heart disease is not optimistic. Therefore, coro-
nary heart disease controlled before the coronary stenosis
is severe. As shown in Figure 14. This is very important
for the treatment and prognosis of coronary heart disease.
This study intends to use the medical history data of patients
with coronary heart disease and heart failure to build a risk
identification model of coronary artery stenosis, to identify
patients with coronary artery stenosis with a certain degree
of accuracy, and to take preventive and intervention measures
as early as possible by avoiding the causes of coronary heart
disease Reducing the incidence and mortality of coronary
artery stenosis is very important for improving the quality
of life and prolonging the life cycle of patients. It is of
far-reaching significance for the relief of the current medical
resources’ shortage and the double pressure of medical staff.
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FIGURE 14. Percentile of evaluation index of a neural network
classification model.

From the distribution of the percentile classification eval-
uation indicators in the above figure, the minimum sensi-
tivity of the BP neural network model is 67.477% and the
maximum is 82.384%. The main purpose of this study is to
identify patients with coronary artery stenosis. Sensitivity is
the ability of the classification model to find real patients.
The median of the sensitivity index of the BP neural net-
work model is close to 75.050%, that is, about 75.040%
of real patients recognized by the model. The specificity
reaches 70.050% from 50 (median). The overall accuracy of
the model is above 80.00%, and the interquartile range is
2.877%. The minimum value of PV+ is 70.240%, and the
median of PV- is 69.188%. This indicator is relatively low
among all indicators. AUC is higher than 0.7450 from 10,
and the highest value is 0.7753. In summary, the model accu-
racy rate (ACC) and negative predictive value (PV-) of the
BP neural network model are superior to the traditional logis-
tic regression model.

In the same test set, comparing the classification effects of
the three models of logistic regression, BP neural network,
and random forest, we can find that the random forest model
is significantly better than the traditional logistic regression
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and BP neural network model in the identification of real
patients, with a sensitivity of up to 91.677% It can be seen that
random forest can better identify people with coronary artery
stenosis among patients, but its ability to identify patients
with non-coronary stenosis is weak (TNR is only 66.986%),
and the overall accuracy of the model is achieved 78.782%,
the highest among the three models. The AUC index is a
recognized evaluation index for measuring the performance
of classification models [35]. The AUC indexes of the three
models in this study are relatively close, indicating that the
overall classification effect of each coronary artery stenosis
recognition model is similar. The specificity and positive pre-
dictive value of the logistic regression model are the highest
among all models. Based on the evaluation indicators of all
models, the performance of the BP neural network model is
average. In summary, the random forest model is the most
effective in the recognition of coronary stenosis.

V. CONCLUSION

In this paper, based on the improved U-net network model
and coronary artery centerline extraction technology, the task
of coronary artery segmentation completed, and experiments
have verified that better results can be obtained. Coronary
artery disease is the number one killer that threatens the
safety of human life. Therefore, the prevention and diagno-
sis of coronary artery disease are very important. Coronary
artery CT imaging technology, as the mainstream method for
identifying coronary artery disease, has become the focus
of research. Use machine learning technology to scan the
coronary angiography CT images and segment the coronary
arteries to determine whether there are coronary plaque and
coronary artery stenosis. It can provide doctors with three-
dimensional visualization images of coronary vessels, which
is convenient for doctors to diagnose and treat coronary
artery diseases. Compared with some image segmentation
methods, the author chose to use the fully convolutional
neural network FCN for image segmentation, and the natu-
ral image dataset PASCAL VOC2012 for network training
and testing. Through the analysis of experimental results,
FCN has two outstanding advantages. First, the size of the
input image not limited, and any size of the image can be
used as input; second, the segmentation efficiency has been
greatly improved compared with other methods. However,
FCN also has shortcomings, that is, the results obtained are
still relatively fuzzy and smooth, and are not sensitive to
the details in the image. Therefore, it is not suitable for
more elaborate medical images, but the success of deep
learning in image segmentation has greatly inspired peo-
ple. If we can “reflect” the classics, deeply analyze the
role of the different components in these classic architec-
tures, and even improve them, sometimes there may be more
discoveries.
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