
Received July 3, 2020, accepted July 21, 2020, date of publication July 24, 2020, date of current version August 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3011747

F-SQL: Fuse Table Schema and Table Content for
Single-Table Text2SQL Generation
XIAOYU ZHANG 1, FENGJING YIN 1, GUOJIE MA2, BIN GE1,
AND WEIDONG XIAO1
1Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha 410073, China
2School of Software Engineering, East China Normal University, Shanghai 200000, China

Corresponding authors: Xiaoyu Zhang (xyzhang09@nudt.edu.cn) and Fengjing Yin (yinfengjing@nudt.edu.cn)

The work was supported by the NSFC under Grant 61872446, Grant 61902417, and Grant 71971212.

ABSTRACT Automatically parsing SQL queries from natural languages can help non-professionals access
databases and improve the efficiency of information utilization. It is a long-term research issue and has
recently received attention from the relevant communities. Although previous researches have provided
some workable solutions, most of them only consider table schemas and natural language questions when
parsing SQL queries, and do not use table contents. We observe that table contents can provide more helpful
information for some user questions. In this paper, we propose a novel neural network approach, F-SQL,
to focus on solving the problem of table content utilization. In particular, we employ the gate mechanism to
fuse table schemas and table contents and get the more different representation about table schemas. We test
this idea on the WikiSQL and TableQA datasets. Experimental results show that F-SQL achieves new state-
of-the-art results on WikiSQL and TableQA.

INDEX TERMS Text2SQL, BERT, table schema, table content.

I. INTRODUCTION
Semantic parsing is to map natural languages to formal
meaning representations. In particular, parsing SQL queries
from natural languages is an important part of semantic
parsing. Some researchers call it Text2SQL. Text2SQL can
help non-professionals access databases and improve the effi-
ciency of information utilization. It is a long-term research
issue and has recently received attention from the relevant
communities. Text2SQL requires the system to understand
natural language questions and generate corresponding SQL
queries.

Although there are already some solutions for Text2SQL
task, most of them only consider table schemas and natural
language questions when parsing SQL queries, and do not
use table contents. We observe that table contents can provide
more helpful information for some user questions. A typical
example is shown in Figure 1. The blue font indicates the table
schema. The black font and red font indicate the table content.
The red font indicates the target value in the SQL query.
The table schema consists of multiple column names. The
table content contains multiple cells. For the given question

The associate editor coordinating the review of this manuscript and

approving it for publication was Weipeng Jing .

‘‘Where is Qingxiu Nancheng Department Store in Nan-
ning?’’, since ‘‘Area’’ and ‘‘Region’’ have similar seman-
tic information, if the model only considers table schema,
it cannot distinguish them effectively. The table content of
‘‘Region’’ column contains the target value ‘‘Nanning’’. If the
model can consider both the table schema and the table
content, then columns with similar semantics would be easily
distinguished.

In this work, we propose a novel approach, F-SQL, to focus
on solving the problem of table content utilization. Based
on SQL syntax, we employ the sketch-based approach [1]
to generate SQL queries from natural language questions.
The sketch-based approach is essentially a template filling
method. The sketch can also be considered as the template.
Our predefined SQL sketch is shown in Figure 2. It cor-
responds naturally to the syntactical structure of the SQL
query. ‘‘SELECT’’ and ‘‘WHERE’’ represent keywords, and
the blue parts indicate the slots. The sketch-based approach
needs model to predict these slots to assemble SQL. Our
proposed F-SQL contains multiple sub-models, and these
sub-models respectively predict different slots in the sketch.
Taking $OP in Figure 2 as an example, it represents the
conditional column operation, and its target set is [‘‘<’’,
‘‘>’’, ‘‘==’’, ‘‘!=’’]. We use a classification sub-model to

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 136409

https://orcid.org/0000-0003-4879-8499
https://orcid.org/0000-0002-6045-0236
https://orcid.org/0000-0001-7933-6946

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

FIGURE 1. A typical example.

FIGURE 2. Predefined sketch.

predict it. The sub-models depend on the pattern of dataset,
and they share the same pre-trained encoder. Compared with
the traditional sketch-based program synthesis approaches
[3]–[5], our approach can be viewed as a neural approach.

The slots which need be filled in Figure 2 can be divided
into five types: column($COLUMN), quantity(*), relation-
ship($WOP), operation($AGG, $OP) and value($VALUE).
These slots are not isolated from each other. By training them
jointly, we can achieve better SQL generation performance.
We observe that the most challenging part in parsing SQL
queries is column prediction($COLUMN). Because the infor-
mation contained in table schemas(column names) is limited,
relying on table schemas alone is not enough to distinguish
columns with similar semantics. For this challenge, we find
table contents can provide differentiate information to help
model effectively distinguish these columns. We use the gate
mechanism to fuse table schemas and table contents, and get
more different column representations.

We test our idea on the WikiSQL1 and TableQA2 datasets.
WikiSQL is an English dataset and TableQA is a Chinese
dataset. The syntax of SQL in WikiSQL is relatively simple.
TableQA is built by Zhuiyi Technology based on business
considerations in an AI competition. The competition is held
in June 2019, and we participate in this AI competition and
finally win the first place.ComparedwithWikiSQL, TableQA
is more complicated.

In this work, we focus on the table content utilization on
the single-table Text2SQL generation task. Our contributions
can be summarized into three folds. First, we are the first
to consider the table contents based on neural technology in
the single-table SQL generation task. Second, we propose a
novel neural network approach F-SQL. F-SQL uses the gate
mechanism to fuse table schemas and table contents, and get
more different column representations. This method can help
the model to distinguish columns with similar semantics and

1https://github.com/salesforce/WikiSQL
2https://tianchi.aliyun.com/competition/entrance/231716/introduction?

spm=5176.12281949.1003.1.503b2448m6OhlF&lang=en-us

achieve better SQL generation performance. Although the
gate mechanism is relatively simple, it shows a surprising
improvement. Finally, our proposed F-SQL bypasses the pre-
vious state-of-the-art approaches and achieves the new state-
of-the-art results on WikiSQL and TableQA.

II. RELATED WORK
Semantic parsing is to transform natural languages into
formal meaning representations. The transformed representa-
tions are highly relevant to applications, ranking from ques-
tion answering [9] to robot control [10]. A research area
which is very similar to our task is Text2Code [11], [12]. The
goal of this task is to parse the executable programming lan-
guage(such as Python) from natural languages. As a subtask
of semantic parsing, Text2SQL has a long research history.
Its goal is to parse SQL queries from natural languages.
Text2SQL can help non-professionals access the databases,
and can also be used as a solution based on database Q&A.
Early researches [13]–[16] focus on domain databases and
rely on domain experts to build corresponding parsing rules.
These approaches generally involve more manual feature
engineering. Although they work well on special databases,
the generalization is weak and re-designed parsing rules are
needed on new databases.

