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ABSTRACT The energy efficiency of accelerating hundreds of MB-large deep neural networks (DNNs)
in a mobile environment is less than that of a server-class big chip accelerator because of the limited
power budget, silicon area, and smaller buffer size of static random access memory associated with mobile
systems. To address this challenge and provide powerful computing capability for processing large DNN
models in power/resource-limited mobile systems, we propose McDRAM v2, which is a novel in-dynamic
random access memory (DRAM) systolic array accelerator architecture. McDRAM v2 makes the best
use of large in-DRAM bandwidths for accelerating various DNN applications. It can handle large DNN
models without off-chip memory accesses, in a fast and efficient manner, by exposing the large DRAM
capacity and large in-DRAM bandwidth directly to an input systolic array of a processing element matrix.
Additionally, it maximizes data reuse using a systolic multiply–accumulate (MAC) structure. The proposed
architecture maximizes the utilization of large-scale MAC units by judiciously exploiting the DRAM’s
internal bus and buffer structure. An evaluation of large DNN models in the fields of image classification,
natural language processing, and recommendation systems shows that it achieves 1.7 times tera operations
per second (TOPS), 3.7 times TOPS/watt, and 8.6 times TOPS/mm2 improvements over a state-of-the–art
mobile graphics processing unit accelerator, and 4.1 times better energy efficiency over a state-of-the-art
server-class accelerator. Moreover, it incurs a minimal overhead, i.e., a 9.7% increase in area, and uses less
than 4.4 W of peak operating power.

INDEX TERMS Accelerator, convolutional neural network, deep neural network, dynamic random access
memory, edge inference, multi-layer perceptron, natural language processing, neural processing unit,
recommendation system, transformer.

I. INTRODUCTION
The sizes of deep neural network (DNN)-based models in
the fields of image recognition, natural language processing
(NLP), and recommendation systems have been growing
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approving it for publication was Xu Chen.

rapidly. In NLP tasks, massive language models such
as bidirectional encoder representations from transformers
(BERT) [1],Megatron-LM [2], and Turing-NLG [3] are being
continuously introduced. The number of parameters used in
the three aforementioned models is 340 million, 8.3 billion,
and 17 billion, respectively. In the field of recommendation
systems, the model sizes of embedding lookup tables have
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reached the order of tens or hundreds of MBs in mobile sys-
tems [4], and those of industry production-level recommenda-
tion systems running on cloud have also increased to the order
of hundreds of GBs [5]–[9]. The number of parameters in
convolutional neural networks (CNNs) such as ResNet [10],
Inception [11], NasNet [12], and EfficientNet [13], which are
widely used in image classification tasks, ranges from a few
millions to hundreds of millions.

The inference stage of massive deep learning (DL) mod-
els commonly involves model compression using techniques
such as quantization. Recent studies on quantization show
that an inference using low-bit integer precision can pro-
vide sufficient accuracy, comparable to that acquired using
a higher-bit floating point precision. As a result, numerous
DNN accelerators support low-bit integer precision infer-
ence, taking advantage of the reduced memory footprint.
However, the large memory footprint often far exceeds the
size of the corresponding on-chip static random access mem-
ory (SRAM) buffer of the graphics processing unit/neural
processing unit (GPU/ NPU) and continues to be one of the
largest challenges in the acceleration of inferences of large
neural networks.

A server-class accelerator, with an abundant power bud-
get, adopts a large on-chip (tens of MBs) SRAM buffer,
thereby enabling the maximization of ops/byte via buffering
activation and weight data loaded from a dynamic random
access memory (DRAM) cell. Furthermore, a server-class
GPU/NPU is usually equipped with an energy-efficient and
high-bandwidth DRAM (e.g., GDDR6 [14] and HBM2 [15])
to attain higher tera operations per second (TOPS)/W for the
accelerator. However, the constant storage and retrieval of
data by large neural networks is one of the limiting factors
that has a dominant impact on the energy efficiency of DNN
accelerators in servers.

In contrast, in a mobile environment, which has tight con-
straints regarding the power and silicon area budget, it is
difficult for a mobile DNN accelerator to adopt either a
large on-chip SRAM or an energy-efficient DRAM inter-
face. When executing large DNN models with more than
100 million parameters, the mobile accelerator, equipped
with a small on-chip SRAMmemory (severalMBs in the case
of a commonly used mobile application processor) and hav-
ing a small bandwidth of the conventional DRAM interface,
e.g., the low-power double data rate synchronous dynamic
random access memory (LPDDR4) [16], provides low energy
efficiency. As shown in Fig. 1, mobile GPU/NPU accelera-
tors, such as the Jetson AGX Xavier [17], Edge TPU [18],
and McDRAM v1 [19], lag far behind the high-performing
server-class DNN accelerators, with more than 10 TOPS of
computing performance. This is true not only with respect to
performance, but also with regard to energy/area efficiency
when inference is performed using the ResNet-50 [10] and
BERT base [1], where the numbers of parameters are 26 mil-
lion and 108 million, respectively.

Recently, several studies on in-DRAM computation have
been proposed to overcome the aforementioned limitation in

FIGURE 1. Energy efficiency and area efficiency of graphics processing
units (GPUs) and neural processing units (NPUs). Power measurement
excludes host CPU and host system power. Detailed conditions for
comparisons are presented in Section VIII.A and VIII.B.

mobile accelerators; however, they have little efficacy in a
real system, for the following three reasons.

The first reason is the low computing capability of the in-
DRAM accelerator designs that have been proposed. Most of
these accelerators have a low computing capability because
they primarily focus on minimizing the silicon area over-
head. McDRAMv1 [19], which exploits the internal mobile
DRAM bandwidth, is expected to perform 1 TOPS when
executing matrix multiplication, and the 3D-stacked hybrid
memory cube (HMC)DRAM [20]-based Neurocube [21] and
TETRIS [22] show less than hundreds of GFLOPS, i.e., far
less than the performance of accelerators [23], [24] based on
the HBM2 DRAM [15], a similar 3D-stacked DRAM type.

The second reason concerns area efficiency. DRISA [25],
an in-DRAM DNN accelerator design supporting matrix
multiplication composed of binary weight and fixed-point
activation data, uses a considerable amount of area overhead
to increase the computing performance.

The third reason is that some in-DRAM accelerators
are not optimized for matrix-matrix multiplication, e.g.,
McDRAM v1 [19] and DRISA [25]. In these architectures,
the number of reuses of data loaded from the DRAM cell is
too low. When performing computation with a large amount
of data reuse opportunities, especially in matrix-matrix
multiplication, the energy efficiency of these architectures
decreases owing to the frequent memory cell accesses. Given
that many recent large neural network models are based
on a transformer [28] or a convolution, both of which
primarily involve matrix-matrix multiplications, in-DRAM
computation which focuses primarily on matrix-vector
multiplication limits the scope of application within a
single-batched recurrent neural network (RNN)/multi-layer
perceptron (MLP).

In this study, we address the aforementioned three chal-
lenges by proposing a DNN inference accelerator design that
can be used on the DRAM subsystem, to achieve high perfor-
mance and high energy/area efficiency. Our key contributions
are summarized as follows:

- We propose an energy-efficient systolic array archi-
tecture for an in-DRAM accelerator to enable
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matrix-matrix multiplication with a low area cost and to
make the best use of the in-DRAM memory bandwidth.
To the best of our knowledge, this work is the first
architectural solution that adopts a 2D systolic array
structure accelerator in a DRAM cell die for a DNN.

- We propose a novel dataflow for the judicious utiliza-
tion of the existing in-DRAM bus to provide the sys-
tolic array accelerator with input data for matrix-matrix
multiplication. The proposed dataflow enables the sys-
tem to fully utilize the potential performance of the
in-DRAM systolic array accelerator by exploiting the
in-DRAM bandwidth, with which the weight data
are accessed, the weight data reuse using a systolic
multiply–accumulate (MAC) structure, and ultra-low
precision.

- We extensively evaluate large DNN models with hun-
dreds ofMBs of parameters and embedding tables in lan-
guage processing, recommendation system, and image
classification tasks.

- We demonstrate that our proposed in-DRAM systolic
array accelerator incurs only 9.7% area overhead and
consumes less than 4.4 W of peak operating power.
It offers 3.7 times better energy efficiency than the state-
of-the-art commercial solutions such as the NVIDIA
mobile GPU Jetson AGX Xavier [17], which con-
sumes an operating power of 15 W. We also compare
McDRAM v2 with the state-of-the-art server/mobile
GPU and NPU solutions for various DNN workloads
and demonstrate the effectiveness of our approach.

II. BACKGROUND
A. TARGET WORKLOADS: LARGE MODEL ON MOBILE
DEVICES
Among the large modern DL applications that run in mobile
environments, we consider workloads in the fields of image
classification, NLP, and recommender systems for the evalu-
ation of various DNN accelerators.

We selected the CNNs running on a mobile system as
the image classification model or the backbone network for
object detection, segmentation, and tracking. The following
models were used: VGG19 [26], GoogleNet [11], and
ResNet-50 [10], with 144 million, 7 million, and 26 million
parameters, respectively. Furthermore, regarding the dataset,
the ImageNet classification dataset [27] was used.

