
Received July 16, 2020, accepted July 21, 2020, date of publication July 24, 2020, date of current version August 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011670

A Novel Multi-Agent Parallel-Critic Network
Architecture for Cooperative-Competitive
Reinforcement Learning
YU SUN1,2, JUN LAI 1, LEI CAO 1, XILIANG CHEN 1, ZHIXIONG XU 1, AND YUE XU 2
1Command and Control Engineering College, Army Engineering University of PLA, Nanjing 210000, China
2The PLA Unit 31102, Nanjing 210000, China

Corresponding authors: Lei Cao (caolei.nj@foxmail.com) and Xiliang Chen (383618393@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61806221, and in part by the Advanced
research fund of equipment development department under Grant 61421010318.

ABSTRACT Multi-agent deep reinforcement learning (MDRL) is an emerging research hotspot and appli-
cation direction in the field of machine learning and artificial intelligence. MDRL covers many algorithms,
rules and frameworks, it is currently researched in swarm system, energy allocation optimization, stocking
analysis, sequential social dilemma, and with extremely bright future. In this paper, a parallel-critic method
based on classic MDRL algorithm MADDPG is proposed to alleviate the training instability problem in
cooperative-competitive multi-agent environment. Furthermore, a policy smoothing technique is introduced
to our proposed method to decrease the variance of learning policies. The suggested method is evaluated in
three different scenarios of authoritative multi-agent particle environment (MPE). Multiple statistical data
of experimental results show that our method significantly improves the training stability and performance
compared to vanilla MADDPG.

INDEX TERMS Multi-agent system, deep reinforcement learning, parallel-critic architecture, training
stability.

I. INTRODUCTION
Reinforcement learning (RL) [1] is an important branch of
machine learning. The essence of RL is agents learning
policies in the interaction process with the environment to
maximize returns or achieve specific goals. Instead of guid-
ing the agent on how to make actions correctly in super-
vised learning, RL usually evaluates and corrects the action
selection based on the feedback signal from the environ-
ment. Therefore, RL is more suitable for solving complicated
decision-making problems due to easier reward function
design and lower information requirements. Recently, deep
reinforcement learning (DRL) [2] that combines deep neural
networks (DNN) with traditional RL methods has become a
research hotspot and made tremendous breakthroughs in the
computer vision system, robot control, large-scale real-time
strategic games, etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Inês Domingues .

Multi-agent system (MAS) [3] is a kind of dynamic system
composed of multiple interactive agents. It is often used
to solve coordination and cooperation problems. MAS has
a wide range of applications in numerous fields due to its
strong practicality and scalability. Multi-agent reinforcement
learning (MARL) [4] can be seen as the application of
RL methods in MAS. Generally speaking, traditional MARL
can be divided into three categories according to the type
of tasks: (1) fully cooperative. The agents have the same
reward function: R1 = R2 = · · · = Rn, which means
that all agents are cooperating to achieve a common goal. Its
representative algorithms include Distributed Q-learning [5],
Team Q-learning [6], etc.; (2) fully competitive. The agents
have the opposite reward function R1 = −R2, which
means the goal of the agent is to maximize its private
reward while minimizing the competitive agents’ reward.
Minimax-Q [7] is the typical algorithm for fully competitive
settings; (3) Mixed. The reward functions of agents are dif-
ferent from each other, whichmeans agents are self-interested
and learning to achieve the equilibrium. Nash Q-learning [8],

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 135605

https://orcid.org/0000-0002-3608-4985
https://orcid.org/0000-0002-6997-8504
https://orcid.org/0000-0001-5198-0932
https://orcid.org/0000-0003-0996-436X
https://orcid.org/0000-0003-2518-7273
https://orcid.org/0000-0002-2334-7280


Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

Correlated Q-learning [9], Friend or Foe Q-learning [7] are
designed for mixed tasks. However, traditional MARL algo-
rithms are only suitable for small scale problems such as
static games or grid worlds due to the limitation of com-
puting power, while in real-world problems, the state and
action space are usually large and continuous, few tradi-
tional algorithms can be effective in these kinds of environ-
ments. Moreover, Scalability and dealing with incomplete
information environments are also unresolved problems in
traditional MARL.

Recently, DNN has been applied to MARL to solve these
problems, which leads to an emerging research field called
multi-agent deep reinforcement learning (MDRL) [10]. Com-
pared with single-agent DRL and MARL, learning agents in
MDRL can communicate and collaborate to complete com-
plicated tasks in broader scenarios. However, as an emerging
research field, MDRL also faces many problems and chal-
lenges: (1) environmental non-stationarity. Each agent must
consider the influence of dynamic environment and changing
policies of other agents at the same time, that should seriously
affect the learning stability and policy converging efficiency
of each agent; (2) curse of dimensionality. MDRL environ-
ments usually have more agents and larger state-action space
compared to single-agent DRL, which will increase the cal-
culation and may cause the convergence failure; (3) partial
observation problem. In most multi-agent systems, agents
cannot perceive the complete information of the environ-
ment during the interaction, which makes it difficult to make
optimal decisions thus affects the performance of learning
algorithms.

Our work is focused on alleviating multi-agent environ-
mental non-stationarity problem that affects learning sta-
bility of MDRL algorithm Multi-agent Deep Deterministic
Policy Gradient (MADDPG) [11] in cooperative-competitive
scenarios. Specifically, we modify the original actor-critic
network architecture by increasing the number of centralized
critics that operating parallelly to help consolidate the net-
works and training policies. The adopted parallel-critic archi-
tecture can jointly form more stable policies with relatively
high efficiency. Besides, a policy smoothing technique is also
designed for improving MADDPG to reduce variance during
the training process.