WikiSQL [6] is one of the first large-scale Text2SQL
databases, and it contains 80,654 pairs of natural language
question and corresponding human-annotated SQL query.
It involves 24,241 tables which are fromWikipedia. The large
data size of WikiSQL can take neural technology, and it has
newly attracted much attention from relevant communities.
Note although the research on Text2SQL is valuable, manual
data annotation is still difficult due to the professional syntax
knowledge of SQL. This situation leads to a few large-scale
Text2SQL datasets. Compared with real application scenar-
ios, WikiSQL makes many simplifications. For example,
WikiSQL assumes that the user question must contain the
table cells. TableQA is the first large-scale Chinese Text2SQL
dataset containing 45,918 pairs about question and annotated
SQL query. Compared to WikiSQL, the question forms are
highly differentiated on TableQA. TableQA does not impose
any constraint on user questions.

Earlier researches based on neural semantic parsing con-
sider the Text2SQL task as a sequence generation problem,

136410 VOLUME 8, 2020

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

and employ the sequence-to-sequence neural network struc-
ture [17] with attention mechanism [18] and copy mech-
anism [19]. They learn the mapping relationship between
the user question and the SQL query through the ‘‘encoder-
decoder’’ framework. Seq2SQL [6] breaks the SQL query
into two components and the keywords of these two com-
ponents are ‘‘Select’’ and ‘‘Where’’. It introduces the rein-
forcement learning mechanism to train the model, and then
generates the two components of SQL query independently.
The performance of Seq2SQL exceeds the general sequence-
to-sequence Text2SQL generation model.

Some studies have found that using SQL syntax rules
can constrain the output space and improve SQL generation
performance. Xu et al. [1] thinks Seq2SQL is effected by the
conditional order, but the conditional order does not affect the
SQL execution result. They propose a sketch-based approach
SQLNet. SQLNet takes the sequence-to-set method to further
simplify the SQL query generation. It divides the Text2SQL
task into 6 subtasks which predict the filled slots in the prede-
fined sketch. Only the value in where clause is generated by
the sequence-to-sequence structure, and others in the prede-
fined sketch use the classification structure. Therefore, SQL-
Net is no longer effected by conditional order. Yu et al. [20]
believe that additional entity type information can improve
SQL generation performance, and propose TypeSQL model.
TypeSQL introduces the entity information for every token of
the question by the external knowledge. It also employs the
sequence-to-set method based on the sketch and breaks the
Text2SQL into 6 subtasks. The difference is that TypeSQL
shares the parameters of some encoders, reducing from the
original 12 encoders to 6 encoders. Coarse2Fine [21] takes
a two-stage approach to generate SQL queries from natural
languages. It first generates a rough intermediate representa-
tion, and then modifies the intermediate representation based
on the predefined set of sketches. McCann et al. [22] regard
the Text2SQL task as a multi-task question answering prob-
lem, and propose MQAN. MQAN is a multi-task question
answering neural framework and it can jointly train multiple
subtasks. Wang et al. [23] assume that all generated SQL
queries are able to be executed by computers. They propose
an execution-guided decoding strategy in the SQL query
generation phase. This strategy need remove non-executable
SQL queries from all candidate SQL queries based on table
information. Shi et al. [24] propose IncSQL based on the
sequence-to-action approach. IncSQL is able to encode syn-
tax through the available actions in the predefined inventory.

Although neural network technology has been success-
fully applied to many natural language processing tasks, its
performance is affected by the scale of high-quality train-
ing data. In general, the performance of neural networks
becomes strong with the increase of high-quality training
data. For the Text2SQL task, although available datasets such
as WikiSQL already contain tens of thousands of training
samples, its size still cannot cover all natural language expres-
sions. Fortunately, pre-training techniques [25]–[27] using
large-scale external data recently develops rapidly. and have

showed promoting performance on many natural language
tasks. Hwang et al. [7] use the pre-trained BERT to replace
the static language model GloVe [28] as the encoder, and
propose SQLova on the WikiSQL dataset. After the encoder,
they introduce three structures, of which SQLova is the core
and has achieved the outstanding results. SQLova is similar
to SQLNet, except that the encoder is significantly different.
SQLova uses pre-trained BERT, and SQLNet uses static lan-
guage model GloVe. The performance comparison between
SQLova and SQLNet proves the effectiveness of pre-training
techniques on the Text2SQL task. In addition, Wang et al.
claim that their proposed SQLova has exceeded human level.
He et al. use MT-DNN [29] as the pre-trained weights for
BERT and propose X-SQL. They think that MT-DNN can
make the pre-trained model learn more label information by
multi-task learning framework, and make the Text2SQL task
benefit from the related label information captured by MT-
DNN. The output structure of X-SQL is relatively simple,
and BERT encoder plays the main fitting role. In addition,
X-SQL replaces [CLS] with [XLS], and relearns the semantic
information of the input sequence to get a better downstream
representation for multiple subtasks.

Text2SQL studies have shown increasing results, but these
studies do not make full use of database information. When
generating SQL queries from natural languages, they only
consider table schemas and natural language questions, and
do not use table contents. This method of data utilization
brings challenges to COLUMN prediction in the sketch.
If the table schema contains columns with similar semantics,
the previous approaches cannot distinguish them effectively
based on semantic information of these columns. In this work,
we explore the use of table contents.

III. METHODOLOGY
In this section, we introduce our proposed F-SQL model.
First, we define the sketch-based Text2SQL task. Then,
we describe the overall framework of F-SQL and related
calculation details. In particular, 3.4 ‘‘Enhanced column rep-
resentation’’ is the core in our work, focusing on how to
enhance column representation by fusing table schemas and
table contents. Finally, we introduce related implementation
details.

A. PROBLEM DEFINITION
Text2SQL task is parsing SQL queries automatically from
natural language questions. The syntax of SQL queries
is relatively regular. The sketch-based approaches are the
current main solutions. They essentially belong to the
template-filling framework and generate SQL queries by
predicting the slots in the predefined sketch. Compared
with seq2seq approach, the sketch-based approach is simpler
and under control. Our proposed F-SQL also adopts the
sketch-based approach. For the single-table Text2SQL task,
the SQL sketch we define is shown in Figure 2.

