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ABSTRACT There are mainly three limitations of the traditional facial attribute editing techniques:
1) incapability of generating an arbitrary facial image with high-resolution; 2) being unable to generate
and edit new facial images synthesized by the computer and 3) limited diversity of edited images. This paper
presents a method for generating and editing images simultaneously. It incorporates a high-resolution facial
image generator, a multi-label classifier, and a Generalized Linear Model (GLM). Experimental results show
that our method can generate arbitrary high-resolution facial images, edit computer-synthesized images,
perform multi-attribute editing, and effectively control the intensity and style of the generated images.
Besides, the approach has high efficiency and flexibility, allowing rapid migration of attribute information
from the data set. We design a graphical interface program, which can be integrated as a mobile application.

INDEX TERMS Deep learning, generative adversarial networks, image generating, image editing.

I. INTRODUCTION
Facial attribute editing aims at manipulating an image to
possess desired attributes while keeping the other details
unchanged. It can be incorporated into other software prod-
ucts [1], especially mobile apps. Typically generative models
include variational autoencoders (VAEs) [2], [3] and genera-
tive adversarial networks (GANs) [4], [5].

As shown in Figure 1(a), VAEs are generally designed
to make the latent space satisfy a specific distribution and
impose high-level semantics on the latent space. After the
training, it can sample a latent vector z from the latent dis-
tribution pθ (z) and generate a new face, while manipulating
the variable factors in the latent space and realize the editing
of the facial image. They are unsupervised methods, and
the most prominent ones are β-VAE [6], β-TCVAE [7], and

The associate editor coordinating the review of this manuscript and
approving it for publication was Jin-Liang Wang.

JointVAE [8]. However, their disadvantage is that they cannot
generate high-resolution new facial images, nor can they
specify the semantics of the variation factor.

GANs disentangle generative factors for facial image edit-
ing by maximizing the mutual information between the latent
variables and the generated samples, such as InfoGAN [9]
in Figure 1(b). It improves the quality of generated images,
but it has some shortcomings, such as unstable training and
low sample diversity. Recent improvements in the training
of GANs have alleviated some of these problems [10]–[13].
However, stable GAN training remains a challenge due to the
multimodal data, which prevents effective editing.

Some researchers have started to study the combination of
VAEs and GANs [14], [15] to learn a latent representation
and a decoder, as shown in Figure 1(c). The attribute editing
is achieved bymodifying the latent representation and capture
the information on expected attributes and then decoding
it. The facial image editing based on the encoder-decoder
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FIGURE 1. Comparison of generator networks. a) VAE model. The variational approximation qφ (z|x) to the intractable posterior pθ (z|x). The variational
parameters φ are learned jointly with the generative model parameters θ . pθ (z) denotes a prior distribution, usually choosing a normal distribution. z
denotes a latent vector, x denotes a generated image. b) GAN model. G, D, and C denote a generator, a discriminator, a classifier, respectively. x, z, and c
denote real image, latent vector, and label vector, respectively. 0/1 denotes the result of the binary classification of real and fake images. (c) VAE-GAN
model. The combination of VAE and GAN. Genc , Gdec , D, C denote encoder, decoder, discriminator, classifier. x, z, c denote real image, latent vector, label
vector. 0/1 denotes the result of the binary classification of real and fake images.

architecture is a conditional generative model. Other promi-
nent models include AttGAN [16] and STGAN [17]. They
can edit existing images but not generate new facial images
and edit computer-synthesized images.

Although the above models can edit facial attributes with
an input image, they suffer from three limitations: 1) inca-
pability of generating an arbitrary facial image with high-
resolution; 2) being unable to generate and edit new facial
images synthesized by computers and 3) limited diversity of
edited images. To address the above dilemma, we investi-
gate arbitrary attribute editing from uncovering feature axis
perspective and present a novel facial image editing method.
In terms of the feature, it refers to a multi-label classification
vector of the synthesized image, and the axis is to find the
correlation between a latent vector and a multi-label clas-
sification vector. Computer-synthesized images do not have
labels and cannot be edited by using AttGAN and STGAN.
Our method edits the image directly during the generative
process without providing label information.