In sum, the main contributions of this paper are outlined as
follows:
• We propose a novel parallel-critic centralized network
architecture based on MADDPG, which can not only
stabilize the whole training process in non-stationary
multi-agent environments but also improve the efficacy
and effectiveness significantly.

• We design a target policy smoothing technique
tailor-made for our proposed method by adding random
noise as regularization to alleviate the high variance
of policy training, thus further strengthen the policy
robustness.

• We apply our improved algorithm to Multi-agent
Particle Environment (MPE) [11]. The empirical

experimental results show that the stability and effec-
tiveness of our proposed method, which outperforms the
original MADDPG algorithm on multiple cooperative
and competitive tasks.

The organization of this paper is briefly shown below. Related
work is presented in Section 2. Section 3 contains the prelim-
inary knowledge, main structure and implementation details
of our proposed method. Section 4 includes the experimen-
tal environment, implementation particulars and compara-
tive analysis of results. Epilogue with the discussion of the
future work of our proposed method is reported in the last
section.

II. RELATED WORK
Many works have been done in MDRL field so far, the previ-
ous methods can be divided into the following 4 recommend
categories:

(1) Extending single-agent DRLmethods directly to multi-
agent environments. Tampuu et al. [12] first extend the classic
DQN algorithm to Atari Pong game and let the agents form
cooperative and competitive behaviors. Gupta et al. [13]
apply single-agent DDPG and TRPO to complex multi-agent
environments with the combination of recurrent neural net-
work (RNN), the improved algorithm has strong scalability;
Bansal et al. [14] used another single-agent DRL algorithm
PPO to train MuJoCo simulator. These methods are usually
easy to implement but with the limitation of low training
efficiency.

(2) Building explicit communication mechanisms among
agents. Reinforced inter-agent learning (RIAL) [15] and dif-
ferentiable inter-agent learning (DIAL) [15] use centralized
Q network to build a communication channel for transfer-
ring information among agents, the communication model is
primitive but capable of basic communication among agents;
CommNet [16] builds a communication channel with the
ability to transmit continuous information to form explicit
team policies among cooperative agents, which ensures the
real-time information transmission between all agents; bidi-
rectional communication network (BiCNet) [17] combines
actor-critic framework and bidirectional recurrent neural net-
work to share and store information in each time step, BiCNet
is also applied to real-time strategy game StarCraft 2 and
successfully implement a variety of team tactics such as
offense, retreat, attack and alternative coverage. Besides,
attention communication MDRL [18], ACCNet [19], mes-
sage pruning communication MDRL [20], double atten-
tional actor-critic message processor (DAACMP) [21],
attention-based message processing (AMP) [22], etc. are all
the recent developments of MDRL methods with communi-
cation mechanisms. To sum up, the communication mecha-
nism is always used in cooperative multi-agent environment
to form joint policies but could be invalid in fully compet-
itive scenarios. Moreover, these methods usually have high
computational complexity.

(3) Modifying the network architectures. Value
decomposition networks (VDN) [23] and QMIX [24]

135606 VOLUME 8, 2020



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

use value function decomposition technique in training
networks to decompose the global Q functions according
to the contribution of collaborating agents; COMA [25]
uses a global fully centralized critic network to improve
the training efficiency in fully collaborative tasks, but its
centralized architecture increases the input dimension and
breadth of a single training network and thus may cause
the curse of dimensionality, meanwhile, the single global
network is not scalable; MADDPG first introduces the
centralized training and decentralized execution (CTDE)
[11], [15], [26] framework into MDRL field, in which each
agent has a centralized critic to receive global information
in the training phase, while performs the actions according
to local observations (information) in the execution phase.
With ideal performance in many multi-agent scenarios, the
CTDE framework has been adopted in manyMDRLmethods
since then with numerous advantages, MADDPG is applied
in both cooperative and competitive scenarios such as MPE
with satisfying performances.

(4) Other methods. These methods usually bring about
some interdisciplinary tricks into MDRL field to help solve
MAS problems. Q-value path decomposition (QDP) [27]
integrates gradient attribution technique into MDRL to
directly decompose global Q-values along trajectory paths
to assign credits for agents, it has also been applied in
StarCraft II micromanagement tasks with good perfor-
mance; NCC-MARL [28] introduces neighborhood cognitive
consistency (NCC) into MDRL to facilitate large-scale team-
work tasks like football player control. Mao et al. [29]
propose a novel reward design method to accelerate the for-
mation of better policies, the method is specially designed
for packet routing application. Also, Yang et al. [30] bor-
row the mean field theory from stochastic process to deal
with the large-scale multi-agent problems, its core idea is
using mean values to simplify the multiple agents’ interplay
into double-agent’s game, Mean field MDRL is extremely
effective in scenarios with a massive amount of cooperative
agents.

The above contents briefly summarize previous works
in MDRL field. Among them, MADDPG has both advan-
tages and disadvantages. First of all, its CTDE frame-
work is perfectly aligned with multi-agent environment and
can ease the training process; second, due to the indepen-
dent training model and reward function of each agent,
MADDPG can apply to diverse environments with fully
cooperative, fully competitive or mixed learning agents.
But in the meantime, MADDPG still has no good solu-
tion towards training instability problems caused by the
multi-agent environment non-stationarity. Our proposed
method not only inherits the advantages of MADDPG but
also with better stability and training efficiency in learn-
ing optimal policies. Moreover, due to the simplicity of
modifying architecture, our method is easier to implement
and function. The specific architecture and implementation
details of our method will be introduced in the following
article.