‘‘SELECT’’ and ‘‘WHERE’’ represent keywords in the
SQL queries. We assume that every SQL query must contain

VOLUME 8, 2020 136411

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

FIGURE 3. F-SQL neural network architecture.

the ‘‘SELECT’’ keyword. The blue tokens starting with ‘‘$’’
are slots to fill. These slots can be divided into five types: col-
umn($COLUMN), quantity(*), relationship($WOP), opera-
tion($AGG, $OP) and value($VALUE).

$COLUMN represents the column name in the table.
We refer to the column appearing in select clause and the
column appearing in where clause as selected column and
conditional column respectively. The model needs to deter-
mine whether the columns in the table appear in select clause
or where clause. This task can be viewed as two binary classi-
fication problems. Let c1, c2, . . . , cm be columns in the table,
s1, s2, . . . , sm be whether the corresponding column appears
in select clause, w1,w2, . . . ,wm be where the corresponding
column appears in where clause. In particular, si ∈ [0, 1] and
wi ∈ [0, 1]. 1 means yes.
‘‘*’’ is the number of columns to be predicted. The numbers

of target columns in the SQL query are not fixed, and the
model needs to predict the corresponding numbers. We can
determine the final selected columns and conditional columns
based on the predicted numbers and the probabilities of the
selected columns and conditional columns. We assume that
each SQL query contains at least one select column, and the
number of conditional columns is not limited. The prediction
of the number of related columns can be regarded as a classi-
fication problem.

$AGG and $OP are column-related operations, respec-
tively aggregation operations and conditional operations.
$AGG aggregation set is [‘‘’’, ‘‘AVG’’, ‘‘MAX’’, ‘‘MIN’’,
‘‘COUNT’’, ‘‘SUM’’], and ‘‘’’ means there is no related

aggregation. $OP conditional operation set is [‘‘<’’, ‘‘>’’,
‘‘==’’, ‘‘!=’’]. $WOP is the relationship between conditions
in where clause. When the number of conditional columns
is 1, $WOP is NULL.When the SQL query contains multiple
conditional columns, $WOP can be ‘‘AND’’ or ‘‘OR’’.

$VALUE is the value associated with the conditional col-
umn in where clause. We consider value prediction as a
problem of extracting value from the question. The value
extracted from the question is not necessarily the cell in the
table. So for the string-type column, we select a cell from the
table based on user question and extracted value as the final
value to generate SQL.

The slots in the sketch are not isolated from each other.
We consider these slot prediction tasks as multiple subtasks,
and jointly train them to establish the connection between
them. The basic task of Text2SQL is to generate SQL queries
based on user questions and table schemas. We take the table
contents as an additional input. In general, the input of our
model contains user question, table schemas(columns) and
table contents(cells). The SQL queries are assembled from
results of multiple subtasks based on the predefined sketch.

B. F-SQL
The sketch-based approach uses multiple sub-models to fill
slots in the predefined sketch. The neural network structure
of F-SQL is shown in Figure 3. It contains three components,
encoder, enhanced column representation, multiple subtask
outputs. We use BERT as our encoder.

136412 VOLUME 8, 2020

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

FIGURE 4. BERT encoder structure.

Column prediction is one of the biggest challenges in the
single-table Text2SQL task. Some tables contain columns
with similar semantics, and previous approaches are not able
to distinguish them by column names alone. In the enhanced
column representation, F-SQL uses the attention mechanism
to obtain the column representation and content representa-
tion. Then it takes the gate mechanism to fuse them to obtain
the enhanced column representation. For columns with sim-
ilar semantics, the enhanced column representation is more
discriminating due to the addition content information.

In order to fill the slots in the sketch, our F-SQL contains
multiple sub-models, which can be divided into 5 types. Note
these sub-models share the same BERT encoder.

• NUM. It is responsible for predicting the number of
columns and includes two sub-models S-NUM and
W-NUM, respectively corresponding to the selected
columns and conditional columns.

• COL. It predicts the columns and includes sub-models
S-COL and W-COL, respectively corresponding to the
selected columns and conditional columns.

• OPERATION. It predicts column-related operations,
including aggregation operations S-COL and condi-
tional operations W-COL.

• W-OP. It predicts the relationship between conditions
in where clause.

• W-VALUE. It extracts target values from the user ques-
tion.

• W-MATCH. It determines which column the extracted
value belongs to.

C. ENCODER
The model uses BERT as the encoder. Input sequence con-
sists of three components, question, table schema and table
content. Table schema means the multiple column names
in the table. Column name and corresponding content are
concatenated in order. Note GPU capacity is limited, and all
content cells cannot be processed at the same time. So for
each column, we use the cell most similar to the question as
a substitute for table content. For the example in Figure 1,
the question is ‘‘Where is QingXiu Nancheng Department
Store in Nanning?’’, and the content of the ‘‘Region’’ column
is [‘‘Fangchenggang’’, ‘‘Nanning’’, ‘‘Nanning’’. . .]. For the
‘‘Region’’ column, the cell most similar to the user question
is ‘‘Nanning’’. The model uses ‘‘Nanning’’ as a substitute for

the table content of the ‘‘Region’’ column. We use Rouge-L
as the similarity for question and table content. The input can
be expressed as follows:

[XLS],Q1,Q2, . . . ,QL , [SEP], S11, S12, . . . , [SEP],C11,

C12, . . . , [SEP], S21, S22, . . . , [SEP],C21,C22, . . . , [SEP],

. . . , [SEP], Sn1, Sn2, . . . , [SEP],Cn1,Cn2, . . . , [SEP] (1)

where [XLS] is the first token of the input sequence, indicting
the input sequence information. [SEP] is the separator which
separates the question, table schema and table content. Qi
and L represent the i-th token of the question and question
length respectively. Si is the i-th column name, and Ci is the
i-th column content. In particular, Sij is the j-th token of the
i-th column name and Cij is the j-th token of the i-th column
content. n indicates the number of columns in the table.
BERT contains three embedding weight matrices, corre-

sponding to token, type and position. BERT encoder structure
is described in Figure 4. Token embedding, Type embed-
ding and Position embedding encode word information, type
information and position information of the input sequence
respectively. In order to distinguish question and column, the
model uses ET0 to identify the question, and ET1 to identify
the column. In addition, the original BERT uses [CLS] tag
as the first token in the input sequence, and its semantic
vector has been pre-trained on external large-scale corpus.
We think that since subsequent subtasks depend on the [CLS]
representation, taking pre-trained [CLS] would reduce the
convergence effect and make the model get the local optimal
solution earlier. We take their method from He et al. [8].
We replace [CLS] with [XLS] and retrain the input sequence
representation [XLS] on the target Text2SQL task.