We fine-tune the pre-trained StyleGAN2 [18] generator
and generate high-resolution facial images through latent
vectors. Besides, we find that the latent space is dense, and
the points in the latent space are relatively continuous. To edit
the new images synthesized by the computer, we train a
multi-label classifier cls. Then the classifier predicts a label
vector y of the facial image x. Finally, we use a Generalized
Linear Model to perform regression between the latent vector
z and its corresponding label vector y. The regression slopew
becomes the feature axis. Owing to the continuity of points in
the GAN latent space and the diversification of classifier label
vectors, moving along the feature axis can effectively control
the style of the synthesized image. The code and model are
available on https://github.com/GreenLimeSia/
Generating-and-Editing. In summary, our key con-
tributions are as follows:
• From the perspective of the learning feature axis,

we propose a new approach to generate and edit images

simultaneously. Our method supports high-resolution arbi-
trary facial image generation, editing of computer-synthesized
images, multi-attribute editing, and effective control of the
attribute intensity and style of generated images.
•We introduce a multi-label classifier to address the prob-

lem of computer-synthesized images without attribute labels.
Then, the correlation between a latent vector and its corre-
sponding label vector is constructed by a Generalized Linear
Model. The regression slope becomes the feature axis.
• We create a graphical interface program that can be

integrated into mobile applications.

II. PROPOSED METHOD
In this section, we present a framework, which includes new
facial image synthesis and an editing process. Figure 2 shows
the structure of our approach during the training and testing
phases.

A. MODEL FRAMEWORK
G−mapping: StarGAN2 [19] has a mapping network f that
produces diverse style codes s by sampling the latent vector
z from the latent space Z . However, f is to map latent
vectors z to intermediate latent vectors u. From [20], the
intermediate latent space does not need to support any fixed
distribution; its sampling density is derived from the learned
piecewise continuous mapping f (z). This mapping can be
tuned to ‘‘untwist’’ U so that the factors of variation become
more linear than the latent vector z. The generator is easier
to generate realistic images based on a linear disentangled
representation than based on an entangled representation.

u = f (z), f : Z → U (1)

G−synthesis: Given a disentangled intermediate latent
vector u, we use a synthetic network g to generate a
high-resolution facial image x. The synthetic network adopts
the StyleGAN2 [18] architecture and fine-tunes the param-
eters. StyleGAN2 is a new approach proposed by NVIDIA,
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FIGURE 2. The architecture of our method. a) Training phase. The noise latent vector z generates the disentangled latent vector u by mapping the network
f . u generates high-resolution images by the synthetic network g. It trains a multi-label classifier to capture the feature vector y of the synthetic image.
Regression of the latent vector z and the feature vector y. The slope of the regression becomes the feature axis. b) Testing phase. A noise latent vector z is
randomly generated, moving the latent vector in the direction of the feature axis. The moving latent vectors generate images through the synthetic
network g and finally test the changes in the attributes of the generated images. The figure moves along the feature axis of glasses and age.

which is a redesign of the original StyleGAN [20].

x = g(u), g : U → X (2)

Multi-label classifier: Given a synthetic image x, a multi-
label classifier cls extracts the features of x and predicts a
label vector y. The classifier is trained with real images and
labels. Then, the classifier is used to predict the label vectors
of the synthetic images. The value of each point in the label
vector represents whether it contains a facial feature, such as
young or old and male or female.

y = cls(x), cls : X → Y (3)

Regression: Given a latent vector z and its corresponding
label vector y, we use a Generalized Linear Model to perform
regression between latent vectors z and its corresponding
label vectors y. The regression slope w becomes the feature
axis, b is a bias. The feature axis can be moved along the
axis, which allows the G−synthesis network to synthesize an
output image that controls the styles.

y = w · z+ b (4)

Feature axis orthogonalization: Given a feature axis with-
out orthogonalization, we find that it can cause attribute
entanglement. To eliminate this issue, we perform a Gram-
Schmidt [21] orthogonalization of the feature axis. Equa-
tion (5) is the Gram-Schmidt orthogonalization equation.