III. METHODOLOGY
In this section, we first introduce the background knowledge
in Section A, then the whole training architecture of our
proposed method is presented in detail (Section B).

A. BACKGROUND
1) MULTI-AGENT MARKOV DECISION PROCESS (MAMDP)
In MDRL environments, agents follow multi-agent Markov
decision process (MAMDPs) [4]. MAMDP is usually defined
as a tuple: 〈S,A1, · · · ,An,R1, · · · ,Rn, ρ, γ 〉, where n is
the number of agents; S represents the state space of the
environment; Ai (i = 1, · · ·, n) is the action space of every
single agent; A = A1 × · · · × An means the joint action
space of all agents; the joint state transition function ρ :
S × A × S → [0, 1] determines the probability distribution
of transition function from current state s ∈ S to next state
s′ ∈ S when the joint action a ∈ A is executed. The
learning goal of agent i is to maximize collective discounted

reward R =
n∑
1

T∑
t ′=t

γ t
′
−tr t

′

i from time t to T (γ ∈ [0, 1] is

the discount coefficient to adjust the learning process). The
model of standard MARL is shown in Figure 1.

FIGURE 1. The model of standard MARL.

2) MULTI-AGENT DEEP DETERMINISTIC POLICY
GRADIENT (MADDPG) AND EXTENSIONS
Multi-agent Deep Deterministic Policy Gradient (MAD-
DPG) is an actor-critic algorithm designed for multi-
agent environments. The joint policy space of N agents is
π = (π (θ1) , π (θ2) , . . . , π (θN )) parameterized by θ =
(θ1, θ2, . . . , θN ). The overall framework of MADDPG is
derived from single-agent DRL algorithm DDPG [31], which
consists of actor network, critic network, target actor network
and target critic network in each agent’s training structure.
MADDPG adopts the CTDE framework (introduced in the
above chapter) that each agent has a centralized critic to
exchange information from other agents on the training phase
while implementing policies separately based on its private
observation. The agent i obtains current observation oti at
time t according to the policy π (θi), then interacts with envi-
ronment to get experience

(
oti , a

t
i , o

t+1
i , r ti

)
and store in the

replay buffer
(
st , at1, a

t
2, . . . , a

t
N , r

t
1, r

t
2, . . . , r

t
N , st+1

)
,where

st =
(
ot1, o

t
2, . . . , o

t
N

)
is the observation set of all agents

VOLUME 8, 2020 135607



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

at time t . The input of each critic network includes
the observations, actions and rewards of other agents:
Q (st , a1, a2, . . . , aN , θ%), when the interaction process is
finished, each agent from i ∼ N randomly extracts experi-
ences from their own replay buffer for training and updates
critic network parameter by minimizing the loss functions:

L
θ
Q
i
=

1
K

K∑
t=1

(yt − Q(st , a1, a2, . . . , aN , θ
Q
i ))

2 (1)

yt = rt + Q′i
(
st+1, a′1, a

′

2, · · · a
′
N , θ

Q′

i

)
(2)

where θQ
′

i is the parameter of agent i’s target critic network.
the parameter of each actor network from i ∼ N is updated
by policy gradient descent method:

∇θπi
L=

1
K

K∑
t=1

∇θπi
π (o, θπi )∇aQ(s, a1, a2, . . . , aN , θ

Q
i ) (3)

Same as DDPG, MADDPG soft updating the parameter of
target critic and target actor networks in agent i to ease the
convergence:

θ
Q′

i = τθ
Q
i + (1− τ) θ

Q′

i , θπ
′

i = τθ
π
i + (1− τ) θ

π ′

i (4)

where τ is the updating coefficient to adjust the updating
frequency.

3) IMPROVING EXTENSIONS BASED ON MADDPG
Many derivative works have been done focusing on inherent
defects of MADDPG to improve the overall performance
since then.

MADDPG-GCPN [32] proposes a decentralized genera-
tive policy network to guarantee the performance of coopera-
tive agents in partially observatory environments, in which an
extra actor network πGCi is set in each agent’ network struc-
ture to imitate action samples of other agents, this avoids the
concatenation of other agents’ target policies in the training
phase, so the training process can be conducted in an inde-
pendent model, further, MADDPG-GCPN designs two sets
of rewards: the global one with joint rewards of all the agents
and the individual one with immediate private reward. Exper-
iments show that MADDPG-GCPN has better performance
than MADDPG in several scenarios where agents only have
partial information from other agents and the environment.

PS-MADDPG [33] combines the parameter sharing tech-
nique with MADDPG to improving the training efficiency.
The author suggests a couple of implementation plans: inde-
pendent critics training simultaneously without sharing pri-
vate rewards; one critic training and sharing weight to others;
one critic training with multiple heads. Experimental results
show that parameter sharing has better compatibility with
MADDPG than other methods such as PS-PPO, PS-TRPO.

MATD3 [34] extends the single-agent DRL algorithm
TD3 to multi-agent scenarios just as DDPG to MADDPG,
it aims to relieve the value function overestimation problem
in MDRL. Same as TD3 [35], MATD3 sets double critic

networksQi
θ1

andQi
θ2

in each agent i and choose the smaller
Q value to update the network. Experimental results prove the
feasibility of this method in multi-agent settings.

Moreover, ATT-MADDPG [36] adds the attention layer in
each critic network to strengthen the policy learning ability
among cooperating agents; R-MADDPG [37] builds commu-
nication channels amongst agents through recurrent neural
networks for learning in partial observatory environments;
MAAC [38] uses attention mechanism to select relevant
information for each agent during the training thus reduce the
computational pressure and improve the scalability. Different
from the extension works summarized above, Our method
concentrates on training instability problem in MADDPG,
we set up a novel parallel-critic network architecture with
multiple critic networks training simultaneously to stabilize
the training process and also improves the effectiveness.
As far as we know, we are the first one using parallel-critic
architecture in MADDPG to help solve MAS problems.