D. ENHANCED COLUMN REPRESENTATION
The model uses the BERT encoder to encode the input
sequence to obtain the BERT output vector. As shown in
Figure 3, the BERT output vector contains four parts, [XLS]
sequence information representation, question representa-
tion, column representation, content representation. We use
h to label them as follows.

h[XLS], hq1, hq2, . . . , hqL , h[SEP], hs11, hs12, . . . , h[SEP],

hc11, hc12, . . . , h[SEP], hs21, hs22, . . . , h[SEP], hc21, hc22,

. . . , h[SEP], . . . , h[SEP], hsn1, hsn2, . . . , h[SEP], hcn1, hcn2,

. . . , h[SEP] (2)

VOLUME 8, 2020 136413

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

where h[XLS] is the first token representation output by BERT
and it represents the sequence information. hq and hqi rep-
resent the question representation and the i-th token repre-
sentation of the question respectively. hs and hsij represent
the column representation and the j-th token representation
of the i-th column name respectively. hc and hcij represent the
content representation and the j-th token representation of i-th
column content respectively. L and n represent the length of
the question sequence and the number of columns in the table
respectively.

Each column name or column content may contain multi-
ple tokens. Some tokens are highly relevant to the question,
while others are just the opposite. These tokens should not be
treated equally when calculating column representation and
content representation. In order to highlight the tokens related
to the question, the model uses the attention mechanism to
learn new representations for each column name and column
content. The column representation with attention is calcu-
lated as follows.

ssij = dot(U1h[XLS],V1hsij) (3)

asij =
exp(ssij)∑ni
j=1 exp(ssij)

(4)

rsi =
ni∑
j=1

asijhsij (5)

where U1,V1 are learnable parameters. dot is the dot product
used to calculate the similarity of two vectors. s is the sim-
ilarity and a is the attention weight. Subscript ij represents
the j-th token of the i-th column name. rsi represents the i-th
column representation with attention.

Similar to the column, the content representation with
attention is calculated as follows.

scij = dot(U2h[XLS],V2hcij) (6)

acij =
exp(scij)∑ni
j=1 exp(scij)

(7)

rci =
ni∑
j=1

acijhcij (8)

where U2,V2 are learnable parameters. Subscript ij repre-
sents the j-th token of the i-th column content. rci is the i-th
content representation with attention.

He et al. [8] propose that adding sequence information
h[XLS] to rsi can help model better align question and column.
We think their opinion is effective. Our model contains multi-
ple subtasks and h[XLS] is the input of many subtasks. Adding
h[XLS] can also strengthen the connection between multiple
subtasks and systematically improve the SQL generation per-
formance. We add h[XLS] to rsi and rci.

rsi = rsi + h[XLS] (9)

rci = rci + h[XLS] (10)

We use the gate mechanism to fuse the column repre-
sentation rsi and the content representation rci, and get the

new enhanced column representation rei. We observe that
although table content can provide helpful information in
SQL query generation, not every cell is beneficial. The gate
mechanism can be used to control the flow of information,
and selectively incorporate the content information into the
column representation. The successful application of the gate
mechanism on LSTM [31] and GRU [32] has proven that
the gate mechanism is an effective method to control the
flow of information. The fusion calculation based on the gate
mechanism is as follows.

θ = sigmoid(U3rsi + V3rci) (11)

rei = θ � rsi + (1− θ)� rci (12)

whereU3,V3 are learnable parameters. rei is the i-th enhanced
column representation obtained by fusing the column repre-
sentation rsi and the content representation rci.

E. PREDICTION
Our proposed sketch is highly aligned with the SQL syntax.
The model predicts the slots in the predefined sketch and
assembles these slots to generate SQL query. The model
uses the [XLS] sequence representation h[XLS], the enhanced
column representation re and the question representation
hq from the BERT output to predict slots in the sketch.
Our proposed model contains multiple sub-models. These
sub-models are jointly trained and share the same underlying
encoder, as shown in Figure 3.

We use NUM sub-models to predict the number of
columns. In particular, we use S-NUM to predict the number
of selected columns and the target output space is determined
by the SQL pattern in the dataset. Similar, we use W-NUM
to predict the number of conditional columns. The calcula-
tion details of S-NUM and W-NUM are the same, only the
parameters are different. We model them as classification
problems. If the size of the target space is 2, the model uses
sigmoid as the activation function, otherwise softmax is used
as the activation function. Taking TableQA as an example, the
calculation method of W-NUM is as follows.

PW−NUM = softmax(W1h[XLS]) (13)

where W1 is the learnable parameter. PW−NUM indicates
output probability of the number of conditional columns.

We use W-OP to predict the relationship between con-
ditions in where clause. When the number of conditional
columns is greater than 1, the relationship between conditions
is ‘‘OR’’ or ‘‘AND’’. When the SQL query has only one
conditional column, the relationship is ‘‘NULL’’. We regard
it as a classification problem and related calculation is as
follows.

PW−OP = softmax(W2h[XLS]) (14)

where W2 is the learnable parameter. PW−OP is the output
probability of the relationship between conditions in where
clause.

136414 VOLUME 8, 2020

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

We use COL sub-models to predict columns. S-COL pre-
dicts the selected columns and it determines whether each
column in table schema would be selected. W-COL predicts
the conditional columns and it determine whether each col-
umn in table schema would appear in where clause. The
calculation methods of S-COL and W-COL are the same
and related parameters are different. They take the enhanced
column representation re as the input. The calculation detail
of S-COL is as follows.

PS−COLi = sigmoid(W3rei) (15)

where W3 is the learnable parameter. rei is the i-th enhanced
column representation in table schema. PS−COLi is the proba-
bility that the i-th column appears in select clause. The model
selects the ns columns with highest probability as the selected
columns based on Equation 15. ns represents the predicted
number about selected columns.

We use OPERATION to predict column-related opera-
tions. In particular, S-AGG is used to predict the aggrega-
tion operation related to the selected column and the target
output space is [‘‘’’, ‘‘AVG’’, ‘‘MAX’’, ‘‘MIN’’, ‘‘COUNT’’,
‘‘SUM’’]. We use OP to predict the operation related to the
conditional column and the target output space is [‘‘>’’,
‘‘<’’, ‘‘==’’, ‘‘!=’’]. Both S-AGG and OP take the enhanced
column representation re as the input. They are calculated
in the same way, and related parameters are different. The
calculation about S-AGG is as follows.

PS−AGGi = softmax(W4rei) (16)

whereW4 is the learnable parameter. PS−AGGi is the aggrega-
tion probability associated with i-th selected column.