β1 = v1, η1 =
β1∥∥β1
∥∥

β2 = v2 −
〈
v2, η1

〉
η1, η2 =

β2∥∥β2
∥∥

β3 = v3 −
〈
v3, η1

〉
η1 −

〈
v3, η2

〉
η2, η3 =

β3∥∥β3
∥∥

...
...

βn = vn −
n−1∑
i=1

〈
vn, ηi

〉
ηi, ηn =

βn∥∥βn∥∥ (5)

We use v = {v1, . . . , vn} to represent the feature axis
without orthogonalization. Equation (5) shows the process of
orthogonalization of the feature axis. β =

{
β1, . . . ,βn

}
is

the orthogonal basis of the feature axis v. η =
{
η1, . . . , ηn

}
represents the standard orthogonal basis of the feature axis v.
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FIGURE 3. Discover the feature axis. Three main methods for obtaining data pairs of latent vector z and its corresponding label vector y.

β
‖β‖

represents the unit vector of β.
〈
v2, η1

〉
represents the

inner product of v2 and η1. The orthogonalized feature vector
β eventually becomes the feature axis.

B. DETAILS OF DISCOVERING FEATURE AXIS
The purpose of finding the feature axis is to discover the
relationship between a latent vector z and their corresponding
label vector y. Then the feature axis can be gradually adjusted
from the latent vector to obtain a facial image with the desired
attributes. However, it is impracticable to make labels for
computer-synthesized facial images. Therefore, ourmain task
is to build label vectors and compose data pairs of latent
vectors and label vectors. There are three major approaches
to build label vectors, as shown in Figure 3.

Manual labeling: The synthesized facial images are
labeled manually. This approach is time-consuming and labo-
rious due to a large number of facial image samples. There-
fore, this solution is not feasible.

Encoder strategy: Given a real facial image, we train an
encoder to map the facial image to a latent vector. However,
it is only possible to build data pairs of latent vectors and label
vectors of real images. Since the two latent vectors are not
identical, the latent vectors of the synthesized image and their
corresponding label vector data pairs cannot be available.
Therefore, this solution is not feasible.

Classifier strategy: It trains a multi-label classifier by
using real facial images and its corresponding label vectors.
Then, it predicts synthesized facial image features by using
the above-trained classifier. The method quickly predicts the
label vectors of facial images. The better the label classifier
is, the more accurate the predicted label vectors will be.
Therefore, this solution is feasible.

We train a multi-label classifier on the CelebA-HQ
[22] dataset, which contains 30,000 images with 40 facial
attributes per image. We perform 13 iterations with an aver-
age accuracy of 99.24%. In this way, we build data pairs of
latent vectors z and their corresponding label vectors y.

Given a latent vector z and its corresponding label vector
y, we have two ways to establish the relationship between
the latent vector z and its corresponding label vector y. First,
regression of latent vectors z and their corresponding label
vectors y use a Generalized Linear Model, refer to 4. The
regression slopew becomes the feature axis. Second, we train
a single-label classifier by using latent vectors and their cor-
responding label vectors. The parameters of the intermediate
hidden layer become the feature axis. The disadvantage of
the second approach is that controlling multiple attributes
requires training multiple single-label classifiers. To achieve
multi-attribute control using a single model, we adopt the first
method.

The regression slope becomes the feature axis, which
ensures that we control multiple attributes with a single
model. However, we find that the entanglement of feature
axes leads to the entanglement of attributes.Manipulating one
attribute leads to a change in another attribute, and we cannot
manipulate multiple attributes. Therefore, we orthogonalize
the feature axis. The dimensions are orthogonal to each other.
Each dimension contains a single attribute. The orthogonal-
ized feature axis can manipulate multiple attributes, while the
other attributes remain unchanged.