4) EXISTING METHODS INVOLVE PARALLEL (ENSEMBLE)
VALUE FUNCTIONS
Parallel (ensemble) value functions method is first introduced
to single-agent RL by Marco et al. [39], they implement
4 traditional RL algorithms and combine the policies pro-
duced by all the value functions to improve the policy
adaptability and performance. Faußer et al. [40] propose a
function approximation method to learn the combined
state-value function of multiple agents, the core of their idea
is value functions voting and averaging. Many improving
methods including [41]–[43] have been put forward since
then, some of them even combine with actor-critic algo-
rithms. But as far as we know, parallel (ensemble) value func-
tions technique has never been used in MDRL field before.

B. MADDPG WITH PARALLEL-CRITIC NETWORK
ARCHITECTURE
In this work, we propose a novel parallel-critic network
architecture based on MADDPG, which can provide stable
policies for each learning agent in cooperative-competitive
environments. we name it MADDPG with parallel-critic net-
works (MADDPG-PC). Specifically, we modify the original
actor-critic network of each agent i in MADDPG to multiple
parallel critics which can be capable of synchronized training,
we set the agent i’s Q value function in time t as the mean
value of parallel critics’ counterparts:

Qmean

(
st , a1, a2, · · · aN , θQ

)
=

1
U

U∑
j=1

Qj
(
st , a1, a2, · · · aN , θ

Q
j

)
(5)

where U is the number of parallel critics, θQj ∈ θQ is the
parameter of agent i’s j-th critic. the U networks are train-
ing parallelly and independently. Theoretically speaking, this
parallel-critic architecture has the following advantages com-
pared to traditional single actor-criticMADDPG: (1) multiple

135608 VOLUME 8, 2020



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

parallel critics train simultaneously without affecting each
other, even if one of them performs awfully in several time
steps, the combination of all critics’ networks can offset the
oscillation of Q value thus the training process is stabilized;
(2) multiple parallel critics could expand the exploration
scope of and learn the knowledge in the environment more
widely.

To be consistent with the target network structure in
MADDPG, we also set up the corresponding U target-critic
networks, so the expected reward of agent i in time t can be
rewritten as:

yt = rt + Q′mean

(
st+1, a′1, a

′

2, · · · a
′
N , θ

Q′

j

)
(6)

where

Q′mean

(
st+1, a′1, a

′

2, · · · a
′
N , θ

Q′

j

)
= γ

1
U

U∑
j=1

Q′j
(
st+1, a′1, a

′

2, · · · a
′
N , θ

Q′

j

)
(7)

And θQ
′

j ∈ θ
Q′ is the parameter of agent i’s j-th target-critic,

parameters of critic networks is updated by minimizing the
loss function:

LPC =
1
N

N∑
t=1

(
yt − Qmean

(
st , a1, a2, · · · aN , θQ

))2
(8)

But in actual practice, each critic j of agent i trained by the
same TD-error function may cause homogenization during
the training process, so that the difference between critics are
cut back, obviously, it’s not conducive to convergence, so we
first calculate the private loss function of each critic and its
corresponding target critic with using their own Q value and
target Q value:

L
θ
Q
j
=

1
N

N∑
t=1

(
yt − Qj

(
st , a1, a2, · · · aN , θ

Q
j

))2
(9)

yt = rt + Q′j
(
st+1, a′1, a

′

2, · · · a
′
N , θ

Q′

j

)
(10)

Then the final loss function of agent i’s j-th critic can be
adapted to:

L
θ
Q
j
= φLPC + (1− φ)L

θ
Q
j

(11)

where φ is the coefficient to compromise private loss of j-th
critic and general loss.

The parameter of agent i’s actor network is updating in the
same way as MADDPG:

∇θπ J

=
1
K

K∑
t=1

∇θππ
(
o, θπ

)
∇aQmean

(
st , a1, a2, · · · aN , θQ

)
(12)

Figure 2 shows our structure of parallel-critic network
architecture.

FIGURE 2. The structure of parallel-critic network architecture.

C. POLICY SMOOTHING TECHNIQUE
In some of the single-agent deterministic policy gra-
dient methods such as DDPG, learning policy can be
easily impacted by function approximation error [35], this
causes the variance of target policies. Some improved algo-
rithms attempt to alleviate this problem by applying dis-
turbance factor (usually the clipped Gaussian noise) ϕ =
clip (N (0, ζ ) ,−λ, λ) to actions of all the agents. This regu-
larization method is also called policy smoothing technique.

In our method, we also introduce policy smoothing
technique, so the expected reward of agent i with policy
smoothing regularization is defined as:

yt = rt + Q′mean

(
st+1, a′1 + ϕ, a

′

2 + ϕ, · · · a
′
N + ϕ, θ

Q′

j

)
(13)

where ϕ = clip(N (0, ς),−λ, λ).
Table 1 describes the MADDPG-PC method Briefly,

while the mainframe of the MADDPG algorithm remains
unchanged. Figure 3 shows the framework of MADDPG-PC.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
Our experimental hardware are Intel SSD PEKNW 512G +
Nvidia GeForce RTX 2080TI+ 64G memory, software envi-
ronment are ubantu18.04 + TensorFlow = 1.7.0 + gym =
0.10.5. the hyper-parameters setup is show in table 2.

B. MPE ENVIRONMENT SETUP
Our test environment consists of three scenarios in OpenAI
MPE [11] environment: cooperative navigation, predator-
and-prey and physical deception.