We treat value prediction as an information extrac-
tion problem. Most of the previous researches extract
corresponding values based on the column representa-
tion. We observe that for SQL queries containing multiple
conditional columns, these approaches are not able to accu-
rately differentiate conditional columns with similar seman-
tic. We use the processing method in M-SQL [2] to divide the
value extraction based on the column representation into two
modules, W-VALUE and W-MATCH. W-VALUE does not
consider the column representation and directly extracts all
values from the question. Our model takes the joint training
framework and the loss of each subtask should not differ too
much. So W-VALUE uses 0-1 labelling instead of CRF [33]
which has a large loss. 0-1 labelling means that every token in
the question is marked as 0 or 1, and 1 means that this token
needs to be extracted.

PW−VALUEi = sigmoid(W5hqi) (17)

whereW7 is the learnable parameter. PW−VALUEi is the proba-
bility i-th token being extracted in the question. hq represents
the question representation and hqi is the i-th token represen-
tation of question.

The model uses W-VALUE to extract all values from
the question. Then W-MATCH determines whether the

extracted value and the conditional column match. We con-
sider W-MATCH as a matching problem. If the value does
not match the conditional column, this pair is labelled 0,
otherwise 1. The value is a segment which the model extracts
from the question and we use the mean of this segment
representation hq to represent the value.

hv =

e∑
i=s

hqi

e− s+ 1
(18)

scorei = sigmoid(u · tanh(W6hv +W7rei)) (19)

where s and e are the start and end index of the value in
the question. e − s + 1 indicates the length of the extracted
value and hv indicates the value representation. W6,W7 are
learnable parameters. scorei represents the matching score of
i-th conditional column and the value. We assign the value to
the conditional column with the highest matching score.

F. IMPLEMENTATION DETAILS
In order to make our experiments reproducible, we will intro-
duce some implementation details.

1) LOSS
Our model takes multi-task learning framework with multiple
subtasks. These subtasks are essentially classification prob-
lems, 0-1 binary classification or multi-class classification.
We use the cross-entropy of the output probability and the
truth label as the optimization goal. Taking the S-COL as an
example, its loss is as follows.

lossS−COL = −
1
n

n∑
i=1

(yilogP
S−COL
i

+ (1− yi)log(1− P
S−COL
i)) (20)

In this function, PS−COLi represents the probability that the
i-th column in table schema is selected. n is the number
of columns in the table schema. Loss of our model F-SQL
is the sum of the loss of multiple subtasks. We do not use
high-loss structures such as CRF in subtasks. This can make
the loss of multiple subtasks as close as possible to improve
the convergence performance. Note the initial loss of subtask
W-MATCH is high. As the training progress, its loss gradu-
ally decreases to the level of other subtasks.

2) WEIGHT SHARING
Subtasks in F-SQL share underlying framework weights,
including BERT encoder and the enhanced column represen-
tation. Some subtasks use the same input, for example both
S-NUM andW-OP take the [XLS] sequence representation as
the input. We observe that subtasks are not isolated from each
other. The model can establish connections between subtasks
by sharing the underlying weights, and help other models
converge to further improve SQL generation performance.
In addition, weight sharing can reduce the number of param-
eters and improve the speed of model training.

VOLUME 8, 2020 136415

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

FIGURE 5. Semantic retrieval model structure.

3) FINAL VALUE
The question may not contain the table cell exactly, and it
just contains synonyms for table cells. For the string-type
column, the value extracted from the question cannot directly
fill the $VALUE in the sketch. The model needs to determine
the final value from the table content. We use the semantic
retrieval model to determine the final value. The structure
of the semantic retrieval model is shown in Figure 5. The
input consists of three parts, user question, extracted value
and table content. Feature in Figure 5 represents the statistical
features between user question, extracted value and table
content. We concatenate the statistical features and the BERT
encoding about table content as the representation of the table
content. Finally, the model determines which cell is the final
value according to the representation of the table content.
We choose the table cell with the highest output probability
as the final value.

IV. EXPERIMENT
In this section,We evaluate our proposed F-SQL onWikiSQL
and TableQA. In the following, we first introduce experiment
setting, including dataset, evaluation methods and parameter
setting. Secondly we compare F-SQL with other state-of-
the-art approaches in SQL query generation performance.
Then we show the performance about M-SQL and F-SQL on
various subtasks. Finally we explore several ways to utilize
table content.

A. EXPERIMENT SETTING
Manual data annotation is still difficult due to the professional
syntax knowledge of SQL. To our knowledge, WikiSQL
and TableQA are the two largest datasets in the single-table
Text2SQL task. WikiSQL is an English dataset and contains
80,654 question and annotated SQL query pairs. WikiSQL is
proposed in 2017. TableQA is a Chinese dataset and contains
45,918 question and annotated SQL query pairs. TableQA
is proposed by Zhuiyi Technology in an AI competition.
Compared with WikiSQL, TableQA is more complicated.
It does not impose any restrictions on the question and the

value in the sketch may not appear in the question. We use
WikiSQL and TableQA as our experimental data. Note Zhuiyi
Technology agree to open TableQA after the competition
is over. Unfortunately, only training and validation data are
currently open and test data is not yet accessible. In order to
effectively evaluate the performance of our model, we divide
the validation data equally into two portions, one for adjusting
parameters and supervising training, and another for testing
performance.

We use three metrics to compare our F-SQL and
other state-of-the-art approaches on WikiSQL and TableQA
dataset. Logical-form accuracy. It compares the predicted
SQL query with ground truth and verifies if they match
exactly. Since the order of the conditions in where clause does
not affect the execution result of the SQL query, we do not
consider the order of conditions. This process can eliminate
false negatives due to conditional order. Execution accu-
racy. It compares the results of the predicted SQL query and
ground truth and verifies if they are equal. Compared with
Logical-form accuracy, its results are high and some false
positives may be generated.Mean accuracy. It is the mean of
the first two metrics. Compared with them, Mean accuracy is
more suitable. For the expediency of description, in the rest of
this paper, we use LX, X and MX to represent Logical-form
accuracy, Execution accuracy and Mean accuracy.

We implement our proposed F-SQL model based on
the pre-trained BERT with Whole Word Masking and use
Pytorch as our backend. We count the length of input
sequence in datasets and observe that the maximum length
does not exceed 512. This means that BERT can directly pro-
cess the input sequence. In order to avoid losing information,
we do not truncate the input sequence and take the maximum
length of the input sequence in dataset as input length.We use
BertAdamwith lr = 2e−5 as our optimizer and use the early
stopping strategy to supervise the training process.

B. OVERALL PERFORMANCE
Table 1 shows the experimental results of our proposed
F-SQL and some state-of-the-art models on WikiSQL and

136416 VOLUME 8, 2020

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

TABLE 1. The overall performance on TableQA.

TABLE 2. The performance(%) of subtasks on WikiSQL.

TABLE 3. The performance(%) of subtasks on TableQA.