In the test phase, the generator randomly synthesizes the
facial image by using the latent vector z. The dimension
of the feature axis w is 512 × 40. It contains 40 feature
axes, and each feature axis has a dimension of 512. The
dimension of the feature axis and the latent vector z are equal.
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FIGURE 4. Generating high-quality facial images using our method.
Images are labeled by cute baby, male, female. The generating network g
synthesizes images by randomly sampling latent vectors, so our method
supports arbitrary facial image generation.

The feature axis contains information about the attributes.
Moving along the feature axis allows us to manipulate the
attributes. By moving the feature axis of the glasses, the
glasses can be added without changing other details. Besides,
by adding the feature axis of age linearly, the facial image can
age naturally as shown in Figure 2.

C. PROCEDURE OF THE ALGORITHM
The above sections illustrate the architecture of the model and
the capability of each component. In this subsection, we give
five steps to implement our approach and present algorithm
for learning feature axis.

Step 1: Training a generator. Select a GAN model as a
generator network. We train the GAN generator network,
or fine-tune the parameters. The StyleGAN2 [18] parameter
is fine-tuned, which provides us with high-resolution facial
images.

Step 2: Training a multi-label classifier. We train a
multi-label feature extractor, which extracts features of facial
images, i.e., label vectors. The average accuracy rate of the
multi-label classifier is 99.24% during the testing phase.

Step 3: Building label vectors. A large number of
latent vectors are randomly generated and transferred to a
well-trained StyleGAN2 generator to produce synthesized
images. Then the features are captured for each image by
using the above pre-trained feature extractor, i.e., the label
vector of the synthesized image.

Step 4: Discovering feature slope. Given a latent vector
and its corresponding label vector, we use a Generalized
Linear Model to perform regression between latent vectors
and features. The regression slope becomes the feature axis.

Step 5: Manipulating facial images. We start with a latent
vector and move along one or more feature axes to control the
attributes of the synthesized facial image.

Algorithm 1 The Training Pipeline of Learning Feature
Axis Algorithm
Input: x, real image. y, real label vector. z, latent vector.

θG, θC denotes the initial network parameters for
Generator Model, Classifier Model.→ denotes
space mapping, and

+
←− denotes updating

gradient.
Output: w, feature axis.

1 while θG has not converged do
2 Sample latent vector z ∼ Z , a batch data from latent

space;
3 u← f (z), f : Z → U ;
4 xsys← g(u), g : U → Xsys;

5 θG
+
←− −∇θG (LG)

6 end
7 while θC has not converged do
8 Sample real image x ∼ X , a batch data from real

image space;
9 y← cls(x), cls : X → Y;

10 θC
+
←− −∇θC (LC )

11 end
12 for epoch in range epochs do
13 Sample latent vector z ∼ Z , a batch data from latent

space;
14 u← f (z), f : Z → U ;
15 xsys← g(u), g : U → Xsys;
16 ysys← cls(xsys), cls : Xsys→ Ysys;
17 Build data pair (z, ysys)
18 end
19 if data pair (z, ysys) 6= None then
20 Perform regression← ysys = w · z+ b;
21 feature axis← orthogonalize w;
22 end
23 final;
24 return feature axis w;

We train a generator and a multi-label classifier, updat-
ing θG, θC , until convergence. LG and LC represent the
loss of the generator and the classifier respectively. Using
the well-trained generator model and the classifier model,
we construct data pairs. We perform a regression of the data
pairs using a Generalized Linear Model. The feature slope is
orthogonalized by using Equation (5) and eventually used as
the feature axis.

III. EXPERIMENTS AND RESULTS
In this section, we present our results through some exper-
iments. The experiment focuses on three contributions,
which include generating arbitrary facial images with high-
resolution, editing computer-synthesized images, and realiz-
ing the diversity of edited images. We will make the Youtube
video available at https://youtu.be/uRwbQGzHIII.