In a mobile device, the language processing model plays
a key role in various applications, such as automatic speech
recognition, chatbots, and virtual assistants. As the trans-
former [28]-based language models are being widely used
as the de-facto standards in the recent years, we selected
the BERT base and BERT large [1], which are 12-layer and
24-layer transformer models with 108 million and 334 mil-
lion parameters, respectively. Among the total parameters
of the BERT base and BERT large models, 24 million and
31 million parameters comprise word embedding tables,
respectively.

With the recent increase in the awareness of privacy con-
cerns [4], running recommendation systems on the edge has
garnered attention. We selected the MLP-based NCF [29]
(a form used in MLPerf [30]) and the transformer-based
BERT4Rec [31] with the Movie-Lens 20 million dataset [32]
(and its two expanded versions through fractal expan-
sions [33] used in MLPerf [30]). In the case of NCF [29],
the three workload configurations have 32 million,
180 million, and 590 million parameters, respectively; for
all the three cases, 99 percent of the parameters are used for
embedding tables. In the case of BERT4Rec [31], the three
configurations have 10 million, 113 million, and 222 million
parameters, respectively, and the parameters for embedding
tables are 7 million, 110 million, and 219 million parameters,
respectively.

The number of parameter of most of models used in this
study exceeds tens of millions, which means they cannot
fit in the on-chip SRAM buffer/cache of GPU/NPU of a
conventional server/mobile device. Thus, when executing
these models, they have to read the weight each time new
input activation data are provided. This leads to low energy
efficiency as a result of several off-chip DRAM accesses, as
is demonstrated in this study.

B. LATEST QUANTIZATION RESULTS
Quantization is one of the most effective compression tech-
niques used for reducing the weight and activation bit-width
of a neural network model, thereby resulting in reduced
model size and execution cost in terms of energy, time, and
silicon area. The general matrix multiply (GEMM) operation
is most commonly used to perform inferences for DNNs.
Although CPUs and GPUs generally process this GEMM
operation using floating-point 32-bit precision without apply-
ing a quantization technique, previous studies have proposed
numerous methods for quantizing DNN models for a variety
of tasks in a range of domains, and have successfully attained
a nearly lossless inference model, using less than 8-bit integer
(int8) precision.

For CNNs, inferences with int8 precision has been
widely adopted in an increasing number of real-world
GPUs [17], [34]/NPUs [35], [37], as int8 precision has been
shown to be sufficient for GEMM operation in the inference
of various CNNs in recent studies. It has also been found that
sub-8-bit quantization of the inference of a CNNdoes not lead
to significant accuracy loss. For example, with the ImageNet
classification dataset [27], [38] reports an activation 4-bit and
weight 4-bit quantization of an ResNet-50 [10] with a 0.2%
top-1 accuracy loss compared to the case of FP32, in which an
activation 2-bit and weight 2-bit quantization was done and a
3.2% top-1 accuracy loss was obtained.

Among the recent studies concerned with the quantization
on BERT [1], a model widely used in the field of NLP, [39]
presented the state-of-the-art results. For example, in tasks of
sentiment classification, natural language inference, named
entity recognition, and machine reading comprehension
with benchmarks of the general language understanding
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evaluation (GLUE) [40], Stanford Question Answering
Dataset (SQuAD) [41], and CoNLL-03 [42], the activation
8-bit and weight 4-bit quantization precision yielded a com-
parable performance, without any significant quality degra-
dation in the BERT model [1].

NCF [29], a traditional recommendation algorithm, imple-
mented according to MLPerf [30] on the MovieLens
20 million dataset [32], has been shown to be quantized
using int8 precision with a minimal loss of 0.5% in the hit
rate [43].

In this work, to minimize the model’s storage and memory
access cost and tomaximize the computing capability per unit
silicon area, we aim to evaluate our in-DRAM acceleration
using aggressive quantization inference models. For this rea-
son, our proposed acceleration supports input precision over
a range of int2 to int8.

III. MOTIVATION
A. NEURAL PROCESSING UNIT (NPU)’S LARGE MODEL
PROBLEM IN MOBILE ENVIRONMENT
With regard to running a large neural network-based model
on a GPU and NPU, the Roofline Model [44], which was
used in our study for analyzing the performance bottle-
necks, is a simple performance model, where the acce-
lerator’s real performance is determined by themachine’s the-
oretical peak performance, peak bandwidth, and arithmetic
intensity. Although the Roofline Model [44], as a simplified
model, does not consider all the detailed features of the
accelerators, it offers insights into designing a better NPU
when running a large model that does not fit in the on-chip
SRAM buffer/cache of the accelerator. To achieve higher
performance within the tightly constrained power and silicon
area budget of a mobile environment, these three factors have
to be maximized; however, they encounter limitations for the
following reasons.

1) MACHINE PEAK BANDWIDTH
When a DL model with a parameter size greater than the
size of the on-chip SRAM buffer/cache (tens of MBs) is
being processed, the DRAM bandwidth determines the peak
performance of the memory-bound apps, as shown in Fig. 2.
A high-bandwidth DRAM, which is bandwidth-optimized
but has a high level of power/area consumption, provides the
accelerator with hundreds of GB/s of memory bandwidth,
but consumes more than 10 W of operating power. Thus,
it is unsuitable for adoption in mobile systems with power
budgets less than 10 W. Most power-limited mobile systems
are equipped with low-power LPDDR4 DRAM [16] provid-
ing only tens of GB/s of bandwidth; consequently, adopting
such a DRAM in a mobile system is a major challenge
encountered when obtaining a high performance. Several
highly energy-efficient NPU designs [45]–[47] proposed in
the literature are not suitable for running large DNN models,
because in these designs, all the parameters of the model are
assumed to fit in the on-chip SRAM buffer.

FIGURE 2. Peak performance analysis using the Roofline Model [44] for
several GPUs and NPUs. For McDRAM v1 [19] and Edge TPU [18], int8
precision is used for general matrix multiply (GEMM) operations. For
McDRAM v2 and Titan RTX’s Tensor Cores [34], int4 precision is used.
In the case of Titan RTX’s Tensor Cores, we assume the number of data
reuses, when loaded from DRAM, is 160, which is acquired by executing a
4096 x 4096 dimension GEMM on Titan RTX and inferring from the
attained performance and memory bandwidth used.

2) COMPUTATIONAL INTENSITY
The quantization and reuse of weight data loaded from
the DRAM cell can increase the computational intensity.
High levels of power consumption and silicon area overhead
are incurred when a large on-chip SRAM buffer/register
file/cache is adopted or when a broadcasting bus or systolic
array structure is employed, with which large-scale (e.g.,
more than 128 × 128) processing units can share data to
maximize the number of data reuses. The server-class Titan
RTX GPU [34], which is the fastest GPU at int4 precision,
has approximately 30 MB of on-chip SRAM cache/register
file/shared memory and a complicated datapath architec-
ture for maximizing data reuse. Thus, it can obtain more
than 500 ops/weight byte when it runs int4 matrix-matrix
multiplications with dimensions of 4096. In contrast, within
the context of power/area constrained mobile systems, Edge
TPU [18], which is favorable for data reuse as it has
64 x 64 systolic array-based processing units and supports
int8 quantization, can only acquire a maximum computa-
tional intensity of 128 ops/weight byte.

B. INTERNAL BANDWIDTH FOR COMPUTATION IN DRAM
The DRAM chip package used in mobile devices can provide
data with an internal bandwidth ten of times larger than that of
the off-chip bandwidth. The x64 4ch. LPDDR4 DRAM [16]
package used in this study offers 32 GB/s of off-chip band-
width, but 512 GB/s of internal bandwidth, when read/write
is performed across all the DRAM internal banks. It is
this massive internal bandwidth that is the most important
characteristic when the accelerator is processing a large
DNN application. In the following paragraph, we briefly
describe the DRAM basic operation, along with the manner
in which a DRAM chip is organized and the ways in which it
could offer a large internal bandwidth to internal processing
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units. We also present the major drawbacks of the previous
in-DRAM acceleration solutions.

The x64 LPDDR4 DRAM [16] package is composed of
eight DRAM dies, each of which has eight DRAM banks
that share a data bus and I/O interface. As the data bus
and I/O interface are shared across all the banks in each
DRAM die, a read/write operation can be performed from/to
a single DRAM bank at a time. Each bank consists of 16 burst
length (BL) blocks; 16-bit data are read in parallel from each
BL block for a single read command, and 256-bit data are read
from a DRAM cell to local bit-line sense amps (BLSAs) as
an entire bank. The DRAM has a 256-bit-wide internal data
path from the BLSAs to the DQ buffers, and we assume this
internal data path is split into the Path0 (cell–MAC) bus and
Path1 bus (MAC–serializer-deserializer (SERDES)), via an
intermediate buffer between them.

The 256-bit read data move parallel via the path0 bus to
the intermediate buffer and then they move parallel through
the path1 bus to the DQ output buffer. At the DRAM’s out-
put driver, the SERDES converts the 256-bit-wide data into
16 bursts of 16-bit-wide-data; then, this 16-bit data can be
provided to the 16 DQ pins toward off-chip at every rising
and falling edge of the 2133-MHz clock.

Although each bank can be read at a maximum speed of
8 GB/s (32 GB/s for a whole 4ch x64 LPDDR4 DRAM [16]
package), if we assume that the path0 bus is not shared among
banks and dedicated to all the banks, a concurrent all-bank
burst read from the DRAM cell via the path0 bus to the
intermediate buffer is possible, resulting in a maximum of
64 GB/s of internal bandwidth per die, and 512 GB/s for the
entire LPDDR4 package.