TableQA. We use bold to indicate the highest score in
each column. Except for F-SQL, other models don’t use
the table content as additional input. In addition, we don’t
use the execution-guided decoding strategy [23] to generate
SQL. Although the execution-guided decoding strategy can
improve the performance of SQL generation, it reduces the
efficiency of SQL generation and brings unfairness to the
comparison between models.

The experimental results in Table 1 show that our proposed
F-SQL is advanced and achieves the new state-of-the-art per-
formance on WikiSQL and TableQA. F-SQL reaches 88.5%
MX and 91.8% MX on WikiSQL and TableQA test data
respectively. Compared toM-SQL, F-SQL shows+1.9%LX,
+2.8% X and +2.3% MX on WikiSQL test data. F-SQL
shows +1.6% LX, +1.6% X and 1.6% MX on TableQA
test data. These improvements prove the effectiveness of our
approach. We think that these improvement mainly come
from two points, the use of table content and the gate mecha-
nism module. Table contents can provide more support infor-
mation for themodel. The gatemechanism can help themodel
to selectively fuse information. For SQL query parsing task,
we think that not all table contents are useful. Some table
contents can provide gain to the model, while others are
harmful.

C. SUBTASK PERFORMANCE
Table 2 and Table 3 show the performance of subtasks about
M-SQL and F-SQL on WikiSQL and TableQA. Compared
with TableQA, WikiSQL is relatively simple. In WikiSQL,
each SQL query contains only one selected column. For
SQL queries containing multiple conditions, the relationship
between the conditions is only ‘‘AND’’. So the model does
not need to predict S-NUM andW-OP subtasks onWikiSQL.

The 9-th column ‘‘W-V-M’’ indicates the accuracy of the
value prediction in where clause. It is the joint accuracy of
the subtasks W-VALUE and W-MATCH. Subtasks have an
order dependency when generating SQL quires. So it is not
scientific to directly calculate the accuracy of each subtask.
We take the subtask S-AGGas an example. The upstream sub-
task of S-AGG is S-COL. The model first needs to predict the
selected columns through S-COL, and then uses S-AGG to
predict the corresponding aggregation. If the model predicts
the selected columns incorrectly, its corresponding S-AGG
prediction would be meaningless. For downstream subtasks,
we use the accuracy based on ‘‘conditional probability’’
as their performances. We still use S-AGG as an example.
We assume that the correct number of samples for S-COL is
n1, and the correct number of samples for both S-COL and
S-AGG is n2. The performance of S-AGG is calculated as n2

n1
The experimental results in Table 2 and Table 3 show

that our proposed F-SQL achieves the best performance
on multiple subtasks. In conditional column prediction(W-
NUM, W-COL), the performance gap of M-SQL and F-SQL
is large. Compared with M-SQL, F-SQL shows +0.6% for
W-NUM on WikiSQL and +0.2% for W-NUM on TableQA.
F-SQL shows +2.1% for W-COL on WikiSQL and +0.9%
for W-COL on TableQA. These improvements prove that
our proposed approach is effective. Additional table contents
can improve the performance about conditional column pre-
diction. However we find that the performance of F-SQL
on the selected column prediction is unstable. Compared
with M-SQL, F-SQL shows −0.4%, +0.2% for S-COL on
WikiSQL and TableQA.We think this phenomenon is caused
by invalid table contents. The use of additional table contents
brings interference to the prediction of selected columns.
There are samples where the selected column and conditional
column are easily confused. For these samples, the model

VOLUME 8, 2020 136417

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

incorrectly predicts the conditional column as the selected
column. In addition, F-SQL reaches 97.6% about subtask
‘‘W-V-M’’. ‘‘W-V-M’’ is the bottleneck of Text2SQL on
TableQA. After analysing the errors, we find that ‘‘W-V-M’’
prediction errors mainly focus on synonyms. Since the user
question form is not limited, for the string-type conditional
column, the model needs to search in table according to
the question and the extracted value. We use the semantic
retrieval model to search the final value. Compared with the
Logistic Regression based on statistical features, the semantic
retrieval method help F-SQL improve by 0.6% forW-V-M on
TableQA.

D. TABLE CONTENT UTILIZATION
In order to mine table contents in depth, we explore var-
ious table content utilization methods based on the BERT
pre-trained model. The performance of various table content
utilization methods on TableQA is shown in Table 4. None
means no table contents are used. Concatenation represents
the concatenation of the column name and the table content.
Filter Concatenation is based on Concatenation. If the
similarity between the table content and the question is above
the threshold,Filter Concatenation concatenates the column
name and the table content.Weight represents weighting the
column representation and the content representation instead
of the gate mechanism. Gate mechanism is our proposed
method. Note Concatenation and Filter Concatenation use
M-SQL structure, and they concatenate the column name and
the table content in the input. Weight and Gate mechanism
use the same structure except the gate mechanism.

TABLE 4. The performance of various table content utilizations on
TableQA.

The experimental results in Table 4 show that the table
content utilization method based on the gate mechanism
achieves the best performance. Interestingly, Concatenation
reduces performance compared with not using table contents,
showing -0.4% MX on the test dataset. We think that some
table contents are not beneficial and directly concatenating
the column name and the table content would bring redundant
information and reduce model performance. Comparing Fil-
ter concatenation with None, Filter concatenation shows
+0.6% MX on the test dataset. Filter concatenation uses
the threshold to filter table content and only concatenates
table content above the threshold. This approach effectively
reduces the introduction of redundant information. Com-
paring Filter concatenation with Weight, Weight shows
+0.1% MX on the test dataset. Filter concatenation uses
table content to reinforce column information in the input,
and the model treats the original column name and table

content fairly. This treatment is not a perfect method.Weight
treats the original column name and table content with differ-
ent weights and gets the better enhanced column representa-
tion. Compared to Weight, Gate mechanism shows +0.5%
MX on the test dataset. We consider the gate mechanism to be
an advanced method of information fusion. It can selectively
fuse original column name and table content, and fuse more
useful information instead of all information. The experimen-
tal results in Table 4 also further prove the effectiveness of the
gate mechanism.

V. DISCUSSION
In this paper, we focus on the single-table Text2SQL gener-
ation task. We consider the gate mechanism to fuse the table
schema and table content. Our proposed F-SQL has achieved
the new state-of-the-art results on WikiSQL and TableQA.
In this section, we would discuss two topics, additional com-
putational cost and table content utilization.