1) COOPERATIVE NAVIGATION
Cooperative navigation is a fully cooperative scenario. It is
set in a two-dimensional coordinate plane with N agents and

VOLUME 8, 2020 135609



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

TABLE 1. MADDPG with parallel-critic architecture.

TABLE 2. Hyper-parameters.

the K target points, the learning goal of agents is reaching the
target points and avoid colliding with each other. As shown
in Figure 4 (left), we set N = K = 3. The reward of
each agent depends on the distance to the nearest target and
whether it collides with other agents, the reward function of
each agent can be written as:

ri = − min
i≤N ,tr≤K

(D(i, tr))+ C (14)

where D (i, tr) =
√
(xi − xtr )2 + (yi − ytr )2 is the distance

between agent i and target point tr, which means the closer
to the nearest target point, the greater the reward will be.
furthermore, once a collision occurs, the colliding agents will

be punished, we define the collision reward as:

C =

{
−1, if the collision happens
0, if there is no collision

(15)

that means for achieving the overall optimal goal, each agent
needs to simultaneously consider the distance to the nearest
target and the relative positions to other agents.

2) PREDATOR-AND-PREY
In cooperative learning environments, the policies and
rewards of learning agents improving continuously during the
training time. But in competitive environments, the rewards
of agents depend not only on their own policies but also on the
adversarial policies learned by their opponents. predator-and-
prey is a typical competitive scenario. There are N relatively
slow predators cooperating to hunt down a faster prey and
L large obstacles that can block the movement and obser-
vation of agents in a two-dimensional coordinate plane.
As shown in Figure 4 (middle), we setN = 3 and L = 1. The
reward of each predator depends on the distance to the prey
and whether the collision happens. The smaller the distance,
the greater the reward. We set D (i, j) to be the distance
between predator i and predator j:

D(i, j) =
√(

xi − xj
)2
+
(
yi − yj

)2 (16)

When the predators collide with the prey (capture the prey
successfully), the predators receive rewards whereas the prey
receives a punishment (negative reward):

C1 =

{
10, if the collision happens
0, if there is no collision

(17)

To maintain the normal functioning of the environment,
we also exert punishments to prevent agents from escaping
outside the border, the punishments depend on how far away
the agents from the border:

C2 =

{
0 max (xi, yi) < 0.9

(max (xi, yi)− 0.9)× 200 max (xi, yi) ≥ 0.9

(18)

Since the predators are collaborating to complete the hunting
task, a good joint hunting policy is not the overlay of greedy
policy for each agent. Some agents may sacrifice individual
current rewards for completing the joint task, so we set the
reward of predator i with minimal:

ri = −0.1× min
i,j≤N

(D(i, j))+ C1 − C2 (19)

As the prey has relatively faster moving speed and needs to
face many predators s1multanously, we set the distance to
be the sum of all agents in the environment. the reward of
predator j is:

rj = 0.1×
N∑
i=1

(D(i, j))− C1 − C2 (20)

135610 VOLUME 8, 2020



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

FIGURE 3. The framework of MADDPG-PC.

FIGURE 4. Diagram of three testing scenarios: cooperative navigation (left), predator-and-prey (middle), physical deception (right).

FIGURE 5. Mean episode reward of MADDPG-PC(U = 2,3,4) and original MADDPG in cooperative navigation (left), predator-and-prey (middle), physical
deception (right).

3) PHYSICAL DECEPTION
Similar to predator-and-prey, physical deception is also a
competitive scenario with N good agents, a bad agent and L
landmarks, where one of the landmarks is the target landmark.
As shown in Figure 4 (right), we set N = 2 and L = 2.
The reward of each good agent depends on the distance

to the target landmark and whether the collision happens,
the smaller the distance, the greater the reward, if one of the
good agents collides with the target landmark, all of them
will get greater positive rewards. In the training process, good
agents have to learn to scatter and cover all landmarks to
deceive the bad agent.

VOLUME 8, 2020 135611



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

FIGURE 6. Important indicators with 0-1 regularization reflecting agents’ performance of MADDPG-PC(U = 2,3,4) and MADDPG in cooperative
navigation (left), predator-and-prey (middle), physical deception (right).

TABLE 3. Experimental data between MADDPG-PC(U = 2,3,4) and MADDPG in testing scenarios after 40000 episodes.

C. RESULTS AND ANALYSIS
We set original MADDPG as the comparison algorithm to
verify the efficiency of our improved MADDPG-PC. The
prey and bad agent in three scenarios all useDDPG algorithm.
We set U= 2,3,4 inMADDPG-PC separately as the antithesis
to juxtapose the effect of critics with different numbers on
performance, so each scenario has four comparison tests.

Unlike other ML methods such as deep learning, MDRL
does not have data sets, so we mainly use the following
indicators to assess the training stability, performance, effec-
tiveness and adaptability of our method: (1) we use stan-
dard deviation (STD) of mean episode reward to evaluate
the training stability, the smaller the deviation, the more
stable the algorithms; (2) we use the mean episode reward
to evaluate the efficacy of algorithms, the greater the reward,
the better the performance; (3) we use the performance of
agents to assess the effectiveness of algorithms, the better the
performance of agents, the higher the effectiveness; (4) we
change the number of agents to evaluate the adaptability of
our algorithms. The comparison of experimental results with
the above indicators is elaborated below.