McDRAM v1 [19] is a proposed in-DRAM accelera-
tion architecture for enabling vector-matrix multiplication
at 8-bit MAC precision; the internal bandwidth of the 4ch
x64 LPDDR4 DRAM was fully utilized to provide weight
data to the MAC units, and the off-chip bandwidth was
fully utilized to provide activation data via the shared bus
and I/O interface by way of broadcasting. However, for the
2 MAC units per BL block located in the column decoder
region, the data reuse count was limited to 1; consequently,
the benefit of exploiting the considerable internal bandwidth
is substantially limited in terms of the computing perfor-
mance, showing a peak performance of only 1 TOPS in the
case of McDRAM v1 [19]. In addition, McDRAM v1 [19]
had to process all computations except for int8 vector-matrix
multiplication at an off-chip CPU.

C. OUR GOAL: BALANCED MOBILE NPU FOR LARGE DEEP
NEURAL NETWORKs (DNNs): PERFORMANCE AND
POWER/AREA OVERHEAD
As shown in the previous section, density/energy-optimized
LPDDR4 DRAM [16] can offer data to its in-DRAM compu-
tational units with hundreds of GBs of internal bandwidth,
similar to that of a bandwidth-optimized GDDR6 [14] or
HBM2 [15] DRAM, which are mostly used in server- class
accelerators. These findings suggest that an LPDDR4-based

in-DRAM accelerator can offer high performance, energy
efficiency, and area efficiency within a power budget of 10W,
even when DNN applications with over 100 million parame-
ters are executed. One of the main challenges faced by the
proposed in-DRAM accelerators [19], [25] with regard to
performance, energy efficiency, and area efficiency is the lim-
ited computational intensity resulting from low levels of data
reuse, despite the massive internal bandwidth. In this study,
we propose an in-DRAM accelerator which can not only fully
exploit the large DRAM capacity and internal bandwidth
as in previous cases, but can also address the issue of low
computation intensity, thereby resulting in a high-performing
DNN accelerator with minimized power/silicon area over-
heads. In the following section, we will present the key ideas
of our proposed in-DRAM accelerator design.

IV. OVERVIEW
In the Roofline Model [44], computation intensity is deter-
mined by two factors: the data reuse count and input precision
of the computing units. Based on our deep understanding of
the cell, bus, and buffer structure of the DRAM, we propose
McDRAM v2, a high-performing and high-energy efficient
in-DRAM DNN inference accelerator, to address the issue
of low-computation-intensity. The proposed design aims to
(1) fully enjoy the DRAM’s large in-DRAM bandwidth and
large capacity, which is several hundred times larger than that
of the conventional on-chip SRAM, directly expose them to
the in-DRAM processing units, and (2) minimize the number
of power-consuming off-chip accesses. Some notable fea-
tures of the McDRAM v2 design are described as follows.

First, the McDRAM v2 adopts the matrix MAC units with
its input/output buffer connected in a systolic manner to
increase the reuse count of data fetched from the DRAM cell.
Although many DNN accelerators use systolic arrays in their
buffer structure to provide massive amounts of processing
units with the data, no other previous studies, to the best
of our knowledge, have presented an architectural solution
for the adoption of a 2D systolic array structure inside the
DRAM cell die for large DNNs. Adopting a systolic array
buffer structure increases the reuse count of data loaded from
the DRAM cell, thereby reducing the burden on the memory
bandwidth by a significant amount when large DNNs are
employed.

Second, McDRAM v2 supports four input precision
modes, namely int2-int4, int4-int4, int4-int8, and int8-int8.
Consequently, it can adapt to the lowest possible quantiza-
tion level for a range of DNN workloads. As mentioned in
Section II.B, the lowest possible quantization level of various
DNNworkloads without significant quality loss varies across
(1) domains of DL, (2) DNNmodels within the same domain,
and even (3) layers within the same DNN model. Therefore,
supporting multiple input precision modes in a single acceler-
ator design provides an excellent opportunity for maximizing
the computational intensity.

Finally, McDRAM v2 is designed based on the idea that all
the weight and activation data are internally read and almost

VOLUME 8, 2020 135227



S. Cho et al.: McDRAM v2: In-Dynamic Random Access Memory Systolic Array Accelerator

FIGURE 3. (a) Overall architecture of a single die of McDRAM v2, implemented on low-power double data rate synchronous dynamic random access
memory (LPDDR4) die with additional logics for McDRAM v2; (b) systolic array-based ‘‘PE matrix’’; (c) processing element (PE).

all the processing is executed within the in-DRAM boundary.
The accelerator supports in-DRAM operation of not only
matrix multiplication, but also the rest of the operations,
including encoding/decoding of quantization, batch normal-
ization, and embedding lookup/manipulation. Thus, it can
exclude most of off-chip DRAM accesses, thereby making it
possible to achieve high-level energy efficiency. Otherwise,
it must send data to an off-chip CPU in the case of large
DL workloads. Given that accessing a large embedding table
located in an off-chip memory is one of the main challenges
affecting the performance and energy efficiency of the accel-
erator when running a recommendation system [9], [48],
McDRAM v2’s internal embedding lookup and processing
offer an excellent opportunity to obtain better performance
and energy efficiency as compared to the other NPUs, which
require sending/receiving data to/from an off-chip processor
when processing embedding layers. Our proposed design
of the accelerator can handle DNN applications of up to
1 GB of weight, embedding table, and intermediate activation
space.

V. MCDRAM V2 ACCELERATOR DESIGN
Fig. 3 shows the proposed architecture of McDRAM v2
implemented on the LPDDR4 DRAM [16]. Most of the mod-
ifications are concentrated in the DRAM’s peripheral area.
At first, as shown in Fig. 3(a), among the eight banks per
die, a bank is assigned as a ‘‘Broadcast Bank’’, from which
the activation data are read and sent to the processing units.
The rest of the banks are assigned as ‘‘MAC Banks,’’ where
the weight data are stored. Each MAC Bank has a single PE
matrix with a 2D input/output systolic array buffer, and each
Broadcast Bank has a systolic data setup unit and special
function unit (SFU). During a read/write of McDRAM v2,
the path1 bus can be shared between the banks, and the
path0 bus is dedicated to each bank. For each bank to have
their own path0 bus, we use additional silicon area for an
additional bus interconnection, as adjacent banks share the
path0 bus in the commodity DRAM.

A. MICROARCHITECTURE
In this section, the datapath structure of McDRAM v2 is
described in detail. Additional logics for McDRAM v2 from
the LPDDR4 DRAM [16] operate at 1 GHz, which is why we
place these additional logic circuits in theDRAM’s peripheral
area, where a fast transistor is already available.

1) PROCESSING ELEMENT
As shown in Fig. 3(c), a single processing element (PE) is
equipped with two integer multipliers, whose input precision
is a 2bit-4bit pair, and two int16 precision accumulators. It has
two horizontally connected 2-bit-wide input buffers, a verti-
cally connected 4-bit-wide input buffer, and two vertically
connected 16-bit-wide output buffers. It can perform two
2-bit/4-bit input MACs per cycle.

2) SYSTOLIC ARRAY-BASED PE MATRIX FOR MATRIX
MULTIPLICATION
We adopt matrix placement for the PEs; the input/output
buffer constitutes a systolic array, so that the 2-bit weight data
can be moved horizontally, and 4-bit input activation data can
be moved vertically in a systolic manner. Hereafter, we refer
to this systolic array-based PE matrix as the ‘‘PE matrix.’’
Once the input data are used in a PE, these data are sent to
the next adjacent PE for the computation of the next cycle;
thus, the input data reuse count is increased to the number
of dimensions of the PE matrix. The PE matrix performs
matrix multiplication in the output stationary manner, where
the output of an inner product in a matrix multiplication is
accumulated in a single PE, and the input data flow horizon-
tally and vertically. Each PE matrix has an 8.2 kB row first-
in-first-out (FIFO) buffer and a 256-b column FIFO buffer,
for buffering activation and weight data from the Broadcast
Bank and MAC Bank, respectively.

After the output computation is complete, the output data
are moved vertically in the systolic manner, the same as in
the input case, but in the opposite direction. The paths for
the systolic input buffer and the output buffer are entirely

135228 VOLUME 8, 2020



S. Cho et al.: McDRAM v2: In-Dynamic Random Access Memory Systolic Array Accelerator

separate, which enables the concurrent input and output of
data.

The features that distinguish McDRAM v2 from other
famous systolic array-based accelerators, such as TPU [37],
are as follows. The design of McDRAM v2 involves the
adaptation of the systolic array, using an approach tailored
for the in-DRAM context. First, it is important to note that
the PE matrix dimensions for McDRAM v2 are not as large
as those for other accelerators. Large dimensions can be
advantageous in providing increased reuse counts in a systolic
design; however, we adopt smaller dimensions to fit it within
the bandwidth capacity of a single DRAM bank. Second,
we implement multiple PE matrices and assign them to the
MAC Banks in a per-bank manner. This is different from
other systolic array-based NPUs, where a small number of
large-dimension PE matrices are used.