A. ADDITIONAL COMPUTATIONAL COST
We use the table content as an additional input of the model
to enhance column representation. This method can effec-
tively improve the performance of SQL query generation.
Compared with M-SQL, F-SQL shows +2.3% MX, +1.6%
MXonWikiSQL and TableQA. Although the additional table
content can bring better performance, it will also reduce the
efficiency of SQL generation. For each column in the table,
the table content is a list which contains multiple cells. Since
BERT can only process input sequences up to 512 in length
and GPU capacity is limited, the model cannot process all
cells at the same time. In response to this problem, we take a
trick. For the table content related to each column, we select
the cell with the highest similarity to the user question as
a substitute. This tricky approach effectively reduces GPU
capacity consumption and computational cost. We count the
time consumption before and after using the table content
on WikiSQL. When the model does not use table content,
the training time about each epoch is 1281 seconds, and
the inference time is 158 seconds on test data. When the
model uses table content, the training time about each epoch
is 2247 seconds, and the inference time is 211 seconds on
test data. Additional table content utilization increases 75.4%
training time and 33.5% inference time. Considering the
performance improvement, we think that additional compu-
tational consumption is acceptable and meaningful.

B. TABLE CONTENT UTILIZATION
We use the gate mechanism to fuse table schema and table
content. Due to the limitation of BERT length and GPU
capacity, We use the cell with the highest similarity to the
question as a substitute for the table content. We use Rouge-L
as the similarity calculation method. This tricky approach
effectively reduces the length of the input sequence and
GPU capacity consumption. However, this approach has two
drawbacks. First, Rouge-L measures the similarity of two
texts from the string perspective, not semantics. For some

136418 VOLUME 8, 2020

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

synonyms with low coincidence, Rouge-L cannot accurately
represent the similarity between them. This means that simi-
larity calculation based on Rouge-L is not a perfect way. Sec-
ondly, the similarly between the target cell and the question
may not be the highest, and it may be in the second or third
place.The model selects the most similar cell from the table
content, which may miss valid information. Moreover, it may
bring negative effects to the model and reduce model perfor-
mance. Considering the two shortcomings mentioned above,
we would explore the more suitable similarity calculation
method and how to use more table cells in the limited input
length in the future. For the similarity method, we consider
the approach in the graph applications [34]–[36] as a suitable
alternative, but this approachmay bring higher computational
costs. For the use of more table cells, we observe that not
every cell is useful. Themodel does not fuse the table contents
for all columns, only for the possible target columns. Then
we select multiple cells as the representative of the table
content for the possible target columns. This way may further
improve the use of information in the table contents and
reduce redundant information.

VI. CONCLUSION AND FUTURE WORK
In this paper,we focus on the single-table Text2SQL genera-
tion task and propose F-SQL. Our proposed F-SQL achieves
the new state-of-the-art results on WikiSQL and TableQA.
F-SQL uses the gate mechanism to fuse table schema and
table content. This fusion effectively strengthens the column
representation and improves SQL query generation perfor-
mance. F-SQL is a multi-task learning model, including mul-
tiple sub-models. We describe F-SQL and its sub-models
in detail in Section 3. In Section 4, we introduce the rele-
vant experimental results and analyse them. The experimen-
tal results prove the effectiveness of our proposed F-SQL.
We discuss computational cost and table content utilization
in Section 5.

In the future, we will continue to study in the following two
directions.

• Limited by the Maximum length of BERT and GPU
capacity, the table content utilizationmethodwe propose
is not perfect yet. We will continue to study the table
content utilization.

• In Text2SQL applications, whether user question can be
parsed is an important step. No one has studied this topic
yet. We will study this topic.

ACKNOWLEDGMENT
The authors would like to thank Zhuiyi Technology
for TableQA dataset and WkiSQL dataset provided by
Zhong et al.

REFERENCES

[1] X. Xu, C. Liu, and D. Song, ‘‘SQLNet: Generating structured
queries from natural language without reinforcement learning,’’ 2017,
arXiv:1711.04436. [Online]. Available: http://arxiv.org/abs/1711.04436

[2] X. Zhang, F. Yin, G. Ma, B. Ge, and W. Xiao, ‘‘M-SQL: Multi-task
representation learning for single-table Text2sql generation,’’ IEEEAccess,
vol. 8, pp. 43156–43167, 2020.

[3] A. Solar-Lezama, ‘‘Combinatorial sketching for finite programsg,’’ in
Proc. 12th Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2006,
pp. 404–415.

[4] R. Alur, ‘‘Syntax-guided synthesis,’’ in Proc. Formal Methods Comput.-
Aided Des., Oct. 2013, pp. 1–4.

[5] J. Bornholt, ‘‘Optimizing synthesis with metasketchesg,’’ in Proc. 43rd
Annu. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang., 2016,
pp. 775–788.

[6] V. Zhong, C. Xiong, and R. Socher, ‘‘Seq2SQL: Generating struc-
tured queries from natural language using reinforcement learning,’’ 2017,
arXiv:1709.00103. [Online]. Available: http://arxiv.org/abs/1709.00103

[7] W. Hwang, J. Yim, S. Park, and M. Seo, ‘‘A comprehensive explo-
ration on WikiSQL with table-aware word contextualization,’’ 2019,
arXiv:1902.01069. [Online]. Available: http://arxiv.org/abs/1902.01069

[8] P. He, Y. Mao, K. Chakrabarti, and W. Chen, ‘‘X-SQL: Reinforce schema
representation with context,’’ 2019, arXiv:1908.08113. [Online]. Avail-
able: https://arxiv.org/abs/1908.08113

[9] L. Zettlemoyer and M. Collins, ‘‘Online learning of relaxed CCG gram-
mars for parsing to logical formg,’’ in Proc. Joint Conf. Empirical Methods
Natural Lang. Process. Comput. Natural Lang. Learn. (EMNLP-CoNLL),
2007, pp. 678–687.

[10] S. Tellex et al., ‘‘Understanding natural language commands for robotic
navigation and mobile manipulation,’’ in Proc. Nat. Conf. Artif. Intell.,
2011, pp. 1507–1514.

[11] P. Yin and G. Neubig, ‘‘A syntactic neural model for general-purpose
code generation,’’ inProc. 55th Annu.Meeting Assoc. Comput. Linguistics,
2017, pp. 440–450.

[12] M. Rabinovich,M. Stern, andD. Klein, ‘‘Abstract syntax networks for code
generation and semantic parsing,’’ in Proc. 55th Annu. Meeting Assoc. for
Comput. Linguistics, 2017, pp. 1139–1149.

[13] D. H. D.Warren and F. C. N. Pereira, ‘‘An efficient easily adaptable system
for interpreting natural language queries,’’ Comput. Linguistics, vol. 8,
nos. 3–4, pp. 110–122, Jul./Dec. 1982.