1) EVALUATION OF TRAINING STABILITY OF ALGORITHM
Figure 5 shows the mean episode reward curves of the
original MADDPG and MADDPG-PC (U = 2,3,4) in three
scenarios after 60000 episodes of training, we can infer
that after 30000 episodes the curves tend to be stable in
each scenario, so our calculation is based on testing data
after 30000 episodes. As shown in TABLE 3, MADDPG-PC
(U = 2,3,4) reduce by 17.71%, 10.29%, 15.25% on reward
STD in cooperative navigation compared with MADDPG;
reduce by 29.95%, 10.68%, 24.60% in predator-an-prey;
reduce by 8.35%, 4.47%, 10.25% in physical deception.
We can thus conclude that MADDPG-PC can stabilize the
training process to a significant degree by parallel critics
training simultaneously, we can also speculate that most of
the time the stability improves with the increasing number of
critics because more critics can supply more stable policies.
On the other hand, according to experimental comparison
data we can infer that the increase in the number of critics
doesn’t have a linear relationship with the stability improve-
ment, this may depend on the complexity of the certain
scenario or the complexity of the algorithm.

135612 VOLUME 8, 2020



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

FIGURE 7. Mean episode reward of MADDPG-3PC and original MADDPG with 2 agents (a), 4 agents (b) and 5 agents (c) in 3 scenarios.

2) EVALUATION OF TRAINING EFFICACY OF ALGORITHM
Combining Figure 5 and TABLE 3, the mean rewards/
100 episodes of MADDPG-PC (U = 2,3,4) 5.27%,
3.58%, 7.50% compared with MADDPG in cooperative
navigation; increase by 29.09%, 28.68%, 38.31% in predator-
and-prey; increase by 6.83%, 7.73%, 24.37% in physical
deception. We thus conclude that parallel-critic architecture
can also improve the training efficacy by expanding
the exploring range of agents, moreover, the increas-
ing number of parallel learning critics indeed have ben-
eficial effects on training (MADDPG-4PC performs the
best).

3) EVALUATION OF EFFECTIVENESS OF ALGORITHM
According to the introduction of scenarios in the above
section, we mainly adopt the following three indicators to
evaluate the performance of agents: mean colliding times,
mean occupation (capture) times and mean minimal distance
to target point (prey). Figure 6 shows the above three indi-
cators with 0-1 regularization of MADDPG-PC (U = 2,3,4)
and MADDPG in three scenarios. We can see that in all
three scenarios, the MADDPG-PC (U = 2,3,4) reduces in
mean colliding times, improves in the mean minimal dis-
tance to target point (prey), and mean occupation (cap-
ture) times distinctively. So we can conclude that with the

VOLUME 8, 2020 135613



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

FIGURE 8. Mean episode reward of MADDPG-3PC (with policy smoothing), MADDPG-3PC (without policy smoothing) and original MADDPG in
cooperative navigation (left), predator-and-prey (middle), physical deception (right).

TABLE 4. Experimental data between MADDPG-3PC and MADDPG with different number of agents.

increasing number of our parallel-critic architecture, the per-
formance of agents is getting better, so does the training
effectiveness.

4) EVALUATION OF ADAPTABILITY OF ALGORITHM WHILE
CHANGING THE NUMBER OF AGENTS
We also evaluate the performance of our algorithm while
changing the number of agents in each scenario. We choose
MADDPG-3PC and original MADDPG as comparison for
simplifying the experimental procedure.

As shown in Figure 7 and TABLE 4, indicators of our
algorithm do not degenerate when the number of agents
changes, this confirms that MADDPG-PC has strong adapt-
ability when training agents are changing.

5) ABLATION STUDIES ON POLICY SMOOTHING
TECHNIQUE
In order to identify the effect of our proposed policy
smoothing technique, we choose the following 3 algorithms:
original MADDPG,MADDPG-3PC (without policy smooth-
ing) and MADDPG-3PC (with policy smoothing) for com-
parative analysis. The testing scenarios are the same as
above. Figure 8 shows the mean episode reward curves of 3
algorithms, we can easily conclude that policy smoothing
technique can not improve the training efficacy of MAD-
DPG agents. TABLE 5 compares the reward STD in the
whole 60000 episodes and after 40000 episodes respectively
of the 3 algorithms, we can conclude that MADDPG-3PC
(with policy smoothing) outperform the rest in both indexes,
and MADDPG-3PC (without policy smoothing) is even less

135614 VOLUME 8, 2020



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

TABLE 5. Reward STD in whole 60000 episodes and after 40000 episodes of 3 algorithms in 3 scenarios.

stable than originalMADDPG in some scenarios. That means
policy smoothing can help stabilize the training process sig-
nificantly by adding and clipping noise in action inputs.

V. CONCLUSIONS AND FUTURE WORK
In this article, we present a novel parallel-critic architecture
based on MDRL algorithmMADDPG called MADDPG-PC,
which can not only stabilize the whole training process in
non-stationary multi-agent environments but also improve
the efficacy and effectiveness significantly. We also design
a target policy smoothing technique tailor-made for our pro-
posed method by adding random noise as regularization to
alleviate the high variance of policy training, thus further
strengthen the policy robustness. Empirical evaluation results
in 4 aspects show that our method outperforms the original
MADDPG algorithm on multiple cooperative-competitive
tasks.

However, our research has the following shortcomings:
(1) the structure and training pattern of our method may
increase the general training time, especially in some com-
plex scenarios. (2) Our method is not applicable to multi-
ple environments apart from MPE. (3) Our method lacks
an explicit communication mechanism, cooperative agents
form collective policies in a spontaneous way, which is
very inefficient compared to novel algorithms like COMA,
CommNet, etc.