As shown in Fig. 3(a), multiple PE matrices per MAC
Bank are located between the dedicated path0 bus and shared
path1 bus, to fully utilize both the large in-DRAMbandwidths
from theDRAMbank via the path0 bus, and the shared broad-
casting bandwidth from the DQ buffers via the path1 bus.
This provides three advantages, which are as follows: (1) the
input systolic array can be provided with weight data with a
full in-DRAM bandwidth, (2) the MAC units can operate at
frequencies higher (1 GHz) than 250 MHz when the units are
near the cell area, and (3) the additional silicon area incurred
by modifying the DRAM lies within the DRAM’s peripheral
area; therefore, the area of the DRAM cell is not affected,
thereby minimizing the silicon area overhead incurred by the
additional logic in McDRAM v2.

A single McDRAM v2 package is composed of eight dies.
A single McDRAM v2 die can contain 1, 2, 4, or 7 PE
matrices, depending on the configuration. When all the dies
are operating at full PE utilization and each die has 7 PE
matrices, the expected peak performance for the package is
as shown in Table 1. When the number of PE matrices per die
increases, the performance, power consumption, and silicon
area overhead increase, and PE utilization decreases. To attain
better power efficiency, this tradeoff is examined in detail in
the experimental results section.

TABLE 1. MCDRAM v2 maximum performance by multiply–accumulate
(MAC) precision.

3) OUTPUT BIT FUSION ADDER TREE
Each PE performs the MAC operations in an int2-int4 input
precision, unlike the one supported in McDRAM v2
(int2-int4, int4-int4, int4-int8, int8-int8). To bridge the gap,

we propose an output bit fusion adder tree for converting the
MAC output of the PE into a matrix-matrix multiplication
output of a PE matrix, immediately before the output data
leave the PE Matrix toward the Broadcast Bank. As depicted
in Fig. 4, the output data from the PE’s systolic output
data buffer are processed serially by a series of adders and
bit-shifters and the complete output data are obtained with
the intended precision for the matrix multiplication. The PE
matrix contains eight output bit fusion adder trees. Once
processed with an output bit fusion adder tree, the output data
are concatenated in a granularity of 256 bits and then sent via
the path1 bus.

FIGURE 4. Structure of the output bit fusion adder tree.

4) SYSTOLIC DATA SETUP UNIT
Although the activation data are stored in the form of a
rectangular matrix, the input systolic array of the PE matrix
requires that this activation be rearranged for a systolic data
flow in the output stationary manner. In the case of weight
data, rearrangement can be performed during compilation,
and the resulting data can then be stored in the MAC Bank.
For this rearrangement, we propose a systolic data setup unit
consisting of multiple shift registers sharing a parallel input.
If the PE matrix dimensions are 4 × 4, the unit has four
4-bit-wide shift registers with a depth of 4. At first, as shown
in Fig. 5, rectangular-shaped activation vectors are alternately
loaded to a shift register through a parallel data input bus;
then, the rearranged activation data are sent out via the serial
data output port by four clock signals, with a single cycle of
serial delay.

5) MULTILANE SPECIAL FUNCTION UNIT
McDRAM v2 supports on-chip processing of activation
functions (ReLu, glue, sigmoid), (de-)quantization, embed-
ding layers, normalization layers, softmax layers, and batch
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FIGURE 5. Activation processing in the systolic data setup unit.

FIGURE 6. Functional description of multilane special function unit.

norm layers with int16 precision. To support these functions,
McDRAM v2 is equipped with one three-stage multi-lane
SFU per die, as shown in Fig. 6. Two lanes of SFU logic con-
duct scale/bias/average/rounding for vectors, element-wise
addition/multiplication between vectors, and lookup table-
based activation functions/math operations. The first-stage
logic performs dequantization, scaling, and bias, and has an
intermediate buffer for element-wise and average operations.
The second-stage logic uses lookup tables to perform acti-
vation functions and math operations. The third-stage logic
performs linear quantization, with an output precision that
can be int4, int8, or int16. The output of each stage can be
directly sent to the output buffer, thereby making various
combinations of functions possible in the SFU.

B. MCDRAM V2 OPERATIONS
In this section, we describe the major processing operations
of McDRAM v2, which are as follows: matrix multiplica-
tion, output saving, and embedding lookup and manipulation,
along with its commands.

1) MATRIX MULTIPLICATION
Fig. 7 illustrates an example of a matrix-matrix multiplication
that McDRAM v2 can perform. In the figure, for the sake of
simplicity, we assume that there are 4 × 4 PEs in each PE

matrix (for the experiments, we choose 16 × 16 PEs in each
PE matrix). The weight matrix is stored in the MAC Bank,
and the activationmatrix is stored in the Broadcast Bank; both
types of data are fed into the PE matrix near the MAC Bank.
Each PE matrix performs matrix multiplication between the
activation matrix from the Broadcast Bank and the weight
sub-matrix from the MAC Bank. The multiple PE matrices
in the die operate in a lock-step manner. As can be seen from
the figure, a large matrix can be split into multiple rounds to
fit the dimensions of the PE matrix and its count in the die.

The multiple rounds of operation are conducted as follows.
As shown in Fig. 7, one out of four PE matrices performs
the matrix multiplication between four broadcast activation
rows (rows 1–4) and four weight columns (round 1). In this
operation, the four broadcast activation rows are buffered
in an 8.2 kB row FIFO for all the four PE matrices. Next,
each MAC matrix loads another set of four weight columns
(columns 17–20 in the case of PE matrix 1) from the MAC
Bank cell, loads four activation rows from the row FIFO, and
then performs matrix multiplication between them (round 2).
The activations stored in the row FIFO of the PE matrix are
reused in round 2. In round 3, new activations (rows 5–8) are
loaded into each PE matrix, and the weight data are loaded
from the MAC bank cell. The matrix multiplication of this
round is performed similarly to round 1.

FIGURE 7. Examples of matrix multiplication, running on McDRAM v2.
In this figure, we assume the number of MAC banks and PE matrices in
the die to be 4 and 4, respectively, for the sake of simplicity without any
loss of generality.

Fig. 8 illustrates the dataflow for each operation. The
matrix multiplication can be conducted using two McDRAM
v2 commands. The commands to be used depends on whether
the activation has already buffered in the row FIFO of the
PE matrix. The commands are as follows: Broadcasting_MM
(when not in the row FIFO) or Buffer_MM (when buffered in
the row FIFO) commands.Matrixmultiplication is performed
by executing a series of Broadcasting_MM commands or
Buffer_MM commands.

a: BROADCASTING_MM
When the activation is not in the row FIFO in the PE matrix
(rounds 1 and 3 in Fig. 7), the Broadcasting_MM command
conducts the matrix multiplication.
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FIGURE 8. McDRAM v2 dataflow for matrix multiplication (blue for weight, green for activations), embedding lookup & manipulation (orange), and
output saving (red). To match the dimension, in this figure, we assume the numbers of MAC banks and PE matrices are 4 and 4 per die, respectively, for
the sake of simplicity without loss of generality.

FIGURE 9. Occupancy of each component of McDRAM v2 for each step of operation: broadcasting/buffer matrix multiplication, embedding lookup &
manipulation, and output saving. In this figure, we assume the numbers of MAC banks and PE matrices are 7 and 7 per die, respectively.

In the first step (Fig. 9(a)) of processing this command,
256 bits of activation data are read from the Broadcast
Bank, moved via the path0 bus, and fed into the systolic
data setup unit, where activation data rearrangement is per-
formed, as described in Section V.A.4. Subsequently, these
activation data are moved through the shared path1 bus
to the output DQ buffer in the SERDES circuit in the
I/O interface logic, and then copied into the input DQ
buffer.

In the second step (Fig. 9(b)), these activation data are
transferred via the shared path1 bus and broadcast verti-
cally into the input systolic array of all the PE matrices.

These activation data are also buffered in the row FIFO.
Simultaneously, 256 bits of weight data are read from the
MAC Bank cell via the dedicated path0 bus, into the horizon-
tal input systolic array of each PE matrix. With 256 bits of
both activation and weight data prepared in the input systolic
array, the command performs operations on the MAC four
times, and the input systolic array shifts across all the PEs
in all the PE matrices. Each PE conducts MAC operations
for the inner product in the output stationary manner and
simultaneously shifts the input activation andweight data into
the adjacent PEs in a horizontal and vertical manner using the
input systolic array.
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As can be observed in Fig. 9 (a) and (b) and consider-
ing that the minimum period of a command is determined
based on the occupancy of the components related to the
particular command, the occupancy of the shared path1 bus
during both step1 and step2 is used to determine the minimal
interval for the operation. In each step, the shared path1 bus
is used in the opposite direction. During the burst read of the
LPDDR4 DRAM, it takes RL × tCK+ tDQSCK+ tDQSQ from
the last rising edge of the clock of the read command for the
first valid data to be ready in the DQ pins. As the internal
data path consists of path0 (cell–MAC) and path1 (MAC–
SERDES), we assume that a single burst read command
occupies the path1 bus for 4 ns. Therefore, we assume that the
Broadcasting_MM command has a minimum interval of 8 ns
for a series of issues.

b: BUFFER_MM
When the activation data are already buffered in the row FIFO
in the PE matrix (rounds 2 and 4 in Fig. 7), the Buffer_MM
command conducts the matrix multiplication. The way the
weight data are fed into the input systolic array of the
PE matrix is the same as in the case of Broadcast_MM.
Activation data are loaded from the row FIFO located in the
PE matrix and fed into the input systolic array. The command
performs four iterations of operations for all of the PEs and
systolic arrays in all the PE matrices.