[14] I. Thanisch, ‘‘Masque/sql-an efficient and portable natural language Query
interface for relational databasesg,’’ in Proc. 6th Int. Conf. Held, Edin-
burgh, Scotland, 1993, p. 327.

[15] A.-M. Popescu, O. Etzioni, and H. Kautz, ‘‘Towards a theory of natural
language interfaces to databases,’’ in Proc. 8th Int. Conf. Intell. User
Interface, 2003, pp. 149–157.

[16] A. Giordani and A. Moschitti, ‘‘Translating questions to SQL queries with
generative parsers discriminatively reranked,’’ in Proc. COLING, 2012,
pp. 401–410.

[17] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[18] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ in Proc. 3rd Int. Conf. Learn.
Represent., 2015, pp. 1–7.

[19] O. Vinyals, M. Fortunato, and N. Jaitly, ‘‘Pointer networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 2692–2700.

[20] T. Yu, ‘‘TypeSQL: Knowledge-based type-aware neural text-to-SQL gen-
eration,’’ in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics,
Hum. Lang. Technol., 2018, pp. 588–594.

[21] L. Dong and M. Lapata, ‘‘Coarse-to-fine decoding for neural semantic
parsing,’’ in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, 2018,
pp. 731–742.

[22] B. McCann, N. Shirish Keskar, C. Xiong, and R. Socher, ‘‘The natural
language decathlon: Multitask learning as question answering,’’ 2018,
arXiv:1806.08730. [Online]. Available: http://arxiv.org/abs/1806.08730

[23] C. Wang, K. Tatwawadi, M. Brockschmidt, P.-S. Huang, Y. Mao,
O. Polozov, and R. Singh, ‘‘Robust Text-to-SQL generation with
execution-guided decoding,’’ 2018, arXiv:1807.03100. [Online]. Avail-
able: http://arxiv.org/abs/1807.03100

[24] T. Shi, K. Tatwawadi, K. Chakrabarti, Y. Mao, O. Polozov, and
W. Chen, ‘‘IncSQL: Training incremental Text-to-SQL parsers with non-
deterministic oracles,’’ 2018, arXiv:1809.05054. [Online]. Available:
http://arxiv.org/abs/1809.05054

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., vol. 1, Jun. 2019, pp. 4171–4186.

VOLUME 8, 2020 136419

X. Zhang et al.: F-SQL: Fuse Table Schema and Table Content for Single-Table Text2SQL Generation

[26] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ in Proc.
Conf. North Amer. Chapter Assoc. for Comput. Linguistics, Hum. Lang.
Technol., 2018, pp. 2227–2237.

[27] A. Radford, K. Narasimhan, and T. Salimans. (2018). Improving Lan-
guage Understanding by Generative Pre-Training. [Online]. Avail-
able: https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/
languageunsupervised/languageunderstandingpaper

[28] J. Pennington, R. Socher, and C. D. M. Glove, ‘‘Global vectors for word
representation,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.
(EMNLP), 2014, pp. 1532–1543.

[29] X. Liu, P. He, W. Chen, and J. Gao, ‘‘Multi-task deep neural networks
for natural language understanding,’’ in Proc. 57th Annu. Meeting Assoc.
Comput. Linguistics, 2019, pp. 4487–4496.

[30] Y. Cui, W. Che, T. Liu, B. Qin, Z. Yang, S. Wang, and G. Hu, ‘‘Pre-training
with whole word masking for chinese BERT,’’ 2019, arXiv:1906.08101.
[Online]. Available: http://arxiv.org/abs/1906.08101

[31] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[32] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN Encoder–Decoder for statistical machine translation,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014,
pp. 1724–1734.

[33] J. Lafferty, A.McCallum, and F. C. N. Pereira, ‘‘Conditional randomfields:
Probabilistic models for segmenting and labeling sequence data,’’ 2001.

[34] Y. Chen, X. Zhao, X. Lin, Y. Wang, and D. Guo, ‘‘Efficient mining of
frequent patterns on uncertain graphs,’’ IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 2, pp. 287–300, Feb. 2019.

[35] X. Zhao, C. Xiao*, X. Lin, W. Zhang, and Y. Wang, ‘‘Efficient Struc-
ture Similarity Search: A Partition-based Approach,’’ The VLDB Journal,
2018, vol. 27, no. 1, pp. 53–78.

[36] W. Zeng, X. Zhao, J. Tang, and H. Shang, ‘‘Collective list-only entity
linking: A graph-based approach,’’ IEEE Access, vol. 6, pp. 16035–16045,
2018.

XIAOYU ZHANG received the M.S. degree from
the National University of Defense Technology,
Changsha, Hunan, China, where he is currently
pursuing the Ph.D. degree with the Science and
Technology on Information System Engineering
Laboratory. His research interests include natu-
ral language processing, machine learning, and
sequence-to-sequence learning.

FENGJING YIN received the Ph.D. degree
in management science and engineering from
the National University of Defense Technology,
Changsha, China, in 2011. He is currently a Lec-
turer with the College of Systems Engineering,
National University of Defense Technology. His
research interests include social networks analysis
and data mining.

GUOJIE MA received the Ph.D. degree from the
University of Technology Sydney, Sydney, Aus-
tralia. She is currently a Postdoctoral Research
Fellow with East China Normal University. Her
research interests include big data analysis for
finance, fintech, and knowledge graph.

BIN GE was born in Shandong, China, in 1979.
He received the M.S. and Ph.D. degrees from the
National University of Defense Technology. He is
currently an Associate Professor with the Science
and Technology on Information System Engineer-
ing Laboratory, National University of Defense
Technology. His research interests include natural
language processing and social computing.

WEIDONG XIAO was born in Harbin, China,
in 1968. He received the M.S. and Ph.D. degrees
in management science and engineering from
the National University of Defense Technology.
He is currently a Professor with the Science
and Technology on Information System Engineer-
ing Laboratory, National University of Defense
Technology. His research interests include intelli-
gence analytics, natural language processing, and
knowledge graph.

136420 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	PROBLEM DEFINITION
	F-SQL
	ENCODER
	ENHANCED COLUMN REPRESENTATION
	PREDICTION
	IMPLEMENTATION DETAILS
	LOSS
	WEIGHT SHARING
	FINAL VALUE

	EXPERIMENT
	EXPERIMENT SETTING
	OVERALL PERFORMANCE
	SUBTASK PERFORMANCE
	TABLE CONTENT UTILIZATION

	DISCUSSION
	ADDITIONAL COMPUTATIONAL COST
	TABLE CONTENT UTILIZATION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	XIAOYU ZHANG
	FENGJING YIN
	GUOJIE MA
	BIN GE
	WEIDONG XIAO