A. IMPLEMENTATION DETAILS
We extract the official StyleGAN2 face generator ffhq-
config-f. We convert the generator to the Pytorch version
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FIGURE 5. Comparison diagram of our method with AttGAN and STGAN in single attribute editing. For each specified attribute, the facial attribute
editing here is to invert it, e.g., to edit male to female, or mouth open to mouth close.

and save it as our baseline model. To capture the feature
axis, we train a multi-label classifier on the CelebA-HQ
dataset. The models involved in the experiment are trained
on a workstation equipped with Intel(R) Xeon(R) CPU @
2.20GHz and a dual-channel NVIDIA Tesla P100 GPU. All
experiments are performed in a Pytorch 1.5 environment,
with Cuda 10.0.44 and cuDNN10.0.20. The baselinemodel is
fine-tuned in the original experimental setting. The classifier
has 13 iterations during the training phase. The model is
trained using Adam optimizer (β1 = 0.5, β2 = 0.999) with a
learning rate of 0.002. During the testing phase, the average
accuracy of the classifier model is 99.24%.

CelebA-HQ is a large-scale dataset of facial attributes, con-
sisting of 30,000 facial images, each of which has 40 binary
attribute labels. These attributes cover the most distinc-
tive facial attributes, contain practical information about
human-computer interaction, and are also widely used in
[23]. We train a multi-label classifier using a 1024 × 1024
resolution. We divided CelebA-HQ into a training set, a val-
idation set, and a test set. The training set and the validation
set are used to train the classifier, and the test set is used in
the evaluation phase.

B. GENERATING FACIAL IMAGES
The generator adopts the architecture of StyleGAN2 [18], and
the facial images generated are shown in Figure 4.

To measure the quality of the generated images, we quanti-
tatively analyze the generated images by using three metrics:

Frechet Inception Distance (FID), Precision and Recall
(P&R), and Perceptual Path Length (PPL). FID [24]measures
differences in the density of two distributions in the high
dimensional feature space of an InceptionV3 classifier [25].
P&R [11], [26] provide additional visibility by explicitly
quantifying the percentage of generated images that are simi-
lar to training data and the percentage of training data that can
be generated, respectively.Many studies have shown that PPL
[20] with low scores is indeed a sign of high-quality images,
and vice versa.

TABLE 1. The main results of quantitative comparison with CelebA-HQ at
10242. For each training, we select the training snapshot with the lowest
FID. The path length corresponds to the PPL metric. ↑ indicates that the
higher the better, and ↓ that the lower the better.

In this paper, we calculate the FIDs using 20,000 images
drawn randomly from the training set and report the low-
est distance encountered throughout the experiment. Table 1
shows the results of the experimental comparison, and the
data shows that the quality of the generated images performs a
significant improvement. Our method yields the smallest FID
score, which means that the distribution difference between
the generated image and the real image is minimal, i.e., the
generated image is more realistic. The PPL metric also gets
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FIGURE 6. Comparisons among AttGAN, STGAN, and our method in terms of a) facial attribute editing accuracy and b) preservation error of the other
attributes. OURS-1 and OURS-2 denote the activation of the Generalized Linear Model is linear and tanh.

the lowest score, which means that the images generated have
a high quality. Our approach is better than TL-GAN [27]
in precision and recall metrics, and the score is lower than
StyleGAN [20] 6% in precision metric. However, in the recall
metric, we exceed StyleGAN by 20%. By combining the
four metrics, our approach can generate high-quality facial
images. Among them, TL-GAN uses the baseline model of
PG-GAN, and StyleGAN is the baseline model of Style-
GAN2 [18].

C. EDITING COMPUTER-SYNTHESIZED IMAGES
Given a latent vector and its feature axis, we move along the
feature axis on the latent vector to control the attributes of
the synthesized image. To emphasize the effect of attribute
editing, we compare AttGAN [16] and STGAN [17], which
are designed for attribute editing. Figure 5 shows the attribute
editing results of the three methods.