As can be seen from Fig. 9(c), the burst read of the
DRAM has an interval of 8 tCK (approximately 4 ns), which
is the minimum interval required for the operation. As the
Buffer_MM commands do not occupy the path1 bus, they
can be issued concurrently with an Output_Save command,
as described below.

2) OUTPUT SAVING
With theOutput_Save commands, the output of matrix mul-
tiplication in a PE’s systolic output buffer is saved back to the
Broadcast Bank cells. This command comprises two steps,
as described in Fig. 9(d) and (e). As observed in Fig. 8, only
one PE matrix output can be saved at a time (the flow of data
is indicated by red arrows).

In the first step, 16 bits of output data are shifted from the
output systolic array and fed into an output bit fusion adder
tree, where the partial output data are converted into the com-
plete output of the matrix multiplication with the intended
input precision. Then, the output data are concatenated into
a granularity of 256 bits and moved via the path1 bus to the
DQ buffer in the I/O SERDES logic.

In the second step, these data are loaded again to the
path1 bus, but in the opposite direction, i.e., toward the
DRAM cell. These output data then reach the SFU and
undergo post-processing, such as scaling/biasing, activation
functions, and (de)quantization. The processed data are then
stored in the Broadcast Bank cell.

As depicted in Fig. 9(d) and (e), each step uses the
path1 bus and this is why the interval of this command is 8 ns,
which is the same as that in Broadcasting_MM.

3) EMBEDDING LOOKUP AND MANIPULATION
The processing of the embedding layers, found in NLP and
recommendation systems, is illustrated in the Fig. 10. Unlike
a Conv/FC layer, which is based on matrix multiplication, the
embedding layer is processed in two phases.

FIGURE 10. Examples of embedding lookup and manipulation running on
McDRAM v2.

In the first embedding lookup phase, the embedding
vectors are fetched by the DRAM random access from
large embedding tables containing user/item/word embed-
ding, to form a batched tensor of sparse embedding. The
dataflow of this phase is indicated by orange arrows in
Fig. 8; the embedding vectors are fetched from the embedding
tables stored in the MAC Banks and moved via the DQ
SERDES input/output buffers into the SFU. When conduct-
ing an embedding lookup, to exploit the DRAM’s bank-level
parallelism, the embedding vector is split at a granularity
of 256 bits, i.e., the smallest size of a single LPDDR4 DRAM
read operation, and the split chunks are stored across multiple
banks. In this manner, both the row activation latency (tRCD,
from row activation to read/write) and pre-charge latency
(tRP, from pre-charge to row activation) can be hidden. When
the embedding vector size is smaller than 256 bits, multiple
copies of the embedding tables are stored across the banks.

In the second phase, the batched tensor of sparse embed-
ding vectors loaded at the SFU undergoes tensor manipu-
lations, such as concatenation and element-wise addition/
multiplication/averaging, at SFU, to become an input vector
of the following DNN stack.

The processing of the embedding layers is conducted
using the Data_Load_to_SFU and Run_SFU commands,
whose descriptions are listed in Table 2. As shown in
Fig. 9(e) and (f), for the same reason as the Broadcasting_
MM/Output_ Save commands, the combination of the two
commands for embedding processing uses 8 ns as a minimum
period.

C. MCDRAM V2 COMMANDS
We add ten additional commands for McDRAM v2 to the
conventional LPDDR4 [16] commands. Broadcasting_MM,
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TABLE 2. MCDRAM v2 commands.

Buffer_MM, Data_Load_to_SFU, Run_SFU, and Output_
Save commands are used for operations described in
the previous section. The Internal_Data_Movement com-
mand is introduced for executing batched matrix-matrix
multiplications found in the transformer network, and it
performs data movement internally between banks, without
off-chip access. Using this command, the activation data can
be loaded from the Broadcast Bank via the systolic data setup
unit to the MAC Bank. Table 2 describes the functions of the
McDRAM v2 commands.

VI. SYSTEM INTEGRATION
In this section, we discuss the method of integrating
McDRAM v2 into a current computing system. The
McDRAM v2 accelerator is an in-memory computer
architecture designed to be used as an LPDDR4-based
McDRAM v2 package in mobile systems such as smart
phones, IoT devices, autonomous vehicles, or mobile devel-
opment boards. Implementation of McDRAM v2 is based
on the LPDDR4 DRAM and is compatible with the control/
address/data bus interface of its JEDEC specification [16].
In addition, as presented in Table 2, the memory con-
troller of the accelerator is modified to support 10 addi-
tional McDRAM v2 command extensions for accelerating
DNN applications. This accelerator has two operation
modes: the memory mode, where it operates as a normal
LPDDR4 DRAM, and the accelerator mode. In the following
sections, we present the experimental results when it is
running in the accelerator mode.

McDRAM v2 is controlled by the McDRAM v2 memory
controller vis command/address (C/A) pins, as a completely
passive device. The McDRAM v2 memory controller is
modified from a LPDDR4 memory controller to support
10 additional McDRAM v2 commands and handle requests
for the execution of DNN applications from host processors.
A detailed modification of the LPDDR4 memory controller

and host processor for supporting McDRAM v2 is out of the
scope of the present study and is therefore reserved for future
work.

The procedure for McDRAM v2 to perform DNN
acceleration is presented as follows.

1) The McDRAM v2 compiler creates memory request
streams and a host binary for McDRAM v2 from the
input data and the DNN model extracted from a DL
framework (PyTorch, in this study) (Fig. 11.¬). The
memory request consists of a layer-wise model spec-
ification and addresses of the location of the weight
and activation data, along with the configurations of the
McDRAM v2 hardware.

2) The generated McDRAM v2 memory request streams
are stored in the DRAM cell along with the weight
and activation data, using conventional DRAM write
operations (Fig. 11. ). Like most memory manage-
ment unit-less NPUs, McDRAM v2 uses the physical
address when accessing the DRAM cell.

3) To initiate DNN acceleration, the user runs the host
binary, which loads the McDRAM v2 memory request
streams from the DRAM cell to the memory request
queue of the memory controller (Fig. 11.®).

4) The McDRAM v2 memory request is loaded in the
request queue and then fed into the McDRAM v2 com-
mand generator, where it is converted into McDRAM
v2 commands. The generated commands are saved in
the command queue (Fig. 11 ¯).

5) The McDRAM v2 command scheduler schedules the
McDRAM v2 commands in proper order and tim-
ing, while meeting all the time constraints of the
LPDDR4 DRAM (Fig. 11.°).

6) Next, the memory controller sends commands to
the McDRAM v2 device and runs commands in it
(Fig. 11.±).

VII. EVALUATION METHODOLOGY
A. WORKLOADS
For evaluation, we used the target workloads and datasets
mentioned in Sec II.A. For the ResNet-50 [10], BERT base/
large [1], NCF [29], and BERT4Rec [31], it is assumed
that the McDRAM v2 is used in an energy-efficient server
environment. When comparing McDRAM v2 with mobile
accelerators, we used the VGG19 [26], GoogleNet [11], and
ResNet-50 [10]. We applied quantization only to the input
data of the GEMM operations, and the remaining operations
were executed with higher computing precisions (fixed-point
16-bit in the case of McDRAM v2). The quantization levels
used in the experiment across all the target DNN workloads
were guided by previous works on quantization and deter-
mined such that quality loss in the DNN applications was
insignificant. We applied suitable quantization levels to each
DNN workload: w4a4 for VGG19 [26] and GoogleNet [11],
w2a4 for ResNet [10], w4a8 for BERT base/large [1],
and w8a8 for NCF [29] and BERT4Rec [31]. In the case
of ResNet [10], we performed a w2a4-quantization of
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FIGURE 11. Proposed system integration.

ResNet-18/50, resulting in 1.1% and 0.6% top-1 accuracy
losses, respectively. For all the neural networks used in the
experiment, the first and last layers were quantized with
int8 or int4 precision, while ensuring negligible accuracy loss.

B. BASELINE GPUS AND NPUS
We conducted extensive evaluation of the state-of-the-art
GPUs and NPUs, McDRAM v1 [19], and McDRAM v2
based on various DNN benchmarks and compared them in
terms of performance, energy efficiency, and silicon area
efficiency. For the comparison of the server-class GPUs,
NPUs, and McDRAM v2, DNN applications (with more than
100 million parameters from the domains of NLP and rec-
ommendation systems usually executed in the server system)
were used to demonstrate the effectiveness when processing
the inference of the large DNN models in McDRAM v2.

1) SERVER CLASS
In this study, we considered a server-class DNN accel-
erator, as it can perform the inference of a more-than-
100-million-parameter model at its own speed, without any
significant performance drops. We selected the NVIDIA
Titan RTX, Tesla T4 [34], Habana Goya [35], McDRAM
v1 [19], andMcDRAMv2 and conducted an inference perfor-
mance/cost comparison between them. NVIDIA Titan RTX
and Tesla T4 are based on the Turing GPU microarchi-
tecture and equipped with the Turing Tensor Cores, which
can execute int4 or int8 GEMM operation with tremendous
speed [34]. We used CUTLASS [51], a collection of CUDA
C++ template abstracts for dense linear algebra, to perform
GEMM operation for both GPUs, where the input preci-
sions to the Tensor Cores were determined as the lowest
possible precisions. In the cases of Habana Goya [35] and
McDRAM v1 [19], we used an input precision of int8.