Thus, we will focus on the following directions in the next
work: (1) reducing the training time by incorporating novel
tricks such as parameter sharing, removing unnecessary infor-
mation and compressing state or action space in our current
structure. (2) Developing the adaptability of our method to
different environments by incorporating transfer learning [44]
or curriculum learning [45] techniques. (3) Improving the
algorithm’s ability to generate better cooperative policies in
mixed environments by combing game theory, communica-
tion rules, and other traditional RL methods.

ACKNOWLEDGMENT
(Yu Sun and Jun Lai contribute equally to this work.)

REFERENCES
[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement learn-

ing: A survey,’’ J. Artif. Intell. Res., vol. 4, pp. 237–285, May 1996.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[3] M. Pipattanasomporn, H. Feroze, and S. Rahman, ‘‘Multi-agent systems in
a distributed smart grid: Design and implementation,’’ in Proc. IEEE/PES
Power Syst. Conf. Expo., Mar. 2009, pp. 1–8.

[4] L. Buşoniu, R. Babuška, and S. B. De, ‘‘Multi-agent reinforcement learn-
ing: An overview,’’ in Innovations in Multi-Agent Systems and Applica-
tions. Berlin, Germany: Springer, 2010, pp. 183–221.

[5] A. Galindo-Serrano and L. Giupponi, ‘‘Distributed Q-learning for aggre-
gated interference control in cognitive radio networks,’’ IEEE Trans. Veh.
Technol., vol. 59, no. 4, pp. 1823–1834, May 2010.

[6] Y. Wang and C. De Silva, ‘‘Multi-robot box-pushing: Single-agent Q-
learning vs. Team Q-learning,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., Oct. 2006, pp. 3694–3699.

[7] M. L. Littman, ‘‘Friend-or-foe Q-learning in general-sum games,’’ in Proc.
ICML, 2001, pp. 322–328.

[8] J. Hu and M. P. Wellman, ‘‘Nash Q-learning for general-sum stochastic
games,’’ J. Mach. Learn. Res., vol. 4, pp. 1039–1069, Nov. 2003.

[9] A. Greenwald, K. Hall, and R. Serrano, ‘‘Correlated Q-learning,’’ in Proc.
20th Int. Conf. Int. Conf. Mach. Learn. (ICML), 2003, pp. 242–249.

[10] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, ‘‘A survey and critique of
multiagent deep reinforcement learning,’’ Auto. Agents Multi-Agent Syst.,
vol. 33, no. 6, pp. 750–797, Nov. 2019.

[11] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[12] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, ‘‘Multiagent cooperation and competition with deep
reinforcement learning,’’ PloS ONE, vol. 12, no. 4, pp. 1–15, 2017.

[13] J. K. Gupta, M. Egorov, and M. Kochenderfer, ‘‘Cooperative multi-agent
control using deep reinforcement learning,’’ in Proc. Int. Conf. Auto.
Agents Multiagent Syst. Cham, Switzerland: Springer, 2017, pp. 66–83.

[14] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, ‘‘Emer-
gent complexity via multi-agent competition,’’ 2017, arXiv:1710.03748.
[Online]. Available: http://arxiv.org/abs/1710.03748

[15] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, ‘‘Learning to
communicate with deep multi-agent reinforcement learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2137–2145.

[16] S. Sukhbaatar and R. Fergus, ‘‘Learning multiagent communication
with backpropagation,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 2244–2252.

[17] P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang,
‘‘Multiagent bidirectionally-coordinated nets: Emergence of human-
level coordination in learning to play StarCraft combat games,’’ 2017,
arXiv:1703.10069. [Online]. Available: http://arxiv.org/abs/1703.10069

[18] J. Jiang and Z. Lu, ‘‘Learning attentional communication for multi-
agent cooperation,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 7254–7264.

[19] H. Mao, Z. Gong, Y. Ni, and Z. Xiao, ‘‘ACCNet: Actor-coordinator-
critic net for ‘learning-to-communicate’ with deep multi-agent rein-
forcement learning,’’ 2017, arXiv:1706.03235. [Online]. Available:
http://arxiv.org/abs/1706.03235

VOLUME 8, 2020 135615



Y. Sun et al.: Novel Multi-Agent Parallel-Critic Network Architecture for Cooperative-Competitive Reinforcement Learning

[20] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, and Y. Ni, ‘‘Learning agent
communication under limited bandwidth by message pruning,’’ 2019,
arXiv:1912.05304. [Online]. Available: http://arxiv.org/abs/1912.05304

[21] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, and Y. Ni, ‘‘Learning multi-agent
communication with double attentional deep reinforcement learning,’’
Auto. Agents Multi-Agent Syst., vol. 34, pp. 1–34, Mar. 2020.

[22] Z. Peng, L. Zhang, and T. Luo, ‘‘Learning to communicate via supervised
attentional message processing,’’ in Proc. 31st Int. Conf. Comput. Anima-
tion Social Agents (CASA), 2018, pp. 11–16.

[23] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ‘‘Value-decomposition networks for cooperative multi-agent
learning based on team reward,’’ in Proc. 17th Int. Conf. Auto. Agents
Multiagent Syst. (AAMAS), 2018, pp. 2085–2087.

[24] T. Rashid, M. Samvelyan, C. Schroeder de Witt, G. Farquhar, J. Foerster,
and S.Whiteson, ‘‘QMIX:Monotonic value function factorisation for deep
multi-agent reinforcement learning,’’ 2018, arXiv:1803.11485. [Online].
Available: http://arxiv.org/abs/1803.11485

[25] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
‘‘Counterfactual multi-agent policy gradients,’’ 2017, arXiv:1705.08926.
[Online]. Available: http://arxiv.org/abs/1705.08926

[26] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis, ‘‘Optimal and approximate
Q-value functions for decentralized POMDPs,’’ J. Artif. Intell. Res., vol. 32,
pp. 289–353, May 2008.