AttGAN adopts the encoder-decoder architecture, and the
image becomes blurred after editing with attribute informa-
tion. Hence, it is difficult for AttGAN to guarantee the quality
of the generated images in practical applications. STGAN
follows the architecture of AttGAN, which uses selective
transfer units and differential signals as inputs. While the
quality of the generated images is guaranteed to some extent,
the trade-off between generating and editing remains. The
disadvantage of both methods is that they require attribute
information as additional input. Our method moves directly
on the feature axis for attribute editing, which not only
ensures the quality of image generation but also takes the
editing effect into account.

Table 2 shows the advantages of our approach compared to
AttGAN and STGAN. Our method can generate new facial
images, single attribute editing, and multi-attribute editing.
AttGAN and STGAN can only perform single-attribute edit-
ing, cannot generate new facial images, and cannot perform
multi-attribute editing. Besides, our method does not require
additional attribute information to edit the facial image. Other
methods require additional attribute information as input.

TABLE 2. A check table of different models. GNF denotes generating new
facial image. SAE denotes single attribute editing. MAE denotes
multi-attribute editing. NRL denotes no labels required.

The evaluation metrics [28] for image reconstruction
results are Peak Signal to Noise Ratio (PSNR) [29] and
Structural SIMilarity (SSIM) [30]. PSNR is themost common
and widely-used evaluation metric for image reconstruction
based on the corresponding pixel-to-pixel error. The PSNR
has no consideration of human visual characteristics. As a
full-reference image quality evaluation metric, SSIM mea-
sures the similarity of images in terms of brightness, contrast,
and structure. The SSIM outperforms PSNR in terms of
image denoising and similarity evaluation. The PSNR/SSIM
results for the three image reconstruction methods are shown
in Table 3. The quantitative results are consistent with the
qualitative results in Figure 5. From Table 3, benefiting from
the StyleGAN2 generator, our method can retain more image
information and achieves much better reconstruction results
than its two peers. Our approach can generate high-quality
reconstruction results, which are more natural and realistic
while retaining more details.

Quantitative evaluation of attribute editing is indispens-
able. There are two main aspects. We need to assess whether
the facial image has the desired attributes, i.e., the attribute
generation accuracy. We need to evaluate whether the other
attributes remain unchanged, i.e., the attribute preservation
error. We test 13 attributes with the above trained multi-label
classifiers. The attribute generation accuracy and attribute
preservation error are shown in Figure 6. Orthogonalized
feature axes do not cause entanglement of attributes. Manip-
ulating one attribute does not cause the other attributes to
be changed. The classification results show that our method
outperforms other methods in terms of attribute generation
accuracy and attribute preservation error.
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FIGURE 7. Cosine similarity between feature axis. a) denotes the cosine similarity of the feature axis without orthogonalization. b) denotes the cosine
similarity of the feature axis with orthogonalization.

FIGURE 8. Multi-attribute editing schematic. The term multi-attribute
editing refers to the fact that the edited image can continue with other
manipulations without changing the previously edited attributes.
A denotes the source image, and > denotes the editing direction. The left
picture is edited in the direction of A>A1>A2>A3, which means black
hair, smile, and aging. The right image is edited in the direction of
A>B>B1>B2, which indicates female, grow up, and black hair.

TABLE 3. Image Reconstruction Quality. Comparison of reconstruction
performance in terms of SSIM and PSNR (mean and standard deviation).
The higher the value, the better the quality.

D. CONTROLLING MULTIPLE ATTRIBUTES AND STYLES
The lack of orthogonalization of the feature axis can cause
entanglement among attributes. We characterize the cosine
distance of each feature axis by cosine similarity. As shown in

Figure 7, the cosine distance between the two non-orthogonal
feature axis is not equal to zero. Moving the non-orthogonal
feature axis causes other attributes to change. To eliminate
similarities between the feature axis, we orthogonalize the
feature axis. The cosine distance between the feature axis
after orthogonalization is equal to zero. Only the diagonal
element distance is equal to one. Orthogonalization of the
feature axes allows us to control the style and intensity of the
attributes exactly.