2) MOBILE CLASS
We selected the Edge TPU [18], NVIDIA Jetson AGX
Xavier [17], McDRAM v1 [19], and McDRAM v2 as the
mobile DNN accelerators and conducted performance/cost
analysis over the inference of CNNs. Edge TPU [18] can only
contain int8 precision data; thus, all the data in Edge TPU [18]
are int8 data. For NVIDIA Jetson AGX Xavier [17] and
McDRAM v1 [19], int8 input precision is used for the gen-
eralized matrix-vector multiplication (GEMV) and GEMM
operations. We used the 15 W mode for the NVIDIA Jetson
AGX Xavier because the inference benchmark [17] shows
that the 15Wmode is far more energy efficient than the 30W
MAX-N mode, and the main focus of this study is energy
efficiency, rather than performance.
McDRAM v2 uses the most suitable input precision mode
between w2a4, w4a4, w4a8, and w8a8.

C. MCDRAM V2 SIMULATION INFRASTRUCTURE
To evaluate the performancewith respect to the energy/silicon
area overhead, we built a McDRAM v2 simulator and a
McDRAM v2 memory request generator. The McDRAM v2
simulator is an in-house command-driven cycle-accurate
simulation model, equipped with performance counters and
a power model. The input data of the power model are
the power results from logic implementation and DRAM’s
IDD specification. In the simulator, we also implement a
McDRAM v2 command generator and command scheduler,
fromwhich the performance ofMcDRAMv2 can be obtained
as a result of command scheduling.

To estimate the power/silicon area overhead for the addi-
tional McDRAM v2 components, we designed a manual chip
layout for a MAC unit, using Samsung 20-nm DRAM tech-
nology. The remaining components were synthesized, placed,
routed, and estimated using a Synopsys Design Compiler,
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IC Compiler, and Prime Time PX with Samsung System
LSI 65-nm logic technology. Then, the estimated results
were converted to match the ones obtained using Samsung
20-nm DRAM technology, based on the power/ area ratio
between them. To estimate the power and area of the origi-
nal LPDDR4 DRAM circuit in McDRAM v2, we used the
power/area data of a Samsung 20-nm LPDDR4 DRAM chip.

A single McDRAM v2 die can be set in one of the
following four configurations: 1, 2, 4, or 7 PE matri-
ces per die. Among these configurations, we selected
the 4 PE matrix version of McDRAM v2 as the base-
line configuration, as it is the most energy efficient as
well as the second most efficient with regard to inference
performance. Table 3 presents the architectural parameters
of McDRAM v2 in this configuration. An extensive eval-
uation of performance/energy/area/ PE utilization, as the
number of PE matrix per die varies, is presented in
Sections VIII.D and VIII.E.

TABLE 3. Baseline McDRAM v2 configuration.

VIII. EXPERIMENTAL RESULTS
A. ENERGY EFFICIENCY
Fig. 12 shows the energy efficiency of server-class accelera-
tors, McDRAM v1 [19], and McDRAM v2 while performing
inference for large DNN workloads. The power measure-
ment comprises the power consumption of the accelerator’s
processor and memory but excludes the power consumption
of the host CPU and host memory. For GPUs and Habana
Goya [35], the entire power of the accelerator card is used;
forMcDRAMv1 [19] andMcDRAMv2, theDRAMpackage
power is used to obtain the power efficiency. Despite the fact
that McDRAM v2 consumes approximately 16 to 56 times
less power than Tesla T4 [34], Habana Goya [35], and Titan

FIGURE 12. Inference energy efficiency of the server-class GPUs/NPU,
McDRAM v1, and McDRAM v2 over large DNNs. The batch size is 128,
except for NCF, whose batch size is 1024. Maximum sequence lengths for
BERT and BERT4Rec [31] are 128 and 200, respectively. This batch size
and maximum sequence length are used for the results of the rest of the
paper, unless otherwise stated. Results for Habana Goya are available
only for ResNet-50 and BERT base from its white paper [36].

RTX [34], it performs more-than-100 million-parameter
DNNs at the best energy efficiency. For the inference of
ResNet-50 [10] and BERT base [1], McDRAM v2 achieves
2.4 times and 5.6 times better TOPS/W when compared with
the best server-class accelerator, i.e., Habana Goya [35]. For
5 large DNN workloads in the domains of image classifi-
cation, language modeling, and recommendation systems,
McDRAM v2 attains 4.1 times and 9.3 times better TOPS/W
than Tesla T4 [34] and Titan RTX [34], respectively. This
is accounted for by the fact that (1) it can achieve as wide
a memory bandwidth as that of a GDDR6 [14] memory,
used in server-class GPU, but without GDDR6 DRAM [14],
(2) it scarcely uses any off-chip data movements in conduct-
ing even a large DNN, and (3) it can use lower computational
precision, once the lower precision has been guaranteed to
provide a negligible quality loss.

Fig. 13 shows the inference energy efficiency of the
mobile accelerators Edge TPU [18], Jetson AGXXavier [17],
McDRAM v1 [19], and McDRAM v2 over VGG19 [26],
GoogleNet [11], and ResNet-50 [10]. For all the mobile
accelerators used in the experiments, the board power was
used for the comparison of energy efficiency in TOPS/W.
For McDRAM v1 [19] and McDRAM v2, we assumed
McDRAM v1 [19] or McDRAM v2 to replace the LPDDR4

FIGURE 13. Inference energy efficiency of the mobile class GPU/NPU,
McDRAMv1, and McDRAMv2 over CNNs.
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DRAM of a Jetson AGX Xavier [17] and estimated the board
power accordingly. Consequently, McDRAM v2 achieved
14.3, 11.7, and 3.7 times better energy efficiency in TOPS/W
as compared to McDRAM v1 [19], Edge TPU [18], and
Jetson AGX Xavier [17], respectively. These results were
attributed to McDRAM v2’s capability to handle lower pre-
cision and the absence of off-chip accesses when running
CNNs.

Regarding the memory-intensive models of the BERT base
and BERT large running in mobile environments, based on
the benchmark results [49], McDRAM v2 with 4 PEM per
die attains 3.2 and 3.7 times better energy efficiency than
the Jetson AGX Xavier for the BERT base and BERT large,
respectively, thereby suggesting the reliable energy efficiency
of the McDRAM v2 DNN accelerator when performing the
inference of a large and memory-intensive DNN model.

Table 4 presents the peak performance of all accelera-
tors used in the experiments. The measured utilization of
the arithmetic units of the accelerators was analyzed across
several DNNworkloads on servers and mobile environments,
as follows.

TABLE 4. Peak performance of GPUs and NPUs.

Fig. 14 shows the measured TOPS/peak TOPS values
of server-class GPUs/NPUs, McDRAM v1 [19], and
McDRAMV v2 when processing large DNNs such as
ResNet-50 [10], BERT base/large [1], NCF [29], and
BERT4Rec [31]. The Titan RTX and Tesla T4 [34] attain 15%
and 14% arithmetic unit utilizations, respectively, which
is significantly lesser than that achieved by McDRAM v2
(44%). Considering the models’ parameter sizes (ResNet-
50 [10] has the smallest parameter size at 26 million, and
the others have more than 100 million parameters) and the
GPU’s on-chip SRAM size, it is reasonable for Titan RTX
and Tesla T4 to achieve 45% and 28% utilization on ResNet-
50, respectively. For the rest of the large models, Titan RTX
and Tesla T4 show 10% and 12% utilization, respectively.

The performance of McDRAM v2 is affected not by the
parameter size of the DNN models, but by the length of the
inner products during matrix multiplication. Fig. 15 shows

FIGURE 14. Measured performance over peak performance of server-
class GPUs, McDRAMv1 [19], and McDRAMv2 over DNNs. Habana Goya
data [35] is not presented because the peak performance of Habana
Goya [35] is not available.

FIGURE 15. Resource scheduling of McDRAM v2 when matrix
multiplication is performed. The upper (lower) one is for the matrix
multiplication when the dimension of the inner product is 1024 (256) in
the inference of the BERT large (NCF).

thatMcDRAMv2 can completely hide the time for saving the
output behind the MAC computation time when the length
of the inner products is 1024 in the inference of the BERT
large and can partially hide the time for saving the output
behind the MAC computation time when the length of the
inner products is 256 in the inference of the NCF. In cases
of BERT (base and large) [1], where the lengths of the inner
products are sufficiently long (768 and 1024, respectively),
McDRAM v2 achieves 75% utilization. In contrast, in the
other three apps with small dimensions, 31% utilization is
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achieved. This is explained by the fact that the apps must have
sufficiently large inner product dimensions to completely
hide the output saving latency with the Buffer_MM operation
(which can be issued concurrently). In McDRAM v2, activa-
tion post-processing can be integrated with the output saving
operation, without any off-chip accesses.

McDRAM v2 can process the ResNet-50 [10], BERT base,
and BERT large [1] at 997 frames per second, 258 sentences
per second, and 72 sentences per second, respectively, with
power budgets of under 5 W, thereby providing the oppor-
tunity for large DNN applications to run on mobile environ-
ments in real time.