[27] Y. Yang, J. Hao, G. Chen, H. Tang, Y. Chen, Y. Hu, C. Fan, and
Z. Wei, ‘‘Q-value path decomposition for deep multiagent reinforce-
ment learning,’’ 2020, arXiv:2002.03950. [Online]. Available: http://arxiv.
org/abs/2002.03950

[28] H. Mao, W. Liu, J. Hao, J. Luo, D. Li, Z. Zhang, J. Wang, and
Z. Xiao, ‘‘Neighborhood cognition consistent multi-agent reinforce-
ment learning,’’ 2019, arXiv:1912.01160. [Online]. Available: http://arxiv.
org/abs/1912.01160

[29] H. Mao, Z. Gong, and Z. Xiao, ‘‘Reward design in cooperative multi-
agent reinforcement learning for packet routing,’’ 2020, arXiv:2003.03433.
[Online]. Available: http://arxiv.org/abs/2003.03433

[30] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, ‘‘Mean field
multi-agent reinforcement learning,’’ 2018, arXiv:1802.05438. [Online].
Available: http://arxiv.org/abs/1802.05438

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, ‘‘Continuous control with deep reinforce-
ment learning,’’ 2015, arXiv:1509.02971. [Online]. Available: http://arxiv.
org/abs/1509.02971

[32] H. Ryu, H. Shin, and J. Park, ‘‘Multi-agent actor-critic with generative
cooperative policy network,’’ 2018, arXiv:1810.09206. [Online]. Avail-
able: http://arxiv.org/abs/1810.09206

[33] X. Chu and H. Ye, ‘‘Parameter sharing deep deterministic policy
gradient for cooperative multi-agent reinforcement learning,’’ 2017,
arXiv:1710.00336. [Online]. Available: http://arxiv.org/abs/1710.00336

[34] J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, ‘‘Reducing overesti-
mation bias inmulti-agent domains using double centralized critics,’’ 2019,
arXiv:1910.01465. [Online]. Available: http://arxiv.org/abs/1910.01465

[35] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approxi-
mation error in actor-critic methods,’’ 2018, arXiv:1802.09477. [Online].
Available: http://arxiv.org/abs/1802.09477

[36] H. Mao, Z. Zhang, Z. Xiao, and Z. Gong, ‘‘Modelling the dynamic
joint policy of teammates with attention multi-agent DDPG,’’ 2018,
arXiv:1811.07029. [Online]. Available: http://arxiv.org/abs/1811.07029

[37] R. E. Wang, M. Everett, and J. P. How, ‘‘R-MADDPG for partially observ-
able environments and limited communication,’’ 2020, arXiv:2002.06684.
[Online]. Available: http://arxiv.org/abs/2002.06684

[38] S. Iqbal and F. Sha, ‘‘Actor-attention-critic for multi-agent reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2019, pp. 2961–2970.

[39] M. A.Wiering and H. van Hasselt, ‘‘Ensemble algorithms in reinforcement
learning,’’ IEEE Trans. Syst., Man, Cybern. B. Cybern., vol. 38, no. 4,
pp. 930–936, Aug. 2008.

[40] S. Faußer and S. Friedhelm, ‘‘Ensemble methods for reinforcement learn-
ing with function approximation,’’ in Proc. Int. Workshop Multiple Classi-
fier Syst., 2011, pp. 56–65.

[41] S. Faußer and F. Schwenker, ‘‘Neural network ensembles in reinforcement
learning,’’ Neural Process. Lett., vol. 41, no. 1, pp. 55–69, Feb. 2015.

[42] A. Hans and S. Udluft, ‘‘Ensembles of neural networks for robust rein-
forcement learning,’’ inProc. 9th Int. Conf. Mach. Learn. Appl., Dec. 2010,
pp. 401–406.

[43] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, ‘‘EPOpt:
Learning robust neural network policies using model ensembles,’’ 2016,
arXiv:1610.01283. [Online]. Available: http://arxiv.org/abs/1610.01283

[44] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[45] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘‘Curriculum learn-
ing,’’ in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

YU SUN received the B.E. degree from the Nan-
jing University of Posts and Telecommunications,
in 2015. He is currently pursuing the master’s
degree with Army Engineering University. His
research interests include intelligent decisionmak-
ing and mission planning.

JUN LAI received the M.S. degree in military
communication from PLAUST, in 2005. He is cur-
rently an Associate Professor with the Army Engi-
neering University of PLA. His current research
interests include deep reinforcement learning and
computer simulation.

LEI CAO received the B.S. and M.S. degrees from
the China University of Science and Technology
and PLA University of Science and Technology,
in 1987 and 1990, respectively. He is currently
a Professor with the PLA University of Science
and Technology. His research interests include
machine learning, command information system,
and intelligent decision making.

XILIANG CHEN received the B.S. and M.S.
degrees from the PLA University of Science and
Technology, in 2007 and 2009, respectively, where
he is currently pursuing the Ph.D. degree. He is
also Teaching at the PLA University of Science
and Technology. His research interests include
reinforcement learning and intelligent decision
making.

ZHIXIONG XU received the B.E. and M.S.
degrees from the PLA University of Science and
Technology, in 2015 and 2018, respectively, where
he is currently pursuing the Ph.D. degree. His
research interests include machine learning and
intelligent decision making.

YUE XU received the B.E. and M.S. degrees from
Southeast University, in 1988 and 1991, respec-
tively. His current research field involves simula-
tion and intelligent decision-making.

135616 VOLUME 8, 2020