Our method supports controlling multiple attributes of a
single image, as shown in Figure 8. The term multi-attribute
control refers to the fact that a single image can manipulate
any attribute simultaneously, and the manipulated resulting
image can continue to be edited at will. Besides, our method
can control the style and intensity of the attribute, such as the
ability to add different styles of glasses for the same person,
or the ability to control the gradient process of the face turning
old. The experimental results are shown in Figure 9.

IV. DISCUSSION
Previous methods require providing a facial image and its
corresponding label information to the model. The model
encodes the image and then uses the label information as
additional input. Besides, the model decodes the latent vec-
tors to edit the facial image. Due to the complex structure of
using the encoder-decoder, it is difficult to ensure the qual-
ity of the generated images. Without the label information,
editing cannot be achieved either. However, our approach
gets rid of these two limitations. We focus on the generative
process and edit the image from the perspective of the feature
axis. It does not need to provide label information as an
additional input since our attribute information is contained
on the feature axis. It is worth mentioning that the feature axis
can be migrated repeatedly to other GAN models.

Our method can generate high-resolution arbitrary facial
images because of the use of the powerful StyleGAN2

VOLUME 8, 2020 135475



N. Yang et al.: Generating and Editing Arbitrary Facial Images by Learning Feature Axis

FIGURE 9. Add different styles to facial images. Moving the attribute values linearly along the feature axis, our model can change the style of the facial
attribute. A indicates the style of adding glasses, and B indicates the style of facial aging.

generator. The architecture takes a progressive growing
approach to image generation and can effectively control the
details of the generated images. The latent space dimension
of each image is 18 × 512, and, latent space has two excel-
lent characteristics. First, the latent space is dense, which
means that each point in the latent space corresponds to
the generated image. Second, the points in the latent space
are relatively continuous, which means that the difference
between the two points causes a smooth transition of the
images.

Learning the feature axis makes it possible to edit
computer-synthesized images. Since the image has no label
information, we additionally trained a multi-label classifier to
capture the relationship between the latent vector and its cor-
responding label vector. Thus, given the latent vector and its
corresponding label vector, the regression task is performed
by using a Generalized Linear Model. The regression slope
becomes the feature axis. Linear variations in the feature axis
cause natural variations in the image.

Our method can control 40 attributes by the multi-label
classifier, which correlates the relationship between the latent
vector and its corresponding label vector. Besides, the two
excellent characteristics of the latent space and the linear
variation of the feature axis allow us to manipulate the style
of the facial image smoothly.

V. CONCLUSION AND FUTURE WORKS
In this paper, a model for generating and editing facial
attributes is proposed to 1) generate arbitrary high-resolution
images, 2) edit new computer-synthesized images without
providing additional label information, and 3) control the
diversity of attribute styles. We use the StyleGAN2 generator
as a baseline model, by combining a multi-label classifier
and a generalized linear model to capture the relationship
between the latent vector and its corresponding label vector.
The regression slope becomes the feature axis. The feature

axis contains attribute information. We move along the fea-
ture axis to control the attribute and style of the synthesized
facial image.

Our approach has high efficiency and flexibility. We can
rapidly train a multi-label classifier to capture the rela-
tionship between latent vectors and its corresponding label
vectors. Besides, multi-label classifiers can be applied to
any dataset. Thus, our approach can capture any feature on
other datasets without retraining the GAN model. The pro-
posed approach will be used in many other fields such as
e-commerce systems [31], transportation systems [32], and
manufacturing [33], [34].

For editing specific faces in reality, we will focus on the
reverse mapping of generators for editing high-resolution
specific faces in our future work. Face customization is
another consideration for the robust generation capabilities
of StyleGAN2.
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