As shown in Fig. 16, the Edge TPU [18], Jetson
AGX Xavier [17], McDRAM v1 [19], and McDRAM v2
attained 6%, 15%, 87%, and 46% arithmetic unit utilization,
respectively. McDRAM v1 [19] shows the best utilization
among them but exhibited the lowest peak TOPS. Although
McDRAM v2 has a lower peak performance than Jetson
AGX Xavier [17], the former achieves 1.7 times better TOPS
than the latter [17] owing to the former’s superior utilization
capability.

FIGURE 16. Peak and inference performance of the mobile class GPU/
NPU, McDRAMv1, and McDRAMv2 over CNNs.

B. AREA EFFICIENCY
Fig. 17 show a comparison of the silicon area efficiency
between server-class accelerators with McDRAM v1 [19]
and McDRAM v2. For the Turing Architecture-based GPU
Titan RTX and Tesla T4 [34], area of the entire GPU die
is used. The Turing GPUs contain not only Tensor Cores
for the computation of integers, but also 4608/2560 compute
unified device architecture (CUDA) cores for floating-point
arithmetic, thereby leading to disadvantages as compared to
other accelerators. We assume that the compensation factor
for the Titan RTX and Tesla T4 could be at most 2, as a
large portion of the area is available for the on-chip SRAM,
which both the tensor and CUDA cores utilize. Additionally,
8-bit quantization for DNNs essentially requires higher

FIGURE 17. Inference area efficiency of the server-class GPUs/NPU,
McDRAM v1 [19], and McDRAM v2 over large DNNs.

precision in computations other than GEMMs, which can
lead to faster processing in Turing GPUs for operations
other than GEMMs. Furthermore, in the GPU silicon
area, the GDDR6 DRAM’s area is not considered. For
McDRAM v1 [19] and McDRAM v2, the entire additional
McDRAM overhead area is used.

McDRAM v2 achieves 2.4 times, 3.4 times, and 4.3
times better silicon area efficiency than McDRAM v1 [19],
Titan RTX, and Tesla T4 [34], respectively. Titan RTX’s
ResNet-50 [10] inference performance is from MLPerf’s
Open Inference-0.5v [30]. Notably, the Titan RTX on the
ResNet-50 [10] attains far better performance, which is
attributed to two reasons. First, only in ResNet-50 [10] does
Titan RTX [34] use int4 compute precision with the Ten-
sor Cores. The second reason is that the GPU’s on-chip
SRAM capacity (28.6 MB of l1/l2 cache, shared memory,
and register file) can contain the entire set of parameters of
ResNet-50. In this case, the Tensor Cores can exploit the
much larger memory bandwidth of the on-chip SRAM,
as comparedwith the casewheremost of the parameters come
from the DRAM.

Fig. 18 shows the silicon area efficiency of mobile acceler-
ators when performing CNNs: VGG19 [26], GoogleNet [11],
and ResNet-50 [10]. For McDRAM v1 [19] and
McDRAM v2, the entire additional McDRAM overhead area
is used. For Jetson AGX Xavier [17], only the area of the
GPU and MM Engine in DLA is used, out of the entire SoC
die. The mobile GPU’s area used in this comparison does not

FIGURE 18. Inference area efficiency of the mobile class GPU,
McDRAM v1, and McDRAM v2 over CNNs.
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include the LPDDR4 DRAM [16] die area. Because of this
comparison, it can be concluded that McDRAM v2 achieves
4.9 times and 8.6 times better silicon area efficiency than
McDRAMv1 [19] and Jetson AGXXavier [17], respectively.

C. PERFORMANCE OF EMBEDDING LOOKUP
Fig. 19 shows the runtime for the embedding layers of BERT
base/large [1], NCF [29], and BERT4Rec [31]. As described
in Section V.B.3, using McDRAM v2’s parallel access and
pooling operation for embedding tables, the runtime for exe-
cuting the embedding layers, which is known to take a large
portion of the total runtime in the case of NLP models and
recommendation systems [8], [9], can be reduced. In the
experiment, the desktop CPU is an Intel core-i7 5930K; the
mobile CPU and GPU are from the NVIDIA Jetson AGX
Xavier [17]. The mobile 8-Core ARM v8.2 64-Bit CPU is
equipped with an 8 MB L2 cache and 4 MB L3 cache, and
the mobile 512-core Volta GPU includes the Tensor Cores
and deep learning accelerator (DLA) for integer GEMM.
We measured the inference runtimes of the embedding lay-
ers across the accelerators using PyTorch [50]; the datasets
used are described in Section II.A. In terms of the infer-
ence performance, McDRAM v2 processes the embedding
layers 15.7 times, 1.57 times, and 2.04 times faster than the
mobile GPU, Titan RTX, and Tesla T4 [34], respectively.
McDRAM v2 can efficiently handle embedding tables whose
size can fit in a single die capacity of 1 GB.

FIGURE 19. Throughput of various hardware for embedding lookup.

The Titan RTX and Tesla T4 [34] are quipped
with bandwidth-optimized but loose-latency GDDR6
DRAMs [14], whose bandwidths are 672 GB/s and 320 GB/s,
respectively. In contrast, McDRAM v2 uses 64 GB/s of
internal bandwidth when it fetches embedding vectors during
embedding lookup. It is generally known that the random
access performance of a graphic DRAM is far inferior to
its sequential performance. McDRAM v2 shows better per-
formance for embedding layers as compared to GPUs and
mobile GPUs because McDRAM v2 can effectively hide the
latency incurred during a random access to DRAM banks
and benefit from a shorter length of data movement without
off-chip accesses, as described in Section V.B.3. However,
GPUs and mobile GPUs cannot mitigate the overheads
incurred by random accesses from embedding lookups.

D. AREA OVERHEAD
McDRAM v2 is implemented on a Samsung 20-nm 4ch
LPDDR4 8 GB LPDDR4 DRAM base. As shown in Fig. 20,
in cases of 1, 2, 4, and 7 PE matrices per die, the silicon
area overheads, which are based on the original LPDDR4 sil-
icon die area, are 3.2%, 5.4%, 9.7%, and 16.1%, respec-
tively. The area overhead contains the area for the PE matrix,
row/column FIFO buffer, SFU, systolic data setup unit, and
additional interconnections for McDRAM v2. Regarding the
area overhead, the PE matrix, which contains the PEs and
input/output systolic array, incurs the highest cost, followed
by the FIFO buffer in the PE matrix, but, in both the cases,
the portion varies from case to case. An additional area for
more interconnections is available for assigning a dedicated
path0 bus and estimated based on the word line (WL)/bit line
(BL)/active pitch of the LPDDR4 DRAM.

FIGURE 20. Left graph shows the breakdown of area overhead of
McDRAM v2 when the number of PE matrices per die is 1, 2, 4, and 7.
Right graph unfolds the area breakdown in the case of 4 PE matrices
per die.

E. EVALUATION OF MCDRAM V2 WITH VARIOUS
CONFIGURATIONS
Fig. 21 shows the performance, average power, energy effi-
ciency, and PE utilization of the inference of McDRAM v2
for various combinations of the number of PE matrices and
PE computing precision levels. The first and last layers use
int8 precision in all the cases.

As the PE matrix count per die increases from 1 to 7,
the TOPS increases for all the configurations, yet from 4 to 7,
the margin shows diminishing returns. In addition, the aver-
age power increases as the number of PE matrices increases
for all cases, but also with diminishing returns from 1 to 7.
Consequently, McDRAM v2 with 4 PE matrices per die is
considered to be the optimum configuration. As for the PE
utilization, a lower number of PE matrices per die yields
better results.

When we vary the input precision of the PEs, a lower
precision shows better performance and energy efficiency in
the inference of a DNN. This is attributed to the fact that lower
compute precision has an effect of having more MAC units
due to McDRAM v2’s intrinsic multi-bit support structure.
Regarding power consumption, no relationship was found
between the average power and computing precision. In terms
of PE utilization, a higher precisionwas found to lead to better
results. This is because a higher computing precision means
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FIGURE 21. Performance, power consumption, energy efficiency, and PE utilization with varying numbers of PE matrices and varying computing
precisions of McDRAM v2.

that smaller matrix tile dimensions need to be processed by
McDRAM v2 at a time, and a smaller tile size is usually
advantageous as it helps in finding parallelism when matrix
multiplications of various dimensions need to be performed.

In addition to bank-level scalability, McDRAM v2 can
support die- and package-level scalabilities, if the host pro-
cessor and the host memory controller of the system adopt-
ing McDRAM v2 support them. In the case of die- and
package-level scalabilities, more dies and more packages of
McDRAM v2 can perform inference in larger batch sizes,
as a single batch is designed to run only within a single die
without any off-chip accesses. As for the 2D systolic array
dimension scalability, the dimensions of the 16 x 16 systolic
array of the int4-int4 input mode fits the combination of
the LPDDR4’s single bank read bandwidth (8 GB/s) and
the MAC unit’s input precision to maximize the inference
performance. Therefore, 2D systolic array dimensions larger
than the 16 x 16 systolic array of the int4-int4 mode do
not result in performance improvement. McDRAM v2 can
therefore support a lower int2-int4 input mode, which effec-
tively increases the dimensions of the PE matrix by two times
and can run twice as many MAC operations than with the
int4-int4 input mode within the same period of time.

F. OPERATING POWER ANALYSIS
We measured the peak operating power consumption of the
McDRAM v2 package for various operating scenarios by

FIGURE 22. Operating power consumption of McDRAM v2 under various
operating scenarios with the number of PE matrices ranging from 1 to 7.

varying the number of PE matrices from 1 to 7 (Fig. 22). Five
operating scenarios were considered: broadcasting matrix
multiplication, buffer matrix multiplication, output saving,
embedding lookup, and a combination of buffer matrix mul-
tiplication and output saving, from Section V.B. Regardless
of the scenario, the combination of buffer matrix multiplica-
tion and output saving consumed the highest peak operating
power among the five cases. For 1, 2, 4, and 7 PEmatrices per
die, McDRAM v2 consumed peak powers of 2.2 W, 3.1 W,
4.4 W, and 7.9 W, respectively.

VOLUME 8, 2020 135239



S. Cho et al.: McDRAM v2: In-Dynamic Random Access Memory Systolic Array Accelerator

G. COMPARISON WITH MCDRAM V1
Although McDRAM v1 [19] and McDRAM v2 are both
based on an x64 4ch 8 GB LPDDR4 DRAM [16] and exploit
maximum internal bandwidth, they have fundamental differ-
ences. A comparison between them is summarized in Table 5.

TABLE 5. Baseline McDRAM v2 configuration.

First, each has different placements of processing units and
different data paths. McDRAM v1 places two MAC units at
each BL block of the DRAM bank, whereas McDRAM v2
adopts a matrix of processing units whose input/output
buffers constitute a 2D-systolic array. The latter leads tomany
more processing units within the same in-DRAM bandwidth
budget (internal single bank read bandwidth (8 GB/s)) and a
much larger reuse count (from 1 to 8 in the int8mode) of input
data read from the DRAM cell. Also, McDRAM v2 supports
multiple computing precision values for its matrix multipli-
cation, but McDRAM v1 can only perform int8 matrix-vector
multiplication.

Second, the two accelerators differ in the locations of the
MACs. In McDRAM v1, the MAC is located in the column
address decoder area, close to the DRAM cell matrix; how-
ever, in McDRAM v2, a 2D matrix of MACs is located in the
DRAM peripheral area, where a faster transistor is available.
The DRAM column decoder area has a transistor operating
at 250 MHz, but the DRAM peripheral area has a faster
transistor operating at 1 GHz. Thus, within a similar area
overhead constraint, McDRAM v2 has a smaller number of

MACs thanMcDRAMv1 and shows better peak performance
(2048 MACs vs. 1024 MACs and 1 TOPS vs. 2 TOPS).

Third, McDRAM v2 can perform almost all operations of
a DNN, including pre- and post- processing of the activation
data, within the in-DRAM die boundary, without incurring
the overhead of off-chip accesses. Also, McDRAM v2 per-
forms activation post-processing fused with output saving
operation minimizing DRAM read accesses. In contrast,
McDRAM v1 [19] requires that activation data be sent to the
off-chip host CPU to prepare the input activation data before
all the computing operations and to perform post-processing
such as activation functions (e.g., sigmoid, tanh) and
(de-)quantization, and then to be broadcast back into it.

Fourth, McDRAM v1 cannot hide the time for saving out-
put behind theMAC computation time, but McDRAMv2 can
hide the time for saving output behind the MAC computation
time, once the lengths of the inner product are sufficiently
long, as shown in Fig. 15.

As a result of implementing these two different in-DRAM
accelerators, McDRAM v2 shows 2.1 times better perfor-
mance and 4.0 times better energy efficiency for the infer-
ence of DNN workloads of ResNet-18/50 [10], VGG19 [26],
GoogleNet [11], BERT base/large [1], NCF [29], and
BERT4Rec [31], when compared with two PE matrix con-
figurations with similar area overheads and with the same
int8 input precision.

IX. RELATED WORK
A. NEAR-MEMORY PROCESSING DNN ACCELERATOR
When the accelerator is processing large DNN models, one
of the most prominent bottlenecks is the memory band-
width [37]. To overcome this challenge, near-memory pro-
cessing (NMP) processors [19], [21], [22], [48] have been
proposed to reduce the length of the data path between a
processing unit and a memory cell as well as to exploit the
large in-memory bandwidth.

HMC [20] is a type of 3D-stacked DRAM. In the HMC,
the DRAM dies and logic dies are vertically integrated using
through-silicon vias. Neurocube [21] and TETRIS [22] place
the DNN processing functions in the logic die of the HMC
and store the data in vaults in the DRAM die. In this way,
the accelerator designs can reduce power-hungry off-chip
accesses as well as the data load latency by shortening the
length through which the data moves. However, the internal
memory bandwidth they use is the same as an off-chip band-
width.

TensorDIMM [48] enables the processing of a recommen-
dation system with more than hundreds of GBs of embed-
ding tables, possibly within the context of multiple GPUs
and interconnects, without accessing a host CPU and host
memory. It comprises custom DDR4 DIMMs located in a
GPU interconnect as a single independent node, and this cus-
tom DIMM is equipped with NMP cores to perform simple
embedding vector manipulations on the DIMM board.
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McDRAM v1 [19] is an LPDDR4-based DNN accelera-
tor. In this accelerator, 32 MAC units per DRAM bank are
located in the column decoder area and acceleration of the
GEMV operations is done using both the massive in-DRAM
bandwidth obtained by a concurrent all-bank read operation
and the broadcasting of data, which is done via the shared bus
and I/O interface.

In addition, various in-DRAM architectures [25], [52]
can support binary networks; however, it is still not possi-
ble to quantize into the binary level without a significant
quality loss when quantizing large DNN models such as
the convolution-based ResNet [10], transformer-based BERT
language model [1], and NCF recommendation system [29]
over large datasets. DRISA [25] adds simple Boolean logic
circuits near the bit line and the local sense amp of the DRAM
and runs binary CNNs, but with a prohibitive area overhead
of 91% of the base LPDDR4 area.

B. LOW-PRECISION INTEGER INFERENCE NEURAL
NETWORK ACCELERATOR
Low-precision quantization of DNN inference is one of
the most important optimization techniques that can be
used for efficient DNN acceleration. In a variety of DNN
domains, such as image classification, NLP, and recommen-
dation systems, numerous quantization methods [38], [39],
[43], [53]–[56] have been proposed to show that the input
data of GEMM operations in the DNN inference can only
be quantized to int8 or int4 with a negligible quality loss.
However, to fully support this, the NPU has to process the
remaining computations with higher precision. This means
that the NPU has to be equipped with special hardware for
processing operations, e.g., quantization encoding/decoding,
and manipulation of intermediate activation/embedding vec-
tors with high precision, or that such processing must be
performed in an external processor, such as the host CPU.

There are numerous NPU designs [21], [22], [45], [46],
[57]–[61] proposed in academia and industry that use a com-
puting precision of floating-point 16 or fixed-point 16, both
of which are sufficient for processing a DNN without quality
loss; however, these designs do not support low-precision
integer arithmetic computations. In contrast, there are sev-
eral accelerator designs that support low-precision integer
arithmetic GEMM operations, as well as higher-precision
computations for the remaining operations. The TPU v1 [37],
NVIDIATuring Titan RTX/Tesla T4 [34], Habana Goya [35],
NVIDIA Jetson AGX Xavier [17], Tesla’s NPU in full
self-driving chip [62], and OLAccel [47] are some examples
of such designs.

What distinguishes McDRAM v2 from accelerators sup-
porting low-precision integer arithmetic is that it processes
large DNN applications with more than hundreds of param-
eters, within the power budget of the mobile environment
(within 7 W, 5 W, 3.5 W, or 2.5 W, depending on the con-
figuration) but with better efficiency, as is demonstrated in
this study.

To overcome the aforementioned challenge, McDRAM v2
is motivated by some architectural ideas from cutting-edge
accelerator designs, for example: (1) the systolic array archi-
tecture from TPU [37], but with several different details (such
as modified matrix dimensions to fit in the DRAM context,
different accumulation methods, multi-precision support, and
so forth) and (2) exploiting the large in-DRAM bandwidth
fromMcDRAMv1 [19], but with an entirely new architecture
with a different datapath, different locations of processing
units in the DRAM, and several other architectural changes.

X. CONCLUSION
To accelerate a large DNN model in a mobile environ-
ment, this study presents a cost/benefit-balanced architecture
for in-DRAM computations that makes the best use
of the systolic array on a DRAM die. Our proposed
McDRAMv2 architecture exploits the large in-DRAM band-
width, thereby boosting the utilization of large-scale comput-
ing units in the systolic array accelerator. McDRAMv2 also
supports efficient in-DRAM processing of embedding
lookups, without off-chip DRAM accesses. We provide
extensive evaluations over large DNN models with hun-
dreds of MBs of parameters and embedding tables in natural
language processing, recommendation systems, and image
classification. With most of the data movements and compu-
tations confinedwithin the energy-optimized LPDDR4-based
McDRAM v2 die, McDRAM v2 achieves 1.7 times TOPS,
3.7 times TOPS/W, and 8.6 times TOPS/mm2 improvement
over a state-of-the–art mobile GPU accelerator, and 4.1 times
better energy efficiency over a state-of-the-art server-class
accelerator, yet incurs a minimal overhead of a 9.7% area
increase, and requires less than 4.4 W of peak operating
power.
